Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion The Rees product and cubical complexes Tricia Muldoon Brown ArmstrongAtlanticStateUniversity April 18, 2010 TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Outline Introduction Results Cubical Results Rees multiple Almost cubical posets Questions TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Assumptions P is a poset which is: bounded below graded, with rank function ρ. TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Rees product Definition For two graded posets P and Q with rank function ρ the Rees product P (cid:63)Q, is the set of ordered pairs (p,q) in the Cartesian product P ×Q with ρ(p) ≥ ρ(q). These pairs are partially ordered by (p,q) ≤ (p(cid:48),q(cid:48)) if p ≤ p(cid:48), q ≤ q(cid:48), and P Q ρ(p(cid:48))−ρ(p) ≥ ρ(q(cid:48))−ρ(q). TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion C (cid:63) C 4 4 ◦◦◦◦ ∗ ◦◦◦◦ = ◦...............................................................◦...................................................................................................................................◦◦........................................................................................................................................................................................................◦◦.............................................................................................................................................................................................................◦◦...............................................................................................................................................◦..........................................................................◦...... Figure: The Rees product of two chains TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Notation: Rees(P,Q) = ((P \{ˆ0})(cid:63)Q)∪{ˆ0,ˆ1} Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion C 2 ◦◦..................................................................................................................................................................................................................................................................................◦◦..................................................................................................................................................................................................................................................................◦◦..........................................................................................................................................................................................................................................................................◦◦............................................................................................................................................................................................................................................................................................................◦◦.............. Figure: The face lattice of the square, C 2 TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion C 2 ◦◦..................................................................................................................................................................................................................................................................................◦◦..................................................................................................................................................................................................................................................................◦◦..........................................................................................................................................................................................................................................................................◦◦............................................................................................................................................................................................................................................................................................................◦◦.............. Figure: The face lattice of the square, C 2 Notation: Rees(P,Q) = ((P \{ˆ0})(cid:63)Q)∪{ˆ0,ˆ1} TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Rees(C ,C ) 2 3 •.................................................................................................................................................................................................................................................••.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................••..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................••......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................•••.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................••.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................••................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................••..............................................................................................................................................................................................................................................................................•................ Figure: Rees(C ,C ) 2 3 TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Observation For P, a rank n poset, the Rees product Rees(P,C ) is isomorphic n to the Segre product ((P \{ˆ0})◦(C (cid:63)C ))∪{ˆ0,ˆ1}. n n TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Cohen-Macaulay Theorem (Bjo¨rner–Welker) The Rees product of two Cohen-Macaulay posets is Cohen-Macaulay. TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity
Description: