ebook img

The Rees product and cubical complexes - Armstrong Atlantic PDF

43 Pages·2010·0.47 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Rees product and cubical complexes - Armstrong Atlantic

Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion The Rees product and cubical complexes Tricia Muldoon Brown ArmstrongAtlanticStateUniversity April 18, 2010 TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Outline Introduction Results Cubical Results Rees multiple Almost cubical posets Questions TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Assumptions P is a poset which is: bounded below graded, with rank function ρ. TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Rees product Definition For two graded posets P and Q with rank function ρ the Rees product P (cid:63)Q, is the set of ordered pairs (p,q) in the Cartesian product P ×Q with ρ(p) ≥ ρ(q). These pairs are partially ordered by (p,q) ≤ (p(cid:48),q(cid:48)) if p ≤ p(cid:48), q ≤ q(cid:48), and P Q ρ(p(cid:48))−ρ(p) ≥ ρ(q(cid:48))−ρ(q). TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion C (cid:63) C 4 4 ◦◦◦◦ ∗ ◦◦◦◦ = ◦...............................................................◦...................................................................................................................................◦◦........................................................................................................................................................................................................◦◦.............................................................................................................................................................................................................◦◦...............................................................................................................................................◦..........................................................................◦...... Figure: The Rees product of two chains TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Notation: Rees(P,Q) = ((P \{ˆ0})(cid:63)Q)∪{ˆ0,ˆ1} Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion C 2 ◦◦..................................................................................................................................................................................................................................................................................◦◦..................................................................................................................................................................................................................................................................◦◦..........................................................................................................................................................................................................................................................................◦◦............................................................................................................................................................................................................................................................................................................◦◦.............. Figure: The face lattice of the square, C 2 TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion C 2 ◦◦..................................................................................................................................................................................................................................................................................◦◦..................................................................................................................................................................................................................................................................◦◦..........................................................................................................................................................................................................................................................................◦◦............................................................................................................................................................................................................................................................................................................◦◦.............. Figure: The face lattice of the square, C 2 Notation: Rees(P,Q) = ((P \{ˆ0})(cid:63)Q)∪{ˆ0,ˆ1} TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Rees(C ,C ) 2 3 •.................................................................................................................................................................................................................................................••.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................••..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................••......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................•••.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................••.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................••................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................••..............................................................................................................................................................................................................................................................................•................ Figure: Rees(C ,C ) 2 3 TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Observation For P, a rank n poset, the Rees product Rees(P,C ) is isomorphic n to the Segre product ((P \{ˆ0})◦(C (cid:63)C ))∪{ˆ0,ˆ1}. n n TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity Introduction Results Cubicalresults Reesmultiple Almostcubicalposets Conclusion Cohen-Macaulay Theorem (Bjo¨rner–Welker) The Rees product of two Cohen-Macaulay posets is Cohen-Macaulay. TriciaMuldoonBrown:TheReesproductandcubicalcomplexes ArmstrongAtlanticStateUniversity

Description:
IntroductionResultsCubical resultsRees multipleAlmost cubical posetsConclusion The Rees product and cubical complexes Figure:The Rees product of two chains
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.