Lecture Notes in Physics Volume 832 Founding Editors W. Beiglböck J. Ehlers K. Hepp H. Weidenmu¨ller Editorial Board B.-G. Englert, Singapore U. Frisch, Nice, France F. Guinea, Madrid, Spain P. Ha¨nggi, Augsburg, Germany W. Hillebrandt, Garching, Germany M. Hjorth-Jensen, Oslo, Norway R. A. L. Jones, Sheffield, UK H. v. Lo¨hneysen, Karlsruhe, Germany M. S. Longair, Cambridge, UK M. Mangano, Geneva, Switzerland J.-F. Pinton, Lyon, France J.-M. Raimond, Paris, France A. Rubio, Donostia, San Sebastian, Spain M. Salmhofer, Heidelberg, Germany D. Sornette, Zurich, Switzerland S. Theisen, Potsdam, Germany D. Vollhardt, Augsburg, Germany W. Weise, Garching, Germany For furthervolumes: http://www.springer.com/series/5304 The Lecture Notes in Physics The series Lecture Notes in Physics (LNP), founded in 1969, reports new devel- opmentsinphysicsresearchandteaching—quicklyandinformally,butwithahigh qualityandtheexplicitaimtosummarizeandcommunicatecurrentknowledgein an accessible way. Books published in this series are conceived as bridging materialbetweenadvancedgraduatetextbooksandtheforefrontofresearchandto serve three purposes: • to be a compact and modern up-to-date source of reference on a well-defined topic • to serve as an accessible introduction to the field to postgraduate students and nonspecialist researchers from related areas • to be a source of advanced teaching material for specialized seminars, courses and schools Bothmonographsandmulti-authorvolumeswillbeconsideredforpublication. Editedvolumesshould,however,consistofaverylimitednumberofcontributions only. Proceedings will not be considered for LNP. Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive being available at springerlink.com. The series contentisindexed,abstractedandreferencedbymanyabstractingandinformation services, bibliographic networks, subscription agencies, library networks, and consortia. Proposals should be sent toa member ofthe Editorial Board,ordirectly to the managing editor at Springer: Christian Caron Springer Heidelberg Physics Editorial Department I Tiergartenstrasse 17 69121 Heidelberg/Germany [email protected] Jean-Pierre Rozelot Coralie Neiner • Editors The Pulsations of the Sun and the Stars 123 Editors Dr. Jean-Pierre Rozelot Coralie Neiner Dept.LAGRANGE Observatoire de Meudon GEPI Observatoire de laCoted’Azur BâtimentCopernicA,PlaceJulesJanssen5 av.Copernic 92195Meudon,Cedex 06130Grasse France France e-mail: [email protected] e-mail: [email protected] ISSN 0075-8450 e-ISSN1616-6361 ISBN 978-3-642-19927-1 e-ISBN978-3-642-19928-8 DOI 10.1007/978-3-642-19928-8 SpringerHeidelbergDordrechtLondonNewYork (cid:2)Springer-VerlagBerlinHeidelberg2011 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcast- ing, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawof September 9, 1965, in its current version, and permission for use must always be obtained from Springer.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamar,Berlin/Figueres Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The focus of this book is placed on the physics of pulsations and brings together the knowledge from the Sun and the stars, with a particular emphasis on recent observations and modelling, and on the influence of pulsations of other physical processes. Oscillations of the Sun have been widely used in the past to understand its interior structure. The extension ofsimilar studies tomore distant stars has raised many difficulties despite the strong efforts of the international community over thepastdecades.However,wearecurrentlywitnessingacompleterenewalofthe methods and models in the field of pulsations of stars due to a large extent to the launchesoftheMOSTandCoRoTsatellitesin2003and2006respectively,which have brought results of unprecedented precision on the pulsations of stars of all types. In particular, pulsations make it possible to derive the internal structure of thestars,whichstillremainsamajorscientificenigma.Inthiscontextandwiththe first CoRoT results in hand, it seemed interesting to confront the experience of solar astronomers with that of stellar ones. Transposing the results obtained from heliosismologytoasterosismologyhasalreadybeenveryprofitable.Nodoubtthat the Kepler satellite, launched in 2009, and future space missions for asteroseis- mology will allow us to go even further in the study of pulsations and the mod- elling of the internal structure of the various stars. The General Overlook of this Book is as Follows: A general up-to-date stand-alone introduction on helioseismology is proposed by A.Kosovichev,followedbytwosections,onedevotedtotheSunandtheotherto the stars, linked by a transition chapter from heliosismology to asterosismology written by S. Vauclair. The first section of the book on the Sun is divided into four chapters. TheSunistheonlysolar-typestarwherethedynamicsandthemagnetismcan bestudiedindetailandthephysicalprocessinvolvedisrelativelywellunderstood, in particular those which occur at very small scales. This chapter albeit restricted to the quiet solar photosphere describes the properties of the three cellular scales v vi Preface of motions observed at the solar surface: granulation, mesogranulation and su- pergranulation. The intranet work field, not yet clarified, is also tackled and the questions are posed in a new way. Thesecondchapterfocusesonvariationsofsolaractivitywhicharearesultofa complex dynamo process in the convection zone. Despite the known general properties ofthe solar cycles,a reliable forecast ofthe 11 year sunspot number is still a problem. However, new methods that take into account the dynamics of turbulent magnetic helicity are capable of providing a forecast of the system, and its application permits a good prediction of the sunspot number. Thethirdpartfocusesonsolargravitymodes,whicharemainlytrappedinside the radiative region and consequently are able to provide information on the properties of the solar core. Such a topic is of high interest today as we are wonderingifthecoremayrotateatahigherratethantheouterenvelope.However, the detection of solar gravity modes still remains a major challenge. The issue discussed here is important since a theoretical determination of mode amplitudes may help to design the track for gravity modes. Thelastchapterofthissectiondealswiththerotation,andmorepreciselywith thedifferentialrotationoftheSunandstars.Theeffectsontheoutershapeandto firstorder,andthoseconcerningtheapparentoblatenessaretackled.Thankstothe adventofinterferometrytechniques,thestellarshapescannowbemeasuredwitha greataccuracy.Itisshownthatthecoredensityandthegravitationalmomentscan be reached. Then, the recent developments from helioseismology to asteroseismology are presented.Thegeneralbasisforasteroseismology,theso-calledasymptotictheory ofstellaroscillationsisdiscussed.Solar-typestarsarediscussedandexamplesfor which it was possible to derive precise stellar parameters from seismology are presented,focusingontheheliumabundance.Thepotentialityofasteroseismology for a better knowledge of stellar structure and evolution is huge, and many new results are expected in the near future. The next section, consisting in five chapters, deals with stellar pulsations. First, the requirements for a self-consistent interpretation of a collection of observables related to rapidly rotating stars are explored. If the star is otherwise static,rapidrotationthroughthecentrifugalforcewillaffecttheforcebalanceand hencethestructureofthestar.Rotationalsochangesthesurfacefromasphericaltoa spheroidal,andpossiblyinsomecasesanellipsoidal,shape.Suchchangeshavebeen observedevenfortheSun,andtheconfrontationofthetheoriesareofimportance. In the next chapter, the effects of stellar rotation on adiabatic oscillation fre- quencies of massive stars are presented, together with methods to evaluate them and some of the main results for four specific stars are shown. The following chapter deals with the extension of the asymptotic theory of stellar oscillations beyond the case of a non-rotating, non-magnetic spherically symmetric star. A recent application to the high-frequency acoustic modes of rapidly rotating stars is presented. Then, the complete interaction between low-frequency internal gravity waves and differential rotation in stably strongly stratified stellar radiation zones is Preface vii examined. This includes the modification of the structure of waves and of the angular velocity. Thelastchapterisdevotedtoexcitationofsolar-likeoscillationsthathavebeen detected for more than 10 years. The computed mode excitation rates crucially depend not only on the way turbulent convection is described but also on the stratification and the metal abundance of the upper layers of the star. In turn it is shownhowtheseismicmeasurementscollectedsofarallowustoinferproperties of turbulent convection in stars. Theaudiencetargetedbythisbookconsistsofresearchers,PhDstudents,post- docs, and all scientists seeking a complementary culture or scientists evolving toward new research topics. This book is based on tutorials and discussions on the same topic held at a CNRS school in Saint-Flour (France) in 2008, which has allowed us to give a progressreportontheverylastsolardevelopments(structureofthesolarcorefor example)andstellardevelopments(CoRoTresults,newstellarmodels)forabetter understandingofstellarpulsationsandinternalstructureingeneral.Letusremind thatafirstbooktitled‘‘TherotationoftheSunandStars’’(LNP765)resultedfrom apreviousCNRSschoolheldinObernai(France)in2007.Wehopethatthisnew book the ‘‘Pulsations of the Sun and Stars’’ willprovidean interestingsequell for the reader. The editors sincerely thank the authors for the great quality of their contribu- tionspublishedhere.Theyhopethatthisnewbookwillhelptoabetterknowledge of the wonderful world which surrounds us. December 2010 J. P. Rozelot C. Neiner Contents Part I General Overview 1 Advances in Global and Local Helioseismology: An Introductory Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Brief History of Helioseismology. . . . . . . . . . . . . . . . . . . . 5 1.3 Basic Properties of Solar Oscillations . . . . . . . . . . . . . . . . . 11 1.3.1 Oscillation Power Spectrum. . . . . . . . . . . . . . . . . 11 1.3.2 Excitation by Turbulent Convection . . . . . . . . . . . 13 1.3.3 Line Asymmetry and Pseudo-modes . . . . . . . . . . . 14 1.3.4 Magnetic Effects: Sunspot Oscillations and Acoustic Halos. . . . . . . . . . . . . . . . . . . . . . . 17 1.3.5 Impulsive Excitation: Sunquakes. . . . . . . . . . . . . . 20 1.4 Global Helioseismology. . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.2 JWKB Solution. . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4.3 Dispersion Relations for p- and g-modes. . . . . . . . 31 1.4.4 Frequencies of p- and g-modes. . . . . . . . . . . . . . . 32 1.4.5 Asymptotic Ray-path Approximation. . . . . . . . . . . 34 1.4.6 Duvall’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.4.7 Asymptotic Sound–Speed Inversion. . . . . . . . . . . . 37 1.4.8 Surface Gravity Waves (f-mode). . . . . . . . . . . . . . 41 1.4.9 The Seismic Radius. . . . . . . . . . . . . . . . . . . . . . . 42 1.5 General Helioseismic Inverse Problem . . . . . . . . . . . . . . . . 44 1.5.1 Variational Principle . . . . . . . . . . . . . . . . . . . . . . 45 1.5.2 Perturbation Theory. . . . . . . . . . . . . . . . . . . . . . . 45 1.5.3 Kernel Transformations. . . . . . . . . . . . . . . . . . . . 46 1.5.4 Solution of Inverse Problem. . . . . . . . . . . . . . . . . 48 1.5.5 Optimally Localized Averages Method . . . . . . . . . 49 1.5.6 Inversion Results for Solar Structure. . . . . . . . . . . 50 ix x Contents 1.5.7 Regularized Least-Squares Method . . . . . . . . . . . . 53 1.5.8 Inversions for Solar Rotation . . . . . . . . . . . . . . . . 54 1.5.9 Results for Solar Rotation . . . . . . . . . . . . . . . . . . 55 1.6 Local-area Helioseismology. . . . . . . . . . . . . . . . . . . . . . . . 58 1.6.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . 58 1.6.2 Ring-diagram Analysis . . . . . . . . . . . . . . . . . . . . 58 1.6.3 Time–Distance Helioseismology (Solar Tomography) . . . . . . . . . . . . . . . . . . . . . . 60 1.6.4 Acoustic Holography and Imaging . . . . . . . . . . . . 60 1.7 Solar Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 1.7.1 Time–distance Diagram. . . . . . . . . . . . . . . . . . . . 64 1.7.2 Wave Travel Times. . . . . . . . . . . . . . . . . . . . . . . 64 1.7.3 Deep- and Surface-Focus Measurement Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 1.7.4 Sensitivity Kernels: Ray-path Approximation. . . . . 67 1.7.5 Born Approximation . . . . . . . . . . . . . . . . . . . . . . 70 1.8 Inversion Results of Solar Acoustic Tomography . . . . . . . . . 71 1.8.1 Diagnostics of Supergranulation . . . . . . . . . . . . . . 72 1.8.2 Structure and Dynamics of Sunspot. . . . . . . . . . . . 72 1.8.3 Large-Scale and Meridional Flows . . . . . . . . . . . . 74 1.9 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 75 1.9.1 Global Helioseismology: Diagnostics of Global Changes Inside the Sun. . . . . . . . . . . . . . . . . . . . 79 1.9.2 Local-Area Helioseismology: 3D Imaging of the Solar Interior . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Part II Section 1: The Sun as a Star 2 The Quiet Solar Photosphere: Dynamics and Magnetism. . . . . . . 87 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.2 Solar Surface Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.2.1 The Solar Granulation. . . . . . . . . . . . . . . . . . . . . 88 2.2.2 The Solar Mesogranulation. . . . . . . . . . . . . . . . . . 90 2.2.3 The Solar Supergranulation . . . . . . . . . . . . . . . . . 91 2.2.4 The Power Spectrum of Photospheric Flows. . . . . . 93 2.2.5 Numerical Simulation of the Solar Convection; Origin of the Granulation. . . . . . . . . . . . . . . . . . . 93 2.2.6 Origin of the Solar Mesogranulation . . . . . . . . . . . 96 2.2.7 Origin of the Solar Supergranulation. . . . . . . . . . . 98 2.3 Magnetic Field in the Quiet Photosphere. . . . . . . . . . . . . . . 99 2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.3.2 The Photospheric Network. . . . . . . . . . . . . . . . . . 101 Contents xi 2.3.3 Observation of the Photospheric Network in the G-Band at 4,305 Å. . . . . . . . . . . . . . . . . . . 105 2.3.4 Intranetwork Magnetic Field. . . . . . . . . . . . . . . . . 106 2.3.5 Horizontal Component of the Intranetwork Magnetic Field and Granular Magnetic Field . . . . . 108 2.3.6 Physical Properties of the Intranetwork Magnetic Field and Comparison with the Properties of the Network Field . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.3.7 Hidden Turbulent Flux . . . . . . . . . . . . . . . . . . . . 111 2.3.8 Numerical Simulations of Small-Scale Magneto-Convection. . . . . . . . . . . . . . . . . . . . . . 111 2.3.9 Small-Scale Dynamo: A Possible Origin of the Small-Scale Magnetic Field . . . . . . . . . . . . . . . . . 114 2.3.10 Origin of the Photospheric Network . . . . . . . . . . . 115 2.3.11 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3 Modeling and Prediction of Solar Cycles Using Data Assimilation Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.2 Formulation of the Dynamo Models . . . . . . . . . . . . . . . . . . 122 3.2.1 Parker’s Migratory Dynamo. . . . . . . . . . . . . . . . . 122 3.2.2 The Kleeorin–Ruzmaikin Model. . . . . . . . . . . . . . 123 3.2.3 Periodic and Chaotic Solutions. . . . . . . . . . . . . . . 126 3.3 Data Assimilation Methods . . . . . . . . . . . . . . . . . . . . . . . . 129 3.3.1 Basic Formulation. . . . . . . . . . . . . . . . . . . . . . . . 129 3.3.2 Implementation of the Data Assimilation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.4 Reproducing and Predicting Observational Data by the Ensemble Kalman Filter. . . . . . . . . . . . . . . . . . . . . . . . 131 3.4.1 Application Data Assimilation to Early Sunspot Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.4.2 Prediction of the Last Solar Cycles. . . . . . . . . . . . 133 3.5 Discussion and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4 Amplitudes of Solar Gravity Modes . . . . . . . . . . . . . . . . . . . . . . 139 4.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.2 Basic Properties of Solar Gravity Modes. . . . . . . . . . . . . . . 140 4.2.1 Dispersion Relation of Gravito-Acoustic Modes . . . 140 4.2.2 Some g Mode Properties Near the Sun Surface . . . 142 4.3 Energetic of Gravity Modes: Driving and Damping Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.3.1 Principle: Forced and Damped Oscillator. . . . . . . . 144