ebook img

The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular ... PDF

218 Pages·2017·18.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular ...

The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis by Mohadeseh Mehrabian A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Mohadeseh Mehrabian 2017 The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis Mohadeseh Mehrabian Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto 2017 Abstract The cellular prion protein (PrPC) is one of the most studied mammalian proteins. Despite the ongoing efforts and the ubiquitous expression of PrPC in vertebrate cells, the main function of this protein has remained enigmatic to date. Several lines of evidence pointed towards the involvement of PrPC in the morphogenetic reprogramming underlying the epithelial-to- mesenchymal transition (EMT). To address this, we applied CRISPR-Cas9 genome engineering technique to establish multiple PrPC knockout cell models (Chapter 2). The follow-up studies uncovered a critical role of PrPC in EMT and showed that PrPC controls the polysialic acid (polySia) modification of neural cell adhesion molecule 1 (NCAM1). Surprisingly, this effect of PrPC on NCAM1 polysialylation relies on a novel signaling loop that modulates expression of ST8SIA2, one of the two polysialyltransferase enzymes responsible for adding polySia on NCAM1 (Chapter 3). Intriguingly, a comparative analysis revealed that PrPC levels correlate directly or inversely with ST8SIA2 levels in different cell models. Deep global proteome analyses of multiple PrP-deficient models not only uncovered surprising cell model-specific proteome shifts but also showed robust changes in the levels of MARCKS and BASP protein families at the plasma membrane. Further investigation of their involvement in a biology that controls NCAM1 polysialylation revealed that reduced levels of MARCKSL1 also led to a significant reduction of polySia-modified NCAM1 (Chapter 4). Data from this study emphasize a ii thus far underappreciated coordinated biology of PrP and NCAM1. A close comparison of knockout phenotypes in mice is consistent with a model, whereby several of the known phenotypes in PrP-deficient mice might be explained by the contribution of PrPC to NCAM1 polysialylation. Attempts to validate this model and to assert its significance for determining if perturbed PrPC signaling contributes to toxicity in prion diseases are ongoing and have not been included in this thesis at this time. ii i Acknowledgments I would like to express my greatest and most sincere thanks to my supervisor, Dr. Gerold Schmitt-Ulms for the excellent guidance, supervision and training on scientific thinking for tackling biological questions. I owe a lot of my increasing passion for science to his scientific character, genuine dedication to teaching and the overall very positive experience of my doctoral training. I would also like to thank members of my Ph.D. advisory committee, Dr. Karim Mekhail and Dr. Emil F. Pai and the Department of Laboratory Medicine and Pathobiology’s Graduate Coordinator Dr. Harry P. Elsholtz and the Graduate Administrators Ferzeen Sammy and Rama Ponda for their continued support and guidance. Thank you also to Dr. Ilia V. Baskakov, Dr. Lorraine Kalia and Dr. Joel Watts for evaluating my thesis. This project had started with the initial discovery of Prion-ZIP molecules’ ancestral connection, the accomplishment of a previous lab member, Dr. Sepehr Ehsani. I would like to acknowledge his many contributions to this project. Also, I would like to extend my thanks to the previous and current laboratory members especially the members I was fortunate to collaborate with on this project: Dylan Brethour, Dr. Cosmin L. Pocanschi, Hezhen Ren and Dr. Hansen Wang. These discoveries would have not been possible without the valuable help and expertise of Dr. Declan Williams in mass spectrometry technology. Work on this project has been feasible through the generous donation of Arnold Irwin that facilitated our laboratory with the cutting-edge technology in proteomics. The research is supported by the Ontario Trillium Scholarship, the University of Toronto Fellowship program, the Weston Brain Institute, the Canadian Institute of Health Research and PrioNet Canada. I would like to dedicate this thesis to my parents. iv Table of Contents Acknowledgments .................................................................................................................. iv Table of Contents .................................................................................................................... v List of Tables .......................................................................................................................... ix List of Figures .......................................................................................................................... x List of Appendices ................................................................................................................. xii Abbreviations ....................................................................................................................... xiv Chapter 1 An Emerging Role of the Cellular Prion Protein as a Modulator of the Morphogenetic Program Underlying Epithelial-to-Mesenchymal Transition: An Introduction . 1 1.1 Preamble .................................................................................................................................... 1 1.2 The physiological role of a protein- phenotypic change vs. function ............................................ 1 1.3 EMT, yet another phenotypic change the prion protein may contribute to- but not its function . 3 1.3.1 Evidence for a role of PrPC in EMT in the cancer literature ........................................................ 4 1.3.2 Zebrafish PrP knockdown models ............................................................................................... 5 1.3.3 Protein-protein interactions of PrPC with a known EMT connection .......................................... 5 1.3.4 Function of closest evolutionary relatives of PrPC ...................................................................... 6 1.4 Model of PrP/ZIP E-cadherin modulation .................................................................................... 7 1.5 Advanced methodology .............................................................................................................. 9 1.5.1 Genome editing using CRISPR-Cas9 ............................................................................................ 9 1.5.2 Relative quantitation of proteins during mass spectrometry analyses .................................... 10 1.6 Conclusions .............................................................................................................................. 11 Chapter 2 Development of CRISPR-Cas9-Based Knockout Models of the Prion Protein and Its Effect on the Proteome ......................................................................................................... 12 2.1 Introduction ............................................................................................................................. 12 2.2 Materials and methods ............................................................................................................. 14 2.2.1 Generation of gRNA Expression Vectors .................................................................................. 14 2.2.2 Cell Culture and Transfection ................................................................................................... 15 v 2.2.3 Generation of stable knockdown cell clones ............................................................................ 15 2.2.4 Genetic analysis ........................................................................................................................ 15 2.2.5 Western blot analyses .............................................................................................................. 16 2.2.6 Sample preparation for comparative global proteomics analysis ............................................ 16 2.2.7 Nanospray ionization tandem mass spectrometry ................................................................... 17 2.2.8 Post-acquisition analyses .......................................................................................................... 17 2.3 Results ...................................................................................................................................... 18 2.3.1 Strategy of CRISPR-Cas9-based PrP knockout in three mouse cell lines .................................. 18 2.3.2 Validation and characterization of PrP knockout cell clones .................................................... 20 2.3.3 Workflow of global proteome comparison of PrP knockout (or knockdown) and wild-type NMuMG cells ..................................................................................................................................... 22 2.3.4 The global proteome of PrP-deficient NMuMG cells ................................................................ 24 2.4 Discussion ................................................................................................................................ 30 2.5 Conclusions .............................................................................................................................. 32 Chapter 3 The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 During Cellular Morphogenesis ............................................................................................. 34 3.1 Introduction ............................................................................................................................. 34 3.2 Materials and methods ............................................................................................................. 36 3.2.1 Inhibitors, proteins, plasmids and antibodies .......................................................................... 36 3.2.2 Cell lines and culture conditions and transfections .................................................................. 37 3.2.3 CRISPR-Cas9 mediated knockout clones and transient or stable knockdown of PrP ............... 37 3.2.4 Western blot analyses .............................................................................................................. 37 3.2.5 Enzymatic characterization of post-translational modifications of NCAM1 ............................. 38 3.2.6 RT-PCR analyses ........................................................................................................................ 38 3.2.7 Co-immunofluorescence analyses ............................................................................................ 39 3.2.8 Sample preparation for comparative global proteomic analysis .............................................. 39 3.2.9 Global proteome analyses ........................................................................................................ 39 3.2.10 Post-acquisition and statistical analyses of global proteome datasets .................................. 40 3.3 Results ...................................................................................................................................... 41 3.3.1 PrP contributes to morphogenetic reprogramming of cells during EMT .................................. 41 3.3.2 Comparative proteome analyses identify NCAM1 as a candidate for mediating PrP’s influence on EMT ............................................................................................................................................... 43 v i 3.3.3 PrP is critical for EMT-dependent polysialylation of NCAM1 ................................................... 47 3.3.4 PrP regulates NCAM1 polysialylation at the level of polyST transcription ............................... 49 3.3.5 β-catenin contributes to differential ST8SIA2 expression ........................................................ 52 3.4 Discussion ................................................................................................................................ 55 3.4.1 The PrP-ST8SIA2-NCAM1 signaling loop ................................................................................... 56 3.4.2 The search for the physiological function of PrP ...................................................................... 57 3.5 Conclusions .............................................................................................................................. 58 Chapter 4 Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Bain Tissue ........................................................................................................ 59 4.1 Introduction ............................................................................................................................. 59 4.2 Materials and methods ............................................................................................................. 60 4.2.1 Antibodies ................................................................................................................................. 60 4.2.2 Mouse brain and cell models .................................................................................................... 61 4.2.3 Generation of PrP-deficiency .................................................................................................... 61 4.2.4 Sample preparation for global proteome analyses .................................................................. 62 4.2.5 Quantitative mass spectrometry .............................................................................................. 62 4.2.6 Gene ontology analysis ............................................................................................................. 63 4.2.7 Cluster analysis ......................................................................................................................... 64 4.2.8 Multiple alignment ................................................................................................................... 64 4.2.9 SDS-PAGE and western blot ...................................................................................................... 64 4.2.10 RT-PCR methodology .............................................................................................................. 65 4.2.11 Statistics .................................................................................................................................. 65 4.3 Results ...................................................................................................................................... 66 4.3.1 Experimental design of global proteome analyses of PrP-deficient mouse models ................. 66 4.3.2 At similar depths of proteome coverage, global proteomes reflect differences in cellular origins of mouse models suited ......................................................................................................... 68 4.3.3 Hierarchical clustering reveals surprising disparity in the consequences of PrP-deficiency on global proteomes ............................................................................................................................... 71 4.3.4 PrP-deficiency causes consistent but opposite changes of steady-state levels of MRACKS and its paralog MARCKSL1 in all cell models ............................................................................................ 74 4.3.5 The effect of PrP on nerve ending signal hub proteins extends to members of the BASP protein family .................................................................................................................................... 77 vi i 4.3.6 MARCKSL1 is a downstream partner in PrP-dependent NCAM1 polysialylation ...................... 82 4.4 Discussion ................................................................................................................................ 86 4.4.1 General comments on global proteomics datasets .................................................................. 86 4.4.2 Influence of PrP on steady-state levels of MARCKS family proteins ......................................... 88 4.4.3 MARCKS family proteins influence biology of PrP-dependent NCAM1 polysialylation and cation-selective channels .................................................................................................................. 89 4.5 Conclusions .............................................................................................................................. 90 Chapter 5 Future Directions of the Role of PrP in Controlling the EMT Program and Polysialylation on NCAM1 ..................................................................................................... 91 5.1 Introduction ............................................................................................................................. 91 5.2 Protein-protein interactions ..................................................................................................... 95 5.3 Phenotypes of polySia-NCAM1 or PrPC deficient models ........................................................... 97 5.3.1 EMT and gastrulation ................................................................................................................ 98 5.3.2 Subventricular zone, rostral migratory system and olfactory bulb .......................................... 99 5.3.3 Hippocampal formation .......................................................................................................... 101 5.3.4 Hematopoietic stem cells and their derivatives ..................................................................... 105 5.3.5 Myelin repair and maintenance ............................................................................................. 107 5.3.6 Circadian Rhythm .................................................................................................................... 108 5.3.7 Glutamatergic signaling and long-term potentiation ............................................................. 110 5.4 Evolutionary context .............................................................................................................. 111 5.6 Conclusions ............................................................................................................................ 117 Chapter 6 : Perspective ........................................................................................................ 119 References .......................................................................................................................... 122 Appendices ......................................................................................................................... 145 Copyright Acknowledgements ............................................................................................. 149 vi ii List of Tables Table 2.1: Subset of proteins observed in PrP 'ko' and 'kd' NMuMG global proteomes at levels that deviated from 'wt' levels Table 5.1: Similarities amongst PrP- and polySia-NCAM1-related phenotypes ix List of Figures Figure 1.1: Schematic outlining key morphological and molecular changes that accompany EMT. Figure 1.2: Schematic summarizing evidence consistent with a role of PrPC in EMT. Figure 2.1: Strategy for generation of mouse PrP knockout clones based on CRISPR/Cas9- system. Figure 2.2: Generation of Prnp knockout clones in three different mouse cell lines. Figure 2.3: Flow-chart depicting experimental strategy for comparative analyses of the global proteomes of Prnp knockout (or knockdown) and wild-type NMuMG epithelial cell clones. Figure 2.4: PrP deficiency generated by CRISPR/Cas9-mediated gene knockout or stable shRNA-mediated knockdown manifests in highly reproducible changes to the expression of more than hundred proteins in NMuMG cell model. Figure 3.1: PrPC expression is transcriptionally upregulated during EMT. Figure 3.2: Quantitative mass spectrometry identifies perturbed ‘response to metal ions’ and EMT markers, including NCAM1, affected in PrP-deficient cells. Figure 3.3: PrP-deficiency affects expression of a subset of proteins undergoing pronounced expression levels changes during EMT. Figure 3.4: Stable PrP-deficiency prevents EMT-dependent polysialylation of NCAM1. Figure 3.5: PrP deficiency prevents EMT-dependent NCAM1 polysialylation by inhibiting transcriptional activation of ST8SIA2 gene. Figure 3.6: Inhibition of CTNNB1-dependent transcription phenocopies loss of PSA in NMuMG cells. Figure 4.1: Study design for global proteome comparison of PrP-deficient mouse models. x

Description:
MS/MS tandem mass spectrometry. NCAM1 neural cell adhesion molecule. Neu5Ac. N-acetylneuraminic acid. NHEJ non-homologous end joining. NMDA. N-Methyl-D- . form of adherens junctions gradually give way to more transient cell-to-matrix connections evident in cultured cells (referred to as
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.