ebook img

The physics of accretion-ejection with LOFT PDF

1.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The physics of accretion-ejection with LOFT

The physics of accretion-ejection with LOFT 5 1 0 2 n a White Paper in Support of the Mission Concept of the J 2 Large Observatory for X-ray Timing 1 ] E H . h Authors p - o P.Casella1,R.Fender2,M.Coriat3,E.Kalemci4,S.Motta2,J.Neilsen5,G.Ponti6, tr M.Begelman7,T.Belloni8,E.Koerding9,T.J.Maccarone10,P.-O.Petrucci11,J.Rodriguez12, s a J.Tomsick13,S.Bhattacharyya14,S.Bianchi15,M.DelSanto16,I.Donnarumma17,P.Gandhi18, [ J.Homan19,P.Jonker20,M.Kalamkar1,J.Malzac21,S.Markoff22,S.Migliari23,J.Miller24, 1 J.Miller-Jones25,J.Poutanen26,R.Remillard19,D.M.Russell27,P.Uttley22,A.Zdziarski28 v 6 6 7 1 INAF,OsservatorioAstronomicodiRoma,ViaFrascati33,I-00040 15DipartimentodiMatematicaeFisica,UniversitàdegliStudiRoma 2 MonteporzioCatone,Italy Tre,ViadellaVascaNavale84,00146Roma,Italy 0 2 DepartmentofPhysics,UniversityofOxford,KebleRoad,OX1 16IstitutoNazionalediAstrofisica,IASFPalermo,ViaU.LaMalfa . 3RHOxford,UK 153,90146Palermo,Italy 1 3 UniversityofCapeTown,PrivateBagX3,Rondebosch7701,South 17INAF-IstitutodiAstrofisicaePlanetologiaSpaziale,ViaFossodel 0 Africa Cavaliere100,00133Rome,Italy 5 4 FacultyofEngineeringandNaturalSciences,SabancıUniversity, 18SchoolofPhysics&Astronomy,UniversityofSouthampton,High- 1 Orhanlı-Tuzla,34956,Istanbul,Turkey field,Southampton,SO171BJ,UK : 5 EinsteinFellow,BostonUniversityDepartmentofAstronomy, 19KavliInstituteforAstrophysicsandSpaceResearch,MIT,70Vas- v Boston,MA02215,USA sarStreet,Cambridge,MA02139,USA i 6 Max-Planck-InstitutfürextraterrestrischePhysik,Giessenbach- 20SRON,NetherlandsInstituteforSpaceResearch,Sorbonnelaan2, X strasse,85748Garching,Germany 3584CAUtrecht,theNetherlands r 7 JILA,UniversityofColoradoandNationalInstituteofStandards 21UniversitedeToulouse;UPS-OMP;IRAP;Toulouse,France a andTechnology440UCB,Boulder,CO80309-0440,USA 22AstronomicalInstituteAntonPannekoek,UniversityofAmsterdam, 8 INAF,OsservatorioAstronomicodiBrera,viaE.Bianchi46,23807 SciencePark904,1098XHAmsterdam,theNetherlands Merate,Italy 23DepartmentofAstronomyandMeteorology&InstituteofCos- 9 DepartmentofAstrophysics/IMAPP,RadboudUniversityNi- micScience,UniversityofBarcelona,MartíiFranquès1,08028 jmegen,POBox9010,6500GLNijmegen,theNetherlands Barcelona,Spain 10DepartmentofPhysics,TexasTechUniversity,Box41051,Lub- 24DepartmentofAstronomy,UniversityofMichigan,AnnArbor,MI bock,TX79409,USA 48109,USA 11UJF-Grenoble1/CNRS-INSU,IPAG,UMR5274,38041Grenoble, 25InternationalCentreforRadioAstronomyResearch,CurtinUniver- France sity,GPOBoxU1987,Perth,WA6845,Australia 12LaboratoireAIM,Irfu/Serviced’Astrophysique,CEA-Saclay, 26AstronomyDivision,DepartmentofPhysics,POBox3000,90014 91191Gif-sur-YvetteCedex,France UniversityofOulu,Finland 13SpaceSciencesLaboratory,7GaussWay,UniversityofCalifornia, 27NewYorkUniversityAbuDhabi,POBox129188,AbuDhabi, Berkeley,CA94720-7450,USA UAE 14DepartmentofAstronomyandAstrophysics,TataInstituteofFun- 28CentrumAstronomiczneim.M.Kopernika,Bartycka18,00-716 damentalResearch,1HomiBhabhaRoad,Mumbai400005,India Warszawa,Poland Thephysicsofaccretion-ejectionwithLOFT Preamble TheLargeObservatoryforX-rayTiming,LOFT,isdesignedtoperformfastX-raytimingandspectroscopy with uniquely large throughput (Feroci et al., 2014). LOFT focuses on two fundamental questions of ESA’s Cosmic Vision Theme “Matter under extreme conditions”: what is the equation of state of ultra- dense matter in neutron stars? Does matter orbiting close to the event horizon follow the predictions of generalrelativity? ThesegoalsareelaboratedinthemissionYellowBook(http://sci.esa.int/loft/ 53447-loft-yellow-book/)describingtheLOFT missionasproposedinM3,whichcloselyresembles theLOFT missionnowbeingproposedforM4. TheextensiveassessmentstudyofLOFT asESA’sM3missioncandidatedemonstratesthehighlevel ofmaturityandthetechnicalfeasibilityofthemission,aswellasthescientificimportanceofitsunique core science goals. For this reason, the LOFT development has been continued, aiming at the new M4 launch opportunity, for which the M3 science goals have been confirmed. The unprecedentedly large effectivearea,largegrasp,andspectroscopiccapabilitiesofLOFT’sinstrumentsmakethemissioncapable of state-of-the-art science not only for its core science case, but also for many other open questions in astrophysics. LOFT’s primary instrument is the Large Area Detector (LAD), a 8.5m2 instrument operating in the 2–30keVenergyrange,whichwillrevolutionisestudiesofGalacticandextragalacticX-raysourcesdown totheirfundamentaltimescales. ThemissionalsofeaturesaWideFieldMonitor(WFM),whichinthe 2–50keVrangesimultaneouslyobservesmorethanathirdoftheskyatanytime,detectingobjectsdownto mCrabfluxesandprovidingdatawithexcellenttimingandspectralresolution. Additionally,themissionis equippedwithanon-boardalertsystemforthedetectionandrapidbroadcastingtothegroundofcelestial brightandfastoutburstsofX-rays(particularly,Gamma-rayBursts). This paper is one of twelve White Papers that illustrate the unique potential of LOFT as an X-ray observatoryinavarietyofastrophysicalfieldsinadditiontothecorescience. Page2of11 Thephysicsofaccretion-ejectionwithLOFT 1 Summary Understandingthedynamicsandstabilityofgasflowsaroundcompactobjectssuchasblackholes(BH)remains oneofthemostpressingproblemsinhigh-energyastrophysics. Afullunderstandingofsuchflowsisnecessary to build a complete picture of X-ray binaries and active galactic nuclei (AGN). This includes their radiative output, the formation of (sometimes superluminal) jets and the launch of mass-loaded accretion disk winds. TheradiationaswellasthekineticoutputofaccretingsupermassiveBHsprobablyplaysanimportantrolein regulatingthegrowthofthebiggestgalaxiesinourUniverse. TofullyunderstandAGNfeedback,onehasto understand the interplay between the three main outputs of accreting objects: the radiation, winds, and jets. Notwithstandingthelargedifferencesbetweenstellar-massandsuper-massiveBHs, thephysicsatplaynear theBHisexpectedtobesubstantiallythesame,albeitscaledwiththedifferentlengthscales,timescalesand energy densities at work. Studies of BH accretion and outflows have exploited the differences between the two BH classes through complementary approaches. The number of photons per characteristic time scale is typicallyseveralordersofmagnitudehigherinAGN,whichhasallowedustoobservethedetailedphysicsat playinindividual“events”. Ontheotherhand,stellar-massBHshavemuchshortercharacteristictimescales, allowing us to observe a large number of cycles, providing a good picture of the average behaviour of each physicalprocessandcontrolfortheeffectsofunknownparameterssuchasdistance,massorspin. Theongoing improvementindetectorefficiency,togetherwiththeincreaseintelescopearea,arenowbridgingthegapacross theBH-massrange,asthefastestcharacteristictimescalesstarttobecomeaccessibleevenforstellar-massBHs. Manybasicquestionsremainunanswered,withunknownsincludingthegeometryandtheradiativeefficiency of the accretion flow, the physical mechanism triggering the transitions between different accretion regimes, the particle composition of jets, the amount of mass carried by the winds, and the launching and powering mechanismsofjetsandwinds. LOFT willrevolutionisethisfield. ThankstothehugeeffectiveareaoftheLAD, itsCCD-classspectralresolution,andtotheoutstandingmonitoringperformancesoftheWFM,LOFT will: measuretheX-rayspectralcontinuumwithunprecedentedaccuracy,allowingustostudythedetailed • evolutionoftheaccretiondiskandtheComptonizingmediumonthetimescaleofobservedtransitions: in afewsecondsduringhard-to-softbrighttransitions,afewhoursduringthesoft-to-hardfainttransitions; detectX-rayabsorptionandemissionlinesfromwindsandjetswithoutstandingstatistics,allowingusto • identifythemomentswhenthewindandthejetturnon/off,andtotracktheevolutionoftheirphysical properties (including density, ionisation, velocity, baryonic content) on time scales as short as a few secondsandafewhoursduringthebrightandthefainttransitions,respectively; identifyandpinpointeachfasttransitionwiththeWFM,toestablishacrucialcomponentoftheupcoming • multi-wavelengthlegacy; carryoutallthesebreakthroughsatthesametimeasunprecedentedmeasurementsofthestructureofthe • inneraccretingandemittingregions,tolinkchangesinjet,windorradiativeoutputdirectlytochangesin thecentralenginewhichdrivesthem. ItisimportanttonotethatLOFT willperformmostofthesemeasurementswiththeobservationsalreadyplanned tomatchtheCoreSciencerequirements. 2 Introduction Accretion onto BHs(and to a comparable degree, neutron stars) isthe most efficient source ofenergy inthe contemporaryUniverse,poweringbothX-raybinaries(XRBs)andAGN.Theenergyliberatedthroughaccretion emergesintheformofradiationorkineticenergy,thatcaneitherbecollimated(so-calledjets)oruncollimated Page3of11 Thephysicsofaccretion-ejectionwithLOFT (winds). The interplay between these three components is not yet understood, neither in stellar-mass nor in supermassive BHs. While jet ejection events, for example, can be studied in detail in AGN, as their relative time-scale(setbytheirgravitationalradius)islonger,theevolutionofanaccretingBHunderchangesofthe accretion rate can be better-studied in XRBs. The luminosity of accreting stellar-mass BHs can vary by as muchas8ordersofmagnitudebetweenquiescenceandpeakoutburstwithinacoupleofmonths. Asitchanges itsluminosity,anXRBevolvesthroughasequenceofaccretionstates. Inparticular,twocanonicalstatesare seen–a“hard”statecharacterisedbyComptonizedhardX-rayemission,highamplitudeX-rayvariabilityand acompactradio jet, anda“soft” statecharacterisedbystrong X-raythermalemission, lowamplitudeX-ray variabilityandanequatorialwind. Transitionsbetweenthesecanonicalstates(Begelman&Armitage,2014) proceedthroughavarietyofintermediateandextremestates,inwhichtheaccretionenergybudgetredistributes itselfamongthevariouscomponentsontimescalesasshortasafewseconds,asevidentfromX-rayvariability (see, e.g.,Belloni,2010). Thesesourcesarethusideallysuitedforstudyingtheformationofjetsandwinds, whichappearandsubsequentlydisappearduringeachoutburstcyclewithcomplexphenomenologyonabroad rangeoftimescales. WewillthusdiscussthethreedifferentoutputsofanaccretingBH:radiation,windandthe jetsinviewofthepossibilitiesLOFT willofferinthefuture. LOFT willforthefirsttimebeabletodetectthe discwindroutinely,andthusofferinasingleobservationinformationaboutboththeradiativepartaswellasthe mechanicalenergyinthewind. TheproposedlaunchdateandlifetimeofLOFT correspondnicelytotheperiod ofinitialsurveyswiththephase1oftheSquareKilometreArray. Duetoitsincreasedsensitivityitwillthenbe possibletoobtaindensecoverageoftheradiolight-curve,allowingalsoforawellstudiedjetcomponent. Aswe willarguebelow,LOFT willopenaneweraofresearchintothecouplingbetweenaccretionandejection. 3 Getting close to black holes: unlocking the origin of the most powerful jets and winds Inwhatfollows,wedetailthebreakthroughsthatLOFT willmakeintacklingthephysicsofblackholejets, windsandtheradiativeemission. Butfirst,itisimportanttostressthatalltheseresultswillbeobtainedatthe same time as the unprecedented measurements of dynamics and structure of the inner accretion flow which form the LOFT core science, aimed at testing and quantifying the effects of strong-field gravity (SFG; see http://sci.esa.int/loft/53447-loft-yellow-book). Thesemeasurementswillusehigh-throughput spectral-timingofrapidvariabilitytocarryoutX-rayreverberationmappingonsub-gravitational-radiusscales, andDopplertomographyofQPOstomeasurethedynamicsoftheaccretionflow. Thissuiteofindependent techniqueswillprovideaccuratemeasurementsofblackholespin,thediscinnerradiusandthegeometryand locationoftheX-raypower-lawemittingcorona. Moreover,thesemeasurementswillbeobtainedthroughout therangeofstatesseeninX-raybinaryoutbursts,notablythemostluminoustransitionalstateswhenthemost powerfuljetsandwindsswitchonandoffandtheX-rayemissionshowsthestrongestspectralevolution. Thus,LOFT’sSFGmeasurementswillallowthedetailedchangesinstructureandgeometryoftheinnerflow andemittingregionsduringstatetransitionstobemappeddirectlyontothepropertiesofthejetorwindand theemissionspectrum,inrealtimeasthesystemevolves. Energetically,weknowthatthemostpowerfuland energeticoutputsmusthavetheiroriginintheseinnerregions. ThesamephenomenacanbeseeninAGNand mustevolveonmuchlongertime-scaleswhichwecannotobservedirectly. LOFT studiesofBHX-raybinaries will therefore allow an unparalleled insight into the physical causes of accretion-powered jets and winds at accretionratesuptotheEddingtonlimit,providingthecrucial(andcurrentlymissing)informationformodelling accretionandfeedbackintheirsupermassivecousins,whichmayultimatelyberesponsibleforre-shapingentire galaxiesandgalaxyclusters. Page4of11 Thephysicsofaccretion-ejectionwithLOFT 4 The radiative output: the X-ray continuum TheX-raycontinuumemissionfromaccretingBHshasbeenstudiedandmodelledfordecades. Inthehardstate, thespectralenergydistributioniswell-modelledbyapowerlawwithaphotonindexofabout1.7andacutoffat afewhundredkeV,whileinthesoftstate,thermalemissionfromthegeometricallythinaccretiondiskdominates, and the power law tail is steeper, with no trace of a cutoff out to at least 1MeV (Grove et al., 1998). These spectraarebroadlyinterpretedastheresultofComptonizationfromacombinationof(inflowingoroutflowing) thermalandnon-thermalelectrons(see,e.g.,Markoffetal.,2001,2005;Ibragimovetal.,2005;Poutanen& Vurm,2009). Despitethewealthofobservationalandtheoreticaleffortsinunderstandingthisemission,many openquestionsremainonthegeometryandenergydensityoftheComptonizingelectronpopulations,mostly becauseofthedegeneraciesbetweendifferenttheoreticalmodels. Time-resolvedspectralstudiessuggestthat theComptonizingmediumisinhomogeneous,withmultipleelectronpopulations(forexampleradiallystratified intemperature/opticaldepth,oroutflowing)contributingtotheobservedcomplexComptonizedemission. The statisticsoftheLADdataissuchthatitwillbepossibletodeconvolvethecontinuumfromitsreflectionasa functionofradius,testingtheoreticalmodelsandmeasuringthephysicalparametersofthemultipleelectron populations. 4.1 Bright and fast: physical measurements in a few seconds Asthegeometryandthermalpropertiesoftheaccretionflowareexpectedtobedrasticallydifferentinthehard andinsoftstates,apromisingwaytodiscriminatebetweenmodelsistoobserveindetailtransitionsbetween thesetwoaccretionstates. Thebrightestofsuchtransitions,outofthehardstate,areassociatedwiththeejection ofpowerfultransientrelativisticjets(Fenderetal.,2009),whilethefainttransitionsbacktothehardstateduring theoutburstdecayareassociatedwiththereappearanceofthecompactsteadyjet. Asthesejetsarepowerful,it isreasonabletoexpecttheirejectiontohaveasubstantialimpactontheaccretionflow. Nevertheless,duringthe bright,fasttransitions,thespectralparametersbelow10keVvarylittleandsmoothly,seeminglyunawareofthe presence/absence/propertiesofthehighlyvariablejet. Strongandnon-monotonicchangesareindeedobserved in the properties of the hard tail in a few hours or days (Motta et al., 2009), but nothing is known about the spectralvariabilityontimescalesasshortasthoseoftheobservedX-raytransitions,duringwhichquasi-periodic oscillations and broad-band noise appear/disappear in a few seconds. The epochs of these rapid transitions indeedseemtobeassociatedwithrapidgeometricalreconfigurationsoftheaccretionflow(Motta,2014),buta properphysicalunderstandingofthemhasbeenhamperedsofarbythelimitedstatistics,whichhasprevented spectralanalysisonsuchshorttimescales. ThelargeeffectiveareaoverabroadenergyrangeoftheLAD/LOFT willchangethis,makingthespectralevolutionaccessibleonthefasttimescalesofthetransitions. Duringthese hard-to-softtransitions,thetimingpropertiesareoftenobservedtochangerapidly,withthebroad-bandnoise andquasi-periodicoscillationsappearing/disappearingontimescalesshorterthan10seconds(Casellaetal., 2004),sometimesmultipletimes(Mottaetal.,2011). Figure1showstwoexampleofLADspectrawithvery short exposures. The two spectra simulate the expected spectral variability during such extreme transitions, asinferredbylongaveragedRXTEobservations. Exposuresasshortas2secondswillbesufficienttodetect significantdifferencesinthespectra, measuringallspectralparameterswitha5%accuracyorbetter. Atthe same time, it will be possible to examine on very short time scales the detailed properties of the sub-second oscillationsdetectedbeforeandaftertransitions. Linkingthemtothespectralresultswillallowustoassociate themtochangesinspectralparametersandtoestablishtheirconnectionwiththeaccretionandejectionflows. 4.2 Dim and slow: monitoring during outburst decay Thedim,slowtransitionbacktothehardstateduringtheoutburstdecayisanothercrucialepochtotestmodels andunderstandaccretionphysics(Maccarone,2003). Therelevanttimescalesherearedifferent,asthetransition Page5of11 Thephysicsofaccretion-ejectionwithLOFT Figure1: Simulated 2second ex- posures LAD/LOFT spectra for GX 339 4. The black and − red spectra come from observa- 1!"0! tions with and without broad- bandnoisevariability,respectively. Datawerefittedwithanabsorbed -1eV)!!,- k% dpptiloivusnikssetrnibectfllaheecffackseti-cbobtenose..dnTychoperlrrueesflctepecodtwifooenrrcrloeamlwa-- -2-1otons cm s !.!!121$3)45)3)+ 2V (Ph.%,)*/0 ke+!1"" 1!"0! E#n$e%&r’g()y*+ %(,k-eV) lastsdaysorweeks,andthefluxesareordersofmagnitudefainter. Thecompactsteadyjetisknowntoreappear during this slow transition, although the actual association between the jet properties and the X-ray spectral evolution is still debated (Kalemci et al., 2005, 2013; Dinçer et al., 2014). Despite coordinated efforts to understandtheevolutionoftheinnerdiskradiusasafunctionofluminosityduringthesubsequentdecayphase (Tomsicketal.,2009;Petruccietal.,2014;Plantetal.,2014),wehaveyettodeterminehowthediskmoves awayfromtheBHduringdecays. AlsotobeunderstoodisthemarkedX-raysofteningobservedinsomesources duringthedecay,whichcouldbeduetoanevolutionofthepropertiesoftheComptonizingmedium(geometry, electrontemperatureanddensity,seedphotons;Sobolewskaetal.,2011)ortothepresenceofasecondsource ofemission(perhapsajet;Russelletal.,2010)dominatingbelowacriticalluminosity. Thelimitedeffective areaofpastandcurrentX-raysatellites,andtheconsequentneedforlongexposures,havehamperedsofara propermonitoringofthistransition. TheLADlargeeffectiveareawillallowustotracktheevolutionofthe spectralpropertiesthroughoutthetransitionandearlyphasesofthedecaywithexposuresasshortasafewhours. Fora5mCrabsource,a2ksLADobservationwillprovidebetterconstraintsthana40ksSuzaku exposure(as reportedbyPetruccietal.,2014)totheparametersofthehardX-raycomponentand–ifthegoalof1.5keVsoft energylimitisreached–eventothoseofthesoftdiskcomponent. Atsimilarfluxlevels,a5ksLADexposure willbeenoughtoconstraintheinnerdiskradiusthroughironlinemodelling,whiletheexposuretimeshouldbe increasedtoaround25kstoobtainthefullevolutiondowntoa0.5mCrabfluxlevel. 4.3 The multi-wavelength legacy: solving degeneracies through multi-wavelength timing Inrecentyears,therehasbeenatremendousamountofinformationcomingfromwavelengthsotherthanX-rays, rangingoverthewholeelectromagneticspectrum,fromradioallthewaytotheTeVrange. Cruciallyandperhaps notsurprisingly,thepropertiesofaccretingBHsintheseotherwavebandshavebeenshowntocorrelatewith thoseinX-rays. Amongthesemanynewobservationalwindows,hightimeresolutionobservationsatoptical- infraredwavelengthshaveyieldedtheimportantdiscoveryofvariablenon-thermalemissioncorrelatedwiththe X-rayfluxontheshortestaccessibletimescales(Malzacetal.,2004;Gandhietal.,2010,e.g.). Dedicatedfast optical/IRphotometerswithgoodquantumefficiencyallowustotackleoldquestionsfromanewperspective: thefastesttimescalesofaccretionontostellar-massBHsarebecomingaccessibleforstudyinthesynchrotron emissionfromthesameelectronpopulationresponsiblefortheX-rayComptonizedemission(e.g.,Veledina Page6of11 Thephysicsofaccretion-ejectionwithLOFT et al., 2013). At longer wavelengths we can now study synchrotron emission from the electron population outflowing in the relativistic jet (Casella et al., 2010). Such observations are crucial in order to solve X-ray continuumdegeneracies,asdifferentphysicalscenarios–whichwouldotherwisepredictverysimilarX-ray spectralproperties–predictextremelydifferentOptical/Infrared/X-rayspectraltimingproperties. Ifthefirstkey resultshavebeenlimitedsofarbythenonoptimalOIRtechnologiesandbytheavailableX-raystatistics,the nextdecadewillseesignificanttechnologicaladvances. Observationsofrapidvariabilityinallwavebandswill providerevolutionarynewdataforthestudyofaccretionandejection. Inparticular, thefieldwillbenefitfromthecombinationofthenextgenerationofOIRdetectors–suchas theMicrowaveKineticInductanceDetectors(MKIDs),whichareabletomeasuretheenergiesofindividual optical/IRphotonswithoutusingfiltersorgratings,obtainingsimilarspectralresolutionstothosepossiblewith X-rayCCDinstruments(e.g.,theARCONScamera;Mazinetal.,2013)–andthelargestatisticalthroughput offeredbyLOFT.Equallyimportantwillbetheexpectedincreasedavailabilityof4–8mclasstelescopes,on whichtomountsuchinstruments,whichwillprovidethephotoncountratesneededtostudyrapidvariability. The sum total of all this will result in a twofold field expansion: (a) physical measurements via correlated OIR/X-raytimingobservationswillbeaccessibleonthetimescalesofthefastesttransitions,helpingtoreveal theexpectedgeometricalreconfigurations;and(b)itwillbepossibletoperformsuchmeasurements,nowlimited tothebrightestfluxesand/orthebrightestsources,atorder-of-magnitudelowerfluxes,allowingfullmonitoring throughthewholeoutburstevolutionofseveralsources. 5 The mechanical output: winds AlthoughwehavelearnedagreatdealaboutaccretiondiskwindswhilemonitoringGalacticBHsinthelasttwo decades(see,e.g,Milleretal.,2006;Doneetal.,2007;Milleretal.,2012),therearemanyremainingquestions (seealsoTombesietal.,2013,andreferencestherein,forwindsinAGN).Whendowindsfirstappearinoutburst andwhy;whendotheydisappear? Dotheyinteractwithjetsordisruptjetformation(Neilsen&Lee,2009)? Weknowthatwindsarereliablydetectedafterthetransitionoutofthehardstateandthedisappearanceofthe jet (Ponti et al., 2012; Neilsen & Homan, 2012), but the instant of their formation has not been definitively identified. Thismoment,however,hassweepingimplications: ifwindsoriginateafterthestatetransitionandjet quenching,theycannotpossiblyplayamajorroleinthoseprocesses. Otherequallycrucialunknownsarethe actuallaunchingregion,aswellastheirlaunchingmechanism(aretheylaunchedbymagneticprocessesthattie themtojets?). Also,althoughtheirkineticenergymightbeoverallmuchsmallerthanthejetkineticpowerorthe radiativeluminosity,theymaycarryalargeamountofmassawayfromtheaccretionflow,possiblyinfluencing thelong-termevolutionoftheoutburstoreventhatofthebinarysystemandofthespinoftheaccretingobject. Finally,theverystructureoftheseoutflowshasyettobestudied,aswellastheinfluencethatvariationsinthe luminosityspectrummayhave. As the relevant physical processes happen on very fast time scales, time-resolved spectroscopy is the key toansweringthesequestions. Thankstoitslargeeffectivearea,joinedwithitsCCD-classspectralresolution, theLADwillrevolutionisestudiesofwindsfromaccretingBHs. Suchwindsareknowntobeubiquitousin high-inclinationBHXRB.ThecharacteristicsignatureofanaccretiondiskwindistheFexxviabsorptionline, withanequivalentwidthof.35eV.LOFT willdetectthesestrongabsorptionlinesat3σconfidenceinaslittle as1–2seconds(roughly1000timesfasterthanChandra). Thiscombinationofsensitivityandtimeresolution opensupnewavenuesofinquiry,includingabsorptionlinevariabilityasaprobeoftheturbulentstructureof winds. BycomparingobservedX-rayvariabilitytofluctuationsintheionisationparameter(ξ = L/nR2,wheren istheparticlenumberdensityandRisthedistancetothesource),LOFT willallowustodisentangletheeffects ofphoto-ionisationandtheclumpystructureofthewind. Forrepresentativewindparameters(N = 5 1022cm 2 andlogξ = 4.3),> 6%fractionalRMSvariations H − × intheluminositywillinducedetectablechangesinξ;thus,anyanomalousionisationwillbeusedtomapthe Page7of11 Thephysicsofaccretion-ejectionwithLOFT K! K! K" K" S XV Fe XXVI Fe XXV Fe XXVI Fe XXV Fe XXV S XV Fe XXV Fe XXVI Fe XXVI Figure2: Left: Simulated1ksLADexposureof4U1630 47(0.3Crab,2–10keVabsorbedflux). TheFexxvandFexxvi − linesareclearlyresolvedintoKαandKβ. Right: the78ksXMM-Newton observationforcomparison(DíazTrigoetal., 2014). density structure of the wind. Furthermore, simulations show that wind speeds above 450kms 1 will be − ∼ reliablymeasuredbyLOFT.Thus,theLADwillbeabletotracknotonlythestructureofwinds,butalsotheir masslossratesasfunctionsoftheaccretionstateandtheaccretionrateforcluestotheirformationphysicsand theirinfluenceonthediskandthejet. Complementing the significant advances in our understanding of the structure and variability of winds on shorttimescales,LOFTwillalsoprovideimportantinformationaboutthelaunchingandquenchingprocesses for winds. The LAD will detect weak Fe xxvi lines (equivalent width 7.5eV) in 1ks in sources as faint as 2 10 10ergcm 2s 1,i.e.,morethantwoordersofmagnitudebelowthepresentsoftstatedetection. Suchshort − − − × exposuresevenatlowfluxeswillallowmonitoringobservationsduringboththerisingandthedecayingphases ofBHoutbursts. LOFT willthusreadilyrevealthemomentswhenwindsfirstappearandwhentheyeventually quench. Again,thesemomentsarecriticalforacompleteunderstandingofwindsfromaccretingBHs: isthe appearance/disappearanceofwindsaneffectcausedbychangesintheirtemperature(thusintheirtransparency toX-rays),ordotheyactuallystartandcease? Inordertoanswerthesequestions,bothalargeeffectivearea andausefulspectralresolutionarecrucial. Indeed,simulationsindicatethatLOFT willbemoresensitivethan Athena towindabsorptionlinesevenatfluxesaslowasafewmCrab,withsignificantdetectionsinsourcesat leastafactoroftwofainter. Thisisbecausethelinesarenotintrinsicallynarrow(widthsof 500km/sormore ∼ arefairlytypical),sotheimprovementduetothelargereffectiveareaofLOFT dominatesoverthedifferencein spectralresolution. Athigherfluxes,theeffectofpileupmightstarttoplayanimportantrole,furtherdecreasing thethroughputofAthena. WithtightconstraintsfromtheLADontheionisingradiationfieldthroughouttheseoutbursts,LOFT willbe abletrackthemasslossrateinwindsonthefastestusefultimescalesfromthemomentoftheirformationto theirdisappearance. 6 The mechanical output: jets In accreting BHs, jets radiate predominantly through processes such as synchrotron and inverse Compton emission,fromtheradiothroughX-raywavebands. Twodifferenttypesofjetareobservedduringanoutburst: a steady,mildlyrelativisticjetisdetectedinthehardstate;discrete,veryenergeticejectionsofrelativisticmatter areobservedduringthetransitiontowardthesoftstate,probablyassociatedwithrapidchangesinthespectral distributionofthehardX-rayemissionandwithdrasticchangesintheX-raytimingproperties. Amongthemost Page8of11 Thephysicsofaccretion-ejectionwithLOFT Figure 3: Left: simulated 1ks LAD exposure of 4U 1630 47 ( 2.5Crab, 2–10 keV absorbed flux). Right: the 55ks − ∼ XMM-Newton burst-modeobservation(DíazTrigoetal.,2013,resultingin1.6ksactualexposure),forcomparison. The weakestline(thered-shiftedFexxviline)whichwasdetectedbyXMM-Newton ata3.5σlevel,isdetectedbyLOFT at 46σlevel. hotlycurrentlydebatedquestionsthereare: howmuchoftheaccretionpowergetsreleasedintothesurroundings viathesecollimatedjets? Whatistheirlaunchingmechanism? Aretheyqualitativelydifferentfromwinds,orare theyanextreme,focusedversionoftheinnerpartofawind? Whatistheircomposition? Dothejetsthemselves contributetotheobservedX-rayradiation? Howandwheredojetsaccelerateparticlestoveryhighenergies? Whatistheirrelationtothevariabilityintheinflow? LOFTwillallowustoinvestigatetheroleofrelativistic jetsincombinationwiththeevolutionofthecharacteristicsofinflowandwind,helpingustounderstandfurther whatisphysicallydrivingthevariedbehavioursinthesesources. 6.1 X-ray spectroscopy: the jet baryonic content Theomnipresenceofjetsinastrophysicalsystemsmakesaproperunderstandingoftheirphysicsparticularly relevant. Areallthesejetsproducedbythesameprocesses? Sinceoneofthecanonicaljetformationmechanisms (theBlandford-Znajek,orBZ,mechanism;Blandford&Znajek,1977),involvestherotationpowerofaBH,it certainlycannotoperateinallsystems. AnalternativeistheBlandford-Paynemechanism(BP;Blandford& Payne,1982),inwhichtherequisiterotationpowercomesfromarotatingaccretiondisk. Asaconsequence,one expectsBPjetstobebaryonic,sincetheyaremagneto-centrifugaloutflowsfromagaseousreservoir. BZjets,on theotherhand,mightbe–atleastintheearlystagesafterlaunch–electromagneticallydominated. Thusitisparticularlyinterestingthataccretingstellar-massBHsappeartoproducetwodifferentkindsofjets (steadyandtransient;forreviewsseeFenderetal.,2004,2009). Observationally,itremainsunclearwhether thesetwotypesofjetscorrespondtothetwomechanismsdescribedabove;asuggestedassociationbetween thetransientjetsandtheBZmechanismhasbeenhotlydebated(Fenderetal.,2010;Narayan&McClintock, 2012;Russelletal.,2013). Differentprocessesmaylaunchjetsatdifferentscalesorunderdifferentconditions, butbecauseajet’senergyrequirementsaresensitivetoitsbaryoncontent,theseconsiderationshavebroadand concreteimplicationsforradio-modefeedbackfromaccretingsystems(Fenderetal.,1999). TheXMM-Newton detectionofrelativisticallyblue-andred-shiftedX-rayemissionlinesfromtheblack-holecandidate4U1630 47 − (DíazTrigoetal.,2013)openedanewperspectiveonthesequestions. Withaninferredvelocityof0.66c,these FeandNilinescoincidedwiththeappearanceofopticallythinradioemissionobservedbyATCA,suggestingthe formationofafast,hotbaryonicoutflow. AnXMM-Newton/ATCAobservation3weeksearlierdetectedneither Page9of11 Thephysicsofaccretion-ejectionwithLOFT radioemissionnorX-rayemissionlines. Ifthisdetectionisconfirmed,4U1630 47thusbecomesthesecond − knownsourceofapparentlyheavyjets,togetherwiththe“oddball”SS433(Margonetal.,1979). Inorderto understandthefullimplicationsoftheseresultsforthejetformationmechanismandenergeticbudget,alarge searchforbaryonicsignaturesinblackholejetsmustbecarriedout. Thelargeeffectiveareaandgoodenergy resolution of the LAD will allow tracking of X-ray emissions lines from jets with unprecedented sensitivity andonshorttimescales. Ifwedetecttheseemissionlines,wewillpreciselymeasuretheirvelocitiesandline widths. The ratio of the line width to the blue-shift is an important diagnostic of the orientation, expansion, andgeometryofthejet. PreviousXMM-Newton observationscouldonlyindicatethatthelinesdidnotappear to be intrinsically narrow. In addition, the line strengths will constrain the thermal properties and emission measureofthemass-loadedjet. Asthesequantitiesevolve,wewillcorrelatethemwiththeX-rayluminosity,the X-rayspectralandtimingpropertiesaswellastheradioandinfraredemissionfromthejets. Thevariationsof thesequantitieswillprovideourfirstempiricalinsightsintotheformationofheavyjetsfromBHs. Figure3 (Left panel) shows a LAD simulated spectrum of jets X-ray emissions lines obtained in 1ks exposure time. An improvement of a factor 15 in signal to noise ratio is achieved with respect to the corresponding 55ks longXMM-Newton observationof4U1630 47(Fig.3rightpanel;DíazTrigoetal.,2013). Forsourceswith − comparablefluxes(whichexceedthecurrentfluxlimitationsforAthena),exposuresasshortas10secondswill besufficienttodetectthered-shiftedFeXXVI(thefaintest)linewithLOFT atthe4σlevel. Therefore,tracking thejetvelocityonminutetimescaleswillbecomepossiblewithLOFT. 7 The multi-wavelength legacy and the role of the WFM The proposed launch date and lifetime of LOFT correspond to the period of initial surveys with the Square KilometreArray(SKA;seeskatelescope.org)phaseone(SKA1). IntheongoingSKAScienceReviewProcess, TransientsandHighEnergyAstrophysicshavebeenidentifiedaskeysciencedriversfortheproject,ensuring supportforthesedirections. Althoughcurrentlyundergoingadesignre-baseliningprocess,SKA1isenvisaged tohavethreecomponents,allofwhicharepotentiallyimportantcontributorstoLOFT science. SKA1–Lowwill operate,likeLOFARandMWAatpresent,atverylowfrequencies,andwillhavetheadvantageofaverylarge fieldofview(morethan100squaredegrees)andsensitivitytocoherentbursts. Ontheotherhand,SKA1-Mid and SKA-Survey will operate in the 1 5 GHz frequency range, and will be two orders of magnitude more − sensitivethancurrentfacilities,achieving0.72microJyinanhourinthe1.4GHzband(about40microJyin onesecond). Thus,alsothankstothehighlyflexibleschedulingbuiltin,itwillbepossibletomonitorallactive X-ray binaries at high cadence. Over the 5–year lifetime of the SKA1 surveys, it is anticipated that there ∼ wouldbemanythousandsofhighS/NradioobservationsofX-raybinaries. Inopticalbands,clearplansexistto makecontinuoussurveysofthesky,aswell. TheLargeSynopticSurveyTelescope(Ivezicetal.,2008)will observetheentiresouthernskyeverythreedays,downto24thmagnitude. TheZwickyTransientFactory(see www.ptf.caltech.edu/ztf)willmonitorthenorthernskywithmorethan300epochsperyear,downtomagnitude 20.5orbetter. Evryscope(Lawetal.,2014)willobserveanentirehemisphereoftheskyeveryminutedownto magnitude16.5,withone–hourdepthof19thmagnitude. Theseprojects,too,willgivewide–fieldcoverageof transients. Furthermore,theCherenkovTelescopeArray(CTAActisetal.,2011,seewww.cta-observatory.org) isthenext-generationhighenergy(from30GeVtomorethan100TeV)gamma-rayfacility,plannedtostartfull operationby2020,involvingaworldwidecollaborationofmorethan1000scientistsandabout30countries. WithsensitivityandenergycoverageanorderofmagnitudebetterthanthatofH.E.S.S.,plusafactorofafew improvementonspatialresolutionandfieldofview,CTAwillberunasanobservatory,allowingproposalsfor targetedobservations,andincludingalsoaToOmode,withareactiontimeoflessthanaminute. CTAwillbe thekeyTeVpartnerforLOFT,forco-monitoringofhigh-energyemissionsitesandhelpingtotraceparticle acceleration(ofbothleptonsandpotentiallybaryons). Page10of11

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.