ebook img

The orthogonal projection on slice functions on the quaternionic sphere PDF

0.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The orthogonal projection on slice functions on the quaternionic sphere

The orthogonal projection on slice functions on the quaternionic sphere 5 NicolaArcozzi∗ 1 0 DipartimentodiMatematica,UniversitàdiBologna 2 PiazzadiPortaSanDonato5,40126Bologna,Italy,[email protected] n GiuliaSarfatti† a J DipartimentodiMatematica,UniversitàdiBologna 9 PiazzadiPortaSanDonato5,40126Bologna,Italy,[email protected] ] V C Abstract . h WestudytheLp normoftheorthogonalprojectionfromthespaceofquaternionvaluedL2functions t a totheclosedsubspaceofsliceL2functions. m TheaimofthisshortnoteistostudytheorthogonalprojectionΠfromthespaceofquaternionvaluedL2 [ functionstoitsclosedsubspaceofsliceL2 functions. Inparticular,tocomputethenormoftheprojection 1 operatorwewillfirstshowthatwecanwriteΠintermsofaquaternionicslicePoissonkernel. v Let H = R+Ri+Rj +Rk denote the non commutative4-dimensionalreal algebra of quaternions 8 and let B = {q ∈ H : |q| < 1} be the unit ball in H. Its boundary ∂B contains elements of the form 8 0 q = eIt, I ∈ S, t ∈ R, where S = {q ∈ H : q2 = −1} is the two dimensional sphere of imaginary 2 units in H. We endow ∂B with the measure dΣ eIt = dσ(I)dt, which is naturally associated with the 0 Hardy space H2(B) of the slice regular functions on B, see [1]. We here normalize the measures so to 1. haveΣ(∂B) = σ(S) = 1. Thefunctionsweare(cid:0)conc(cid:1)ernedwith heresatisfyalgebraicconditionsandsize 0 conditions.Afunctionf :∂B→HisaslicefunctionifforanyI,J ∈S 5 1 1 JI f(eJt)= f(eIt)+f(e−It) + f(e−It)−f(eIt) . (1) : v 2 2 Xi Thatis,slicefunctionsareaffinein(cid:2)theSvariable: (cid:3) (cid:2) (cid:3) r a f(eJt)=a(t)+Jb(t), (2) wherea,b : ∂B → Harefunctionsdependingontalone. Condition(2)hasanalgebraicnature. Equation (1) also provides a formula to extend a function f defined on a slice ∂B = ∂B∩(R+RI) to a slice I I functionf :=ext(f )definedontheentiresphere∂B. I Slice functionswereintroducedinthe moregeneralsetting ofrealalternativealgebrasbyGhiloniand Perottiin[5]. AnotableclassofslicefunctionsisprovidedbytherestrictiontotheunitsphereinHofslice ∗PartiallysupportedbythePRINprojectRealandComplexManifoldsoftheItalianMIURandbyINDAM-GNAMPA †PartiallysupportedbyINDAM-GNSAGA,bythePRINprojectRealandComplexManifoldsandbytheFIRBprojectDifferential GeometryandGeometricFunctionTheoryoftheItalianMIUR 1 regularfunctions. SuchfunctionshavebeenobjectofintensiveresearchsincetheseminalworkbyGentili andStruppa[3]. AconcreteexampleisgivenbyconvergingpowerseriesoftheformeIt 7→ eInta , n∈Z n withquaternioniccoefficientsa . n P Wereferto[4]forresultsconcerningsliceregularfunctionsandto[2]forfunctionalanalysisresultsin thequaternionicsetting. We denote by L = L (∂B) the class of the measurable slice functions on ∂B, which has a natural s s structureofrightlinearspaceonH. We will denote by Lp = Lp(∂B), 1 ≤ p ≤ ∞, the space of the functions ϕ : ∂B → H such that |ϕ|pdΣ =: kϕkp < ∞,andletLp := Lp∩L . ItisnotdifficulttoprovethatL2 isaclosedsubspace ∂B p s s s of L2 (see Proposition 5 below), hence we have an orthogonal projection operator Π : L2 → L2: Π is R s self-adjoint,surjective,andΠ2 =Π. Let kΠϕk p kΠk = sup . p,p L2∋ϕ6=0 kϕkp Obviously,kΠk =1. 2,2 OurmaingoalhereiscomputingthenormofΠ:Lp →Lp. s Theorem1. (i) kΠk =1,kΠk = 4. 2,2 ∞,∞ 3 p−1 (ii) Let2≤p≤∞. Then,kΠk ≤2 2p−2 p . p,p 3p−2 (cid:16) (cid:17) (iii) If1≤p,q ≤∞and 1 + 1 =1,thenkΠk =kΠk . p q p,p q,q ThegeneraltheoryimpliesthatΠisacontractiononL2 andtheequalityin(iii). Theinequalityin(ii) givestherightconstantforp = ∞, butnotforp = 2. FindingtheexactvalueofkΠk forallp’smight p,p shedsomelightonthegeometryofsliceregularfunctions,andwethinkitisaninterestingopenproblem. ThestudypresentedinthispaperbeganwhendiscussingsomeproblemsrelatedtoPreprint[6]. OnroutetotheproofofTheorem1,weshallwriteΠasanexplicitintegraloperator. Letϕ ∈ L2. ThemeasuredΣwe areconsideringistheproductofthe(normalizationofthe)standard Lebesguemeasureontheunitcircletimesthestandardareaelementonthetwosphere.Hence,ϕbelongsto theL2spaceoftheunitcircle∂B foralmosteveryI ∈S,andwecanexpandϕasapowerseriesonalmost I eachsliceoftheform ∞ ϕ(eIt)= eInta (I). n n=−∞ X ThecoefficientsdependontheimaginaryunitI ∈S. Proposition2. Letϕ∈L2. Thentheorthogonalprojectionofϕtothespaceofslicefunctionsis ∞ Πϕ(eJt)= eJnta˜ n n=−∞ X foranyeJt ∈∂B,wherethecoefficientsaregivenbytheintegralmeans a˜ = dσ(I)a (I) n n S Z foranyn∈Z. 2 Proof. Letf(eIt) = eIntα ∈ L2. Takingintoaccountthat,foranymeasurablefunctiong : ∂B→ n∈Z n s H, 2πg(eIt)dt= πg(e−It)dt,whichimpliesthat π 0P R R 1 2π g(eIt)dΣ(eIt)= g(eIt)dσ(I)dt, Z∂B 2π Z0 ZS wecanwrite 1 2π ∞ hf,ϕiL2 = 2π Z0 dtZSdσ(I)ϕ(eIt)f(eIt)=ZSdσ(I)n=−∞an(I)αn X ∞ ∞ = dσ(I)an(I)αn = a˜nαn =hf,ϕ˜iL2 S n=−∞Z n=−∞ X X whereϕ˜(eJt)= eJnta˜ isaslicefunction.HenceΠϕ=ϕ˜. n∈Z n WeobservefiPrstthatfunctionsf inL2extendaspowerseriestotheinterioroftheunitball: s +∞ 1 π f(reIt)= r|n|eIntf(n), wheref(n)= e−nIsf(eIs)dsisindependentofI. (3) 2π n=−∞ Z−π X b b For0≤r<1,letPI bethePoissonkernelontheunitcircleofthecomplexplaneR+RI ⊂H: r 1−r2 +∞ PI(t)= = r|n|eInt. r |1−reIt|2 n=−∞ X We point outthat PI = P is independentof the imaginary unit I. In the followingLemma, we use the r r notationPI tostresstheroleoftheimaginaryunitinformula(4). r Lemma3. Foranyϕ∈L2,theextensiontotheinteriorofBofitsprojectionisgivenby Πϕ(reIt)= K(reIt,eJs)ϕ(eJs)dΣ(eJs), Z∂B where 1 IJ K(reIt,eJs)= PJ(t+s)+PJ(t−s) + PJ(t+s)−PJ(t−s) . (4) 2 r r 2 r r Proof. FixJ ∈ Ssuchthatthe r(cid:2)estrictionϕ ofϕto∂B(cid:3) belong(cid:2)stotheL2 spaceofthe(cid:3)circle∂B , and J J J considertheharmonicextensionofϕ totheinteriorofthediscB , J J ∞ ϕ (reJs)= r|n|eJnsa (J). J n n=−∞ X ThecoefficientsoftheprojectionΠϕ,recallingProposition2,aregivenby 1 2π a˜ = dσ(J)a (J)= dσ(J) e−Jnsϕ(eJs)ds. n n ZS ZS 2π Z0 3 Hence,foranyI ∈S,t∈R, +∞ 1 2π +∞ Πϕ(reIt)= r|n|eInta˜ = dσ(J) r|n|eInte−Jnsϕ(eJs)ds n n=−∞ ZS 2π Z0 n=−∞ X X = K(reIt,eJs)ϕ(eJs)dΣ(eJs) Z∂B where +∞ K(reIt,eJs)= r|n|eInte−Jns. n=−∞ X To conclude, notice that K(reIt,eJs) is a slice function with respect to the variable eIt, hence it can be writtenas 1 IJ K(reIt,eJs)= K(reJt,eJs)+K(re−Jt,eJs) + K(re−Jt,eJs)−K(reJt,eJs) 2 2 1(cid:0) +∞ +∞ (cid:1) (cid:0) (cid:1) = r|n|eJn(t−s)+ r|n|eJn(−t−s) 2 ! n=−∞ n=−∞ X X +∞ +∞ IJ + r|n|eJn(−t−s)− r|n|eJn(t−s) 2 ! n=−∞ n=−∞ X X 1 IJ = PJ(t−s)+PJ(−t−s)) + PJ(−t−s)−PJ(t−s) . 2 r r 2 r r (cid:0) (cid:1) (cid:0) (cid:1) Corollary4. WehavethatΠϕ(reIt)=A(r,t)+IB(r,t),where 1 π 1 A(r,t)= [P (t+s)+P (t−s)] ϕ(eJs)dσ(J) ds r r 2π Z−π 2 (cid:26)ZS (cid:27) and 1 π 1 B(r,t)= [P (t+s)−P (t−s)] Jϕ(eJs)dσ(J) ds. r r 2π Z−π 2 (cid:26)ZS (cid:27) InAandB thefunctionϕenters,respectively,throughits“imaginarymean”and“imaginaryfirstmo- ment”oneachcopyofSinside∂B. Passinginthelimitasr→1−,usingthefactthattheclassicalPoissonkernelaslinearoperatortendsto theDiracdeltafunction,weobtain-atleastwhenϕ∈C =C(∂B,H)iscontinuouson∂B-: Πϕ(etI)= (1−IJ)ϕ(eJt)dσ(J). (5) S Z BydensityofC inLp(p<∞),theintegralformulaforΠextendstoLpifΠisboundedonLp. SinceΠis boundedonL2,byinclusionitisdefinedonLp’satleastwhen2≤p≤∞. Formula(5)isinthiscasetrue fora.e.etI in∂B. Considerthecasep=∞ofthetheoremfirst. Takingtheessentialsupremum,wehavethat kΠϕk ≤ |1−IJ|dσ(J)kϕk , (6) ∞ ∞ S Z 4 withequalityifϕ(eJs) = |1−I J|(1−I J)−1 forsomeI ∈ S. UsingsphericalcoordinatesonSsuch 0 0 0 that I = (0,0,1) and J = (sintcoss,sintsins,cost), with s ∈ (0,2π) and t ∈ (0,π), we get that |1−IJ|=2sin(t/2),dσ(J)=sin(t)dtds,andhencethat |1−IJ|dσ(J)=4/3, (7) S Z thusconcludingtheproofofPart(i)ofTheorem1. Similarly,when2≤p<∞wehave,with 1 + 1 =1, p q 1/q kΠϕk ≤ |1−IJ|qdσ(J) kϕk . (8) p p S (cid:18)Z (cid:19) WehaveusedHölder’sinequalityin(5)andthefactthatthefirstfactorontherightof(8)isindependentof I. AsimplecalculationwiththesamesphericalcoordinatesonSusedtoobtain(7)gives 1/q 1/q p−1 2 2p−2 p |1−IJ|qdσ(J) =2 =2 , S q+2 3p−2 (cid:18)Z (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) andtheproofofTheorem1isfinished. Proposition5. L2isaclosedsubspaceofL2. s Proof. Let{f } beasequenceinL2converginginL2normtof ∈L2.Wewanttoshowthatthedifference n n s f(eJt)−(a(t)+Jb(t)),wherea(t)= 1[f(eIt)+f(e−It)]andb(t)= I[f(e−It)−f(eIt)]foranyI ∈S, 2 2 equalszeroinL2norm.Foranyn∈Nwehave kf(eJt)−(a(t)+Jb(t))k 2 ≤kf(eJt)−f (eJt)k +kf (eJt)−a (t)−Jb (t)k +ka (t)+Jb (t)−a(t)−Jb(t)k , n 2 n n n 2 n n 2 withobviousnotation. Thefirstsummandtendsto0asngoesto∞andthesecondsummandvanishesfor anynsincef ∈L2. Thelasttermcanbeboundedas n s ka (t)+Jb (t)−a(t)−Jb(t)k ≤ka (t)−a(t)k +kb (t)−b(t)k , n n 2 n 2 n 2 wherewecanchooseanyslice∂B tocomputebothquantitiesontherightside. Thefactthatf converges I n tof inL2normyieldsthat,forσ-almosteveryI, 2π|f (eIt)−f(eIt)|2dttendsto0asngoesto∞,and 0 n hence,thatbothka (t)−a(t)k andkb (t)−b(t)k tendto0asngoesto∞. Thereforeweconcludethat n 2 n 2 R f ∈L2. s We end the note with some remarks. It is a peculiar fact that 1 < kΠk < ∞. Many natural ∞,∞ projectionoperatorsdefined on L2 spaces extendto contractionsto Lp for 1 < p < ∞. This is the case with restriction operators ϕ 7→ χ ϕ, where χ is a measurable characteristic function; or, closer to the E E operatorweareconsideringhere,theprojectionontothespaceoffunctionsendowedwithsomesymmetry. Forinstance,letLSbethespaceofthefunctionsϕon∂Bwhicharemeasurableandsuchthatϕ(eIt)=a(t) dependsontalone,setLpS =Lp∩LS,andletΠS :L2 →L2S betheorthogonalprojection.Wemightwrite ΠSϕ(eIt)= ϕ(eRIt)dh(R), ZSO(3) 5 where SO(3) is the orthogonal group, acting on S as I 7→ RI, for any R ∈ SO(3), and dh is its (bi- invariant)Haarmeasure,normalizedtohaveh(SO(3)) = 1. Alternatively,wemightaskϕtobecovariant underrotations, ϕ(eRIt)=Rϕ(eIt). (9) (Ifϕ=eKs,thenRϕ=eRKs.) TheprojectionfromL2tothesubspaceofthefunctionssatisfying(9)is Π′ϕ(eIt)= R−1ϕ(eR(I)t)dh(R). (10) S ZSO(3) Observethatthereisaformalanalogybetween(9)and(10),andtheintegralsappearinginCorollary4. At the other extreme, some projection operators on L2 are unbounded in L∞. The prototype is the conjugatefunctionoperatorinonecomplexvariable,andanavatarofitinourcontextmightbe ∞ ∞ ϕ(eIt)= eInta (I) 7→ Π˜ϕ(eIt)= eInta (I). n n n=−∞ n=0 X X Tipically,projectionsofthiskindcanbeexpressedintermsofsingularintegraloperators. TheprojectionΠontoslicefunctionsseemstobeintermediatebetweenthesetwofamiliesofoperators. Itshareswith the first the factthatit is linkedwith a geometric-algebraicinvarianceproperty. Thismight “explain”theboundednessinL∞. Ontheotherhand,theinvariancecannotbesimplystatedinmeasure- theoretic terms, and this might“explain” why it is nota contractionof L∞: cancellationsin the integrals playarole,andthiscausestheLpnormoftheoperatortogrow. Tohaveahintastowhichkindofcancellationsareinvolved,itisinstructivetoconsidertherelation: 2 2 |Πϕ(eIt)|2dσ(I)= ϕ(eIt)dσ(I) + Iϕ(eIt)dσ(I) , ZS (cid:12)ZS (cid:12) (cid:12)ZS (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) which follows from Corollary 4. If the fun(cid:12)ction ϕ(eJt) =(cid:12) a(t(cid:12)) + Jb(t) is alre(cid:12)ady slice, then the first (cid:12) (cid:12) (cid:12) (cid:12) integralvanishesfora = 0,whiletheseconddoesforb = 0. Thisissomehowameasureoftheamountof cancellationwhichisgoingonintheintegrals. References [1] ArcozziNandSarfattiG2014InvariantmetricsforthequaternionicHardyspaceJ.Geom.Anal.online first [2] BrackxF,DelangheRandSommenF1982Cliffordanalysis(Boston,MA:Pitman) [3] GentiliGandStruppaDC2007AnewtheoryofregularfunctionsofaquaternionicvariableAdv.Math. 216279-301. [4] Gentili G, Stoppato C and Struppa D C 2013 Regular functions of a quaternionic variable (Berlin: Springer) [5] GhiloniRandPerottiA2011Sliceregularfunctionsonrealalternativealgebras,Adv.Math.2261662- 91 [6] SarfattiG2014QuaternionicHankeloperatorsandapproximationbysliceregularfunctionsPreprint 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.