The orthogonal projection on slice functions on the quaternionic sphere 5 NicolaArcozzi∗ 1 0 DipartimentodiMatematica,UniversitàdiBologna 2 PiazzadiPortaSanDonato5,40126Bologna,Italy,[email protected] n GiuliaSarfatti† a J DipartimentodiMatematica,UniversitàdiBologna 9 PiazzadiPortaSanDonato5,40126Bologna,Italy,[email protected] ] V C Abstract . h WestudytheLp normoftheorthogonalprojectionfromthespaceofquaternionvaluedL2functions t a totheclosedsubspaceofsliceL2functions. m TheaimofthisshortnoteistostudytheorthogonalprojectionΠfromthespaceofquaternionvaluedL2 [ functionstoitsclosedsubspaceofsliceL2 functions. Inparticular,tocomputethenormoftheprojection 1 operatorwewillfirstshowthatwecanwriteΠintermsofaquaternionicslicePoissonkernel. v Let H = R+Ri+Rj +Rk denote the non commutative4-dimensionalreal algebra of quaternions 8 and let B = {q ∈ H : |q| < 1} be the unit ball in H. Its boundary ∂B contains elements of the form 8 0 q = eIt, I ∈ S, t ∈ R, where S = {q ∈ H : q2 = −1} is the two dimensional sphere of imaginary 2 units in H. We endow ∂B with the measure dΣ eIt = dσ(I)dt, which is naturally associated with the 0 Hardy space H2(B) of the slice regular functions on B, see [1]. We here normalize the measures so to 1. haveΣ(∂B) = σ(S) = 1. Thefunctionsweare(cid:0)conc(cid:1)ernedwith heresatisfyalgebraicconditionsandsize 0 conditions.Afunctionf :∂B→HisaslicefunctionifforanyI,J ∈S 5 1 1 JI f(eJt)= f(eIt)+f(e−It) + f(e−It)−f(eIt) . (1) : v 2 2 Xi Thatis,slicefunctionsareaffinein(cid:2)theSvariable: (cid:3) (cid:2) (cid:3) r a f(eJt)=a(t)+Jb(t), (2) wherea,b : ∂B → Harefunctionsdependingontalone. Condition(2)hasanalgebraicnature. Equation (1) also provides a formula to extend a function f defined on a slice ∂B = ∂B∩(R+RI) to a slice I I functionf :=ext(f )definedontheentiresphere∂B. I Slice functionswereintroducedinthe moregeneralsetting ofrealalternativealgebrasbyGhiloniand Perottiin[5]. AnotableclassofslicefunctionsisprovidedbytherestrictiontotheunitsphereinHofslice ∗PartiallysupportedbythePRINprojectRealandComplexManifoldsoftheItalianMIURandbyINDAM-GNAMPA †PartiallysupportedbyINDAM-GNSAGA,bythePRINprojectRealandComplexManifoldsandbytheFIRBprojectDifferential GeometryandGeometricFunctionTheoryoftheItalianMIUR 1 regularfunctions. SuchfunctionshavebeenobjectofintensiveresearchsincetheseminalworkbyGentili andStruppa[3]. AconcreteexampleisgivenbyconvergingpowerseriesoftheformeIt 7→ eInta , n∈Z n withquaternioniccoefficientsa . n P Wereferto[4]forresultsconcerningsliceregularfunctionsandto[2]forfunctionalanalysisresultsin thequaternionicsetting. We denote by L = L (∂B) the class of the measurable slice functions on ∂B, which has a natural s s structureofrightlinearspaceonH. We will denote by Lp = Lp(∂B), 1 ≤ p ≤ ∞, the space of the functions ϕ : ∂B → H such that |ϕ|pdΣ =: kϕkp < ∞,andletLp := Lp∩L . ItisnotdifficulttoprovethatL2 isaclosedsubspace ∂B p s s s of L2 (see Proposition 5 below), hence we have an orthogonal projection operator Π : L2 → L2: Π is R s self-adjoint,surjective,andΠ2 =Π. Let kΠϕk p kΠk = sup . p,p L2∋ϕ6=0 kϕkp Obviously,kΠk =1. 2,2 OurmaingoalhereiscomputingthenormofΠ:Lp →Lp. s Theorem1. (i) kΠk =1,kΠk = 4. 2,2 ∞,∞ 3 p−1 (ii) Let2≤p≤∞. Then,kΠk ≤2 2p−2 p . p,p 3p−2 (cid:16) (cid:17) (iii) If1≤p,q ≤∞and 1 + 1 =1,thenkΠk =kΠk . p q p,p q,q ThegeneraltheoryimpliesthatΠisacontractiononL2 andtheequalityin(iii). Theinequalityin(ii) givestherightconstantforp = ∞, butnotforp = 2. FindingtheexactvalueofkΠk forallp’smight p,p shedsomelightonthegeometryofsliceregularfunctions,andwethinkitisaninterestingopenproblem. ThestudypresentedinthispaperbeganwhendiscussingsomeproblemsrelatedtoPreprint[6]. OnroutetotheproofofTheorem1,weshallwriteΠasanexplicitintegraloperator. Letϕ ∈ L2. ThemeasuredΣwe areconsideringistheproductofthe(normalizationofthe)standard Lebesguemeasureontheunitcircletimesthestandardareaelementonthetwosphere.Hence,ϕbelongsto theL2spaceoftheunitcircle∂B foralmosteveryI ∈S,andwecanexpandϕasapowerseriesonalmost I eachsliceoftheform ∞ ϕ(eIt)= eInta (I). n n=−∞ X ThecoefficientsdependontheimaginaryunitI ∈S. Proposition2. Letϕ∈L2. Thentheorthogonalprojectionofϕtothespaceofslicefunctionsis ∞ Πϕ(eJt)= eJnta˜ n n=−∞ X foranyeJt ∈∂B,wherethecoefficientsaregivenbytheintegralmeans a˜ = dσ(I)a (I) n n S Z foranyn∈Z. 2 Proof. Letf(eIt) = eIntα ∈ L2. Takingintoaccountthat,foranymeasurablefunctiong : ∂B→ n∈Z n s H, 2πg(eIt)dt= πg(e−It)dt,whichimpliesthat π 0P R R 1 2π g(eIt)dΣ(eIt)= g(eIt)dσ(I)dt, Z∂B 2π Z0 ZS wecanwrite 1 2π ∞ hf,ϕiL2 = 2π Z0 dtZSdσ(I)ϕ(eIt)f(eIt)=ZSdσ(I)n=−∞an(I)αn X ∞ ∞ = dσ(I)an(I)αn = a˜nαn =hf,ϕ˜iL2 S n=−∞Z n=−∞ X X whereϕ˜(eJt)= eJnta˜ isaslicefunction.HenceΠϕ=ϕ˜. n∈Z n WeobservefiPrstthatfunctionsf inL2extendaspowerseriestotheinterioroftheunitball: s +∞ 1 π f(reIt)= r|n|eIntf(n), wheref(n)= e−nIsf(eIs)dsisindependentofI. (3) 2π n=−∞ Z−π X b b For0≤r<1,letPI bethePoissonkernelontheunitcircleofthecomplexplaneR+RI ⊂H: r 1−r2 +∞ PI(t)= = r|n|eInt. r |1−reIt|2 n=−∞ X We point outthat PI = P is independentof the imaginary unit I. In the followingLemma, we use the r r notationPI tostresstheroleoftheimaginaryunitinformula(4). r Lemma3. Foranyϕ∈L2,theextensiontotheinteriorofBofitsprojectionisgivenby Πϕ(reIt)= K(reIt,eJs)ϕ(eJs)dΣ(eJs), Z∂B where 1 IJ K(reIt,eJs)= PJ(t+s)+PJ(t−s) + PJ(t+s)−PJ(t−s) . (4) 2 r r 2 r r Proof. FixJ ∈ Ssuchthatthe r(cid:2)estrictionϕ ofϕto∂B(cid:3) belong(cid:2)stotheL2 spaceofthe(cid:3)circle∂B , and J J J considertheharmonicextensionofϕ totheinteriorofthediscB , J J ∞ ϕ (reJs)= r|n|eJnsa (J). J n n=−∞ X ThecoefficientsoftheprojectionΠϕ,recallingProposition2,aregivenby 1 2π a˜ = dσ(J)a (J)= dσ(J) e−Jnsϕ(eJs)ds. n n ZS ZS 2π Z0 3 Hence,foranyI ∈S,t∈R, +∞ 1 2π +∞ Πϕ(reIt)= r|n|eInta˜ = dσ(J) r|n|eInte−Jnsϕ(eJs)ds n n=−∞ ZS 2π Z0 n=−∞ X X = K(reIt,eJs)ϕ(eJs)dΣ(eJs) Z∂B where +∞ K(reIt,eJs)= r|n|eInte−Jns. n=−∞ X To conclude, notice that K(reIt,eJs) is a slice function with respect to the variable eIt, hence it can be writtenas 1 IJ K(reIt,eJs)= K(reJt,eJs)+K(re−Jt,eJs) + K(re−Jt,eJs)−K(reJt,eJs) 2 2 1(cid:0) +∞ +∞ (cid:1) (cid:0) (cid:1) = r|n|eJn(t−s)+ r|n|eJn(−t−s) 2 ! n=−∞ n=−∞ X X +∞ +∞ IJ + r|n|eJn(−t−s)− r|n|eJn(t−s) 2 ! n=−∞ n=−∞ X X 1 IJ = PJ(t−s)+PJ(−t−s)) + PJ(−t−s)−PJ(t−s) . 2 r r 2 r r (cid:0) (cid:1) (cid:0) (cid:1) Corollary4. WehavethatΠϕ(reIt)=A(r,t)+IB(r,t),where 1 π 1 A(r,t)= [P (t+s)+P (t−s)] ϕ(eJs)dσ(J) ds r r 2π Z−π 2 (cid:26)ZS (cid:27) and 1 π 1 B(r,t)= [P (t+s)−P (t−s)] Jϕ(eJs)dσ(J) ds. r r 2π Z−π 2 (cid:26)ZS (cid:27) InAandB thefunctionϕenters,respectively,throughits“imaginarymean”and“imaginaryfirstmo- ment”oneachcopyofSinside∂B. Passinginthelimitasr→1−,usingthefactthattheclassicalPoissonkernelaslinearoperatortendsto theDiracdeltafunction,weobtain-atleastwhenϕ∈C =C(∂B,H)iscontinuouson∂B-: Πϕ(etI)= (1−IJ)ϕ(eJt)dσ(J). (5) S Z BydensityofC inLp(p<∞),theintegralformulaforΠextendstoLpifΠisboundedonLp. SinceΠis boundedonL2,byinclusionitisdefinedonLp’satleastwhen2≤p≤∞. Formula(5)isinthiscasetrue fora.e.etI in∂B. Considerthecasep=∞ofthetheoremfirst. Takingtheessentialsupremum,wehavethat kΠϕk ≤ |1−IJ|dσ(J)kϕk , (6) ∞ ∞ S Z 4 withequalityifϕ(eJs) = |1−I J|(1−I J)−1 forsomeI ∈ S. UsingsphericalcoordinatesonSsuch 0 0 0 that I = (0,0,1) and J = (sintcoss,sintsins,cost), with s ∈ (0,2π) and t ∈ (0,π), we get that |1−IJ|=2sin(t/2),dσ(J)=sin(t)dtds,andhencethat |1−IJ|dσ(J)=4/3, (7) S Z thusconcludingtheproofofPart(i)ofTheorem1. Similarly,when2≤p<∞wehave,with 1 + 1 =1, p q 1/q kΠϕk ≤ |1−IJ|qdσ(J) kϕk . (8) p p S (cid:18)Z (cid:19) WehaveusedHölder’sinequalityin(5)andthefactthatthefirstfactorontherightof(8)isindependentof I. AsimplecalculationwiththesamesphericalcoordinatesonSusedtoobtain(7)gives 1/q 1/q p−1 2 2p−2 p |1−IJ|qdσ(J) =2 =2 , S q+2 3p−2 (cid:18)Z (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) andtheproofofTheorem1isfinished. Proposition5. L2isaclosedsubspaceofL2. s Proof. Let{f } beasequenceinL2converginginL2normtof ∈L2.Wewanttoshowthatthedifference n n s f(eJt)−(a(t)+Jb(t)),wherea(t)= 1[f(eIt)+f(e−It)]andb(t)= I[f(e−It)−f(eIt)]foranyI ∈S, 2 2 equalszeroinL2norm.Foranyn∈Nwehave kf(eJt)−(a(t)+Jb(t))k 2 ≤kf(eJt)−f (eJt)k +kf (eJt)−a (t)−Jb (t)k +ka (t)+Jb (t)−a(t)−Jb(t)k , n 2 n n n 2 n n 2 withobviousnotation. Thefirstsummandtendsto0asngoesto∞andthesecondsummandvanishesfor anynsincef ∈L2. Thelasttermcanbeboundedas n s ka (t)+Jb (t)−a(t)−Jb(t)k ≤ka (t)−a(t)k +kb (t)−b(t)k , n n 2 n 2 n 2 wherewecanchooseanyslice∂B tocomputebothquantitiesontherightside. Thefactthatf converges I n tof inL2normyieldsthat,forσ-almosteveryI, 2π|f (eIt)−f(eIt)|2dttendsto0asngoesto∞,and 0 n hence,thatbothka (t)−a(t)k andkb (t)−b(t)k tendto0asngoesto∞. Thereforeweconcludethat n 2 n 2 R f ∈L2. s We end the note with some remarks. It is a peculiar fact that 1 < kΠk < ∞. Many natural ∞,∞ projectionoperatorsdefined on L2 spaces extendto contractionsto Lp for 1 < p < ∞. This is the case with restriction operators ϕ 7→ χ ϕ, where χ is a measurable characteristic function; or, closer to the E E operatorweareconsideringhere,theprojectionontothespaceoffunctionsendowedwithsomesymmetry. Forinstance,letLSbethespaceofthefunctionsϕon∂Bwhicharemeasurableandsuchthatϕ(eIt)=a(t) dependsontalone,setLpS =Lp∩LS,andletΠS :L2 →L2S betheorthogonalprojection.Wemightwrite ΠSϕ(eIt)= ϕ(eRIt)dh(R), ZSO(3) 5 where SO(3) is the orthogonal group, acting on S as I 7→ RI, for any R ∈ SO(3), and dh is its (bi- invariant)Haarmeasure,normalizedtohaveh(SO(3)) = 1. Alternatively,wemightaskϕtobecovariant underrotations, ϕ(eRIt)=Rϕ(eIt). (9) (Ifϕ=eKs,thenRϕ=eRKs.) TheprojectionfromL2tothesubspaceofthefunctionssatisfying(9)is Π′ϕ(eIt)= R−1ϕ(eR(I)t)dh(R). (10) S ZSO(3) Observethatthereisaformalanalogybetween(9)and(10),andtheintegralsappearinginCorollary4. At the other extreme, some projection operators on L2 are unbounded in L∞. The prototype is the conjugatefunctionoperatorinonecomplexvariable,andanavatarofitinourcontextmightbe ∞ ∞ ϕ(eIt)= eInta (I) 7→ Π˜ϕ(eIt)= eInta (I). n n n=−∞ n=0 X X Tipically,projectionsofthiskindcanbeexpressedintermsofsingularintegraloperators. TheprojectionΠontoslicefunctionsseemstobeintermediatebetweenthesetwofamiliesofoperators. Itshareswith the first the factthatit is linkedwith a geometric-algebraicinvarianceproperty. Thismight “explain”theboundednessinL∞. Ontheotherhand,theinvariancecannotbesimplystatedinmeasure- theoretic terms, and this might“explain” why it is nota contractionof L∞: cancellationsin the integrals playarole,andthiscausestheLpnormoftheoperatortogrow. Tohaveahintastowhichkindofcancellationsareinvolved,itisinstructivetoconsidertherelation: 2 2 |Πϕ(eIt)|2dσ(I)= ϕ(eIt)dσ(I) + Iϕ(eIt)dσ(I) , ZS (cid:12)ZS (cid:12) (cid:12)ZS (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) which follows from Corollary 4. If the fun(cid:12)ction ϕ(eJt) =(cid:12) a(t(cid:12)) + Jb(t) is alre(cid:12)ady slice, then the first (cid:12) (cid:12) (cid:12) (cid:12) integralvanishesfora = 0,whiletheseconddoesforb = 0. Thisissomehowameasureoftheamountof cancellationwhichisgoingonintheintegrals. References [1] ArcozziNandSarfattiG2014InvariantmetricsforthequaternionicHardyspaceJ.Geom.Anal.online first [2] BrackxF,DelangheRandSommenF1982Cliffordanalysis(Boston,MA:Pitman) [3] GentiliGandStruppaDC2007AnewtheoryofregularfunctionsofaquaternionicvariableAdv.Math. 216279-301. [4] Gentili G, Stoppato C and Struppa D C 2013 Regular functions of a quaternionic variable (Berlin: Springer) [5] GhiloniRandPerottiA2011Sliceregularfunctionsonrealalternativealgebras,Adv.Math.2261662- 91 [6] SarfattiG2014QuaternionicHankeloperatorsandapproximationbysliceregularfunctionsPreprint 6