ebook img

The origin of the spurious iron spread in the globular cluster NGC 3201 PDF

0.45 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The origin of the spurious iron spread in the globular cluster NGC 3201

DRAFTVERSIONJANUARY12,2015 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 THEORIGINOFTHESPURIOUSIRONSPREADINTHEGLOBULARCLUSTERNGC3201 A.MUCCIARELLI1,E.LAPENNA1,D.MASSARI1,F.R.FERRARO1,B.LANZONI1 1DipartimentodiFisica&Astronomia,AlmaMaterStudiorum,UniversitàdiBologna,VialeBertiPichat,6/2-40127,Bologna,ITALY DraftversionJanuary12,2015 ABSTRACT NGC3201isaglobularclustersuspectedtohaveanintrinsicspreadintheironcontent. We re-analyseda 5 sampleof21clusterstarsobservedwithUVES-FLAMESattheVeryLargeTelescopeandforwhichSimmerer 1 etal. founda0.4dexwide[Fe/H]distributionwithametal-poortail. We confirmedthatwhenspectroscopic 0 gravitiesare adopted, the derived[Fe/H] distribution spans∼0.4 dex. On the other hand, when photometric 2 gravitiesareused,themetallicitydistributionfromFeIlinesremainslarge,whilethatderivedfromFeIIlines isnarrowandcompatiblewithnoironspread.Wedemonstratethatthemetal-poorcomponentclaimedbySim- n mereretal. iscomposedbyasymptoticgiantbranchstarsthatcouldbeaffectedbynonlocalthermodynamical a J equilibriumeffectsdrivenbyironoverionization.ThisleadstoadecreaseoftheFeIabundance,whileleaving theFeIIabundanceunaltered.Asimilarfindinghasbeenalreadyfoundinasymptoticgiantbranchstarsofthe 8 globularclustersM5 and 47 Tucanae. We concludethat NGC 3201is a normalcluster, with no evidenceof intrinsicironspread. ] R Subjectheadings:stars:abundances—techniques:spectroscopic—globularclusters:individual(NGC3201) S . h 1. INTRODUCTION do not highlight similar spreads, ruling out large star-to- p star variations. On the other hand, Simmereretal. (2013) The striking homogeneity in terms of iron abundance is - analysed UVES@FLAMES and MIKE@Magellan high- o usually considered as the main chemical signature of glob- resolutionspectraof24giantstarsofthecluster, revealinga r ularclusters(GCs),indicatingthatthesestellarsystemswere t metallicity distribution as large as 0.4 dex (not explainable s not able to retain the gas ejected by supernova (SN) explo- a sions (see e.g. Renzini&Buzzoni 1986; Willman&Strader within the uncertainties) and with an evident metal-poor [ tail (5 out 24 stars). This iron spread, qualitatively sim- 2012). For four decades, only one GC-like system, namely v1 ωinFCeen(staeuerei,.gw.Fasreekmnoawnn&tRooddigseprlsay19a7n5;inNtroirnrsisic&dDisapeCrsoisotna imlaarketoNtGhaCt o3b2s0e1rvtehdeilneaMst2m2a(sMsivaerinGoCet(a∼l. 12.010×9),10w5oMu⊙ld; McLaughlin&vanderMarel 2005) with evidence of SN 8 1995; Origliaetal. 2003; Johnson&Pilachowski 2010; ejectaretention. 6 Pancinoetal. 2011) and this evidence brought to classify Recently, Lapennaetal. (2014) discovered effects due 9 the system as the remnant core of a tidally disrupted dwarf to the departure from local thermodynamical equilibrium 1 galaxy accreted by the Milky Way. In the last few years, (NLTE)in a sample of asymptoticgiantbranch(AGB) stars 0 deepand extensivespectroscopicand photometricinvestiga- intheglobularcluster47Tucanae. SuchNLTEeffectsaffect . tionshaverevealedamorecomplexpicture,withthediscov- 1 theabundancesderivedfromFeIlines(bringingtoanunder- eryofother(massive)GCsharboringdistinctsub-populations 0 estimate of 0.1-0.2dex in [Fe/H]), butleave the abundances with different iron abundance, as Terzan 5 (Ferraroetal. 5 fromFeIIlinesunaltered.Ontheotherhand,redgiantbranch 1 2009; Origliaetal. 2011, 2013; Massarietal. 2014) and M2 (RGB)starsdonotexhibitsimilareffectsandtheabundances : (Yongetal.2014), orwithlargebutuni-modalirondistribu- v tions, as M54 (Carrettaetal. 2010a) and M22 (Marinoetal. fromFeIandFeIInicelymatcheachother. i Based on this finding, it is well reasonable to ask X 2009). Further suggestions of intrinsic iron spread are only whetherthestar-to-starscattermeasuredintheFecontentof tentative at the moment, either because based on Ca II r NGC3201isgenuineoritisduetosuchaspuriouseffect,be- a lines(NGC5824,DaCosta,Held&Saviane2014)orbecause causeoftheinclusioninthesampleofsomeAGBstars. Note of still disputed results (NGC1851, Carrettaetal. 2010b; thattheNLTEeffectscanbeeasilyunveiledbycomparingthe Villanovaetal.2010). abundancesderivedfromFeIandFeIIseparately. Among these candidate anomalous GCs, the case of In this paper we re-analyse the spectra of the stars dis- NGC 3201 is controversial because different analyses pro- cussed in Simmereretal. (2013) in light of the finding by vide conflicting results about its level of iron homogene- Lapennaetal. (2014). We limit the analysis to the UVES- ity. Gonzalez&Wallerstein (1998) first analysed a sample FLAMES sample, including also the 5 stars populating the of CTIO high-resolution spectra of 18 cluster stars, finding largeironvariations(∆[Fe/H]∼0.4dex). However,anevi- metal-poortailoftheSimmereretal.(2013)distribution. denttrendbetween[Fe/H]andtheeffectivetemperaturecasts 2. OBSERVATIONS doubtsaboutthe reliability of their [Fe/H] distribution. The High-resolutionspectratakenwithUVES-FLAMES@VLT re-analysis of six of their targets performed by Coveyetal. (Pasquinietal. 2000) for 21 giant stars members of (2003)doesnotprovideadditionalclues. NGC 3201 have been retrieved from the ESO archive. The Further analyses by Carrettaetal. (2009) and spectra have been acquired with the UVES grating 580 Munoz,Geisler&Villanova (2013), based on Red Arm CD#3, that provides a high spectral resolution high-resolution, high signal-to-noise ratio spectra (R∼45000) and a large spectral coverage (∼4800-6800 Å). (FLAMES@VLT and MIKE@Magellan, respectively), The spectra have been reduced using the dedicated ESO 2 pipeline1, performing bias subtraction, flat-fielding, wave- thatnotrendexistsbetweenabundancesandexcitationpoten- length calibration, spectralextraction and order merging. In tial,(b)forthe surfacegravities(logg) we imposedthatthe eachexposureonefiberisdedicatedtosampletheskyback- same abundance is obtained (within the uncertainties) from groundandusedtosubtractthiscontributionfromeachindi- FeIandFeIIlines,(c)forthemicroturbulentvelocity(v ) turb vidualspectrum. we requested that no trend exists between abundances from Spectroscopictargetshavebeenidentifiedinourphotomet- FeIlinesandthereducedlinestrength.Thederivedvaluesof ric catalog, obtained by combining high resolution images v arebasedon∼130-150FeIlinesdistributedoveralarge turb acquired with the HST-ACS camera and wide-field images intervalofreducedEWs,withlog(EW/λ)rangingbetween– acquired with the ESO-WFI imager. Both the photometric 5.6and–4.7. datasetshavebeenobtainedthroughtheVandIfilters. Ato- Wederivedanaverage[FeI/H]=–1.46±0.02dex(σ=0.10 tal of 13 targets lie in the innermost cluster region, covered dex),withadistributionrangingfrom–1.62dexto–1.27dex. by ACS, while 8 stars are in the externalregion, coveredby The[FeI/H]and[FeII/H]abundancedistributionsareshown WFI.Themembershipofallthetargetsisconfirmedbytheir inFig.2asgeneralizedhistograms. Thisresultwellmatches veryhighradialvelocity(<RV >=+494.6±0.8kms- 1, that obtained by Simmereretal. (2013) that find an average helio σ =3.6 km s- 1) that allows to easily distinguish the cluster abundance [Fe/H]=–1.48±0.02 dex (σ= 0.11 dex)6 with a membersfromthesurroundingfieldstars. comparable iron range (∆[Fe/H]∼0.4 dex). This spectro- The position of the targets in the color-magnitude dia- scopic analysis fully confirms the claim by Simmereretal. grams (CMDs) is shown in Fig. 1. These CMDs have been (2013): whenanalysedwithatmosphericparametersderived corrected for differential reddening using the method de- followingtheconstraintslistedabove,thestarsofNGC3201 scribed in Massarietal. (2012) and adopting the extinction reveal a clear star-to-star scatter in the iron content. The 5 law by Cardelli,Clayton&Mathis (1989). In order to cal- stars labelled as metal-poorby Simmereretal. (2013), with culate guess values for the atmospheric parameters of the [Fe/H]<–1.58dex,arethemostmetal-pooralsoinourmetal- target stars, we fitted the CMDs with an appropriate theo- licitydistribution. retical isochrone from the BaSTI dataset (Pietrinfernietal. 2006), computedwithan ageof11Gyr(Marin-Franchetal. 3.2. Analysiswithphotometricgravities 2009),Z=0.001andα-enhancedchemicalmixture,findinga AspointedoutbyLapennaetal.(2014),possibleNLTEef- colorexcessE(B-V)=0.31maganda truedistancemodulus fects in AGB stars can be easily detected by assuming pho- (m- M) =13.35mag. 0 tometric values for loggand measuring Fe I and Fe II in- Table 1 lists the main information about the targets, dependently7. In order to see whether this effect is present by adopting the same identification numbers used by in the NGC 3201data, we adoptedthe followingprocedure. Simmereretal. (2013) who adopted the original names by T has been derived spectroscopically, by imposing the ex- eff Coteetal.(1994). citation equilibrium as described above. Thanks to the high quality of the spectra (with S/N ratio per pixel higher than 3. ANALYSIS 100) and the large number of Fe I lines distributed over a Iron abundances have been derived with the package large range of excitation potentials, very accurate spectro- GALA2(Mucciarellietal. 2013a) by matching the measured scopic T can be estimated, with internal uncertainties of eff andtheoreticalequivalentwidths(EWs). Modelatmospheres about 20-30 K. As a guess value we adopted T calculated have been calculated with the code ATLAS93. We selected fromthe(V- I) - T calibrationbyAlonsoetaelf.f(1999)and 0 eff FeIandFeIIlinespredictedtobeunblendedattheUVESres- assuming a color excess E(B-V)=0.31 mag. Gravities have olutionandatthetypicalatmosphericparametersandmetal- beenderivedfromtheStefan-Boltzmannequation,assuming licity of the observed stars, through the careful inspection E(B-V)=0.31 mag, (m- M) =13.35 mag, bolometric correc- 0 of synthetic spectra calculated with the SYNTHE package tions from Alonsoetal. (1999) and a mass of 0.82 M (ac- ⊙ (Sbordone 2005). Atomic data of the transitions of interest cordingtothebest-fitisochrone,thelatterisasuitablevalue arefromthelastreleaseoftheKurucz/Castellilinelist4. The forRGBstarsbrighterthantheRGBBumpmagnitudelevel). finalironabundancesare basedon∼130-150Fe Iand∼15- BecauseT isderivedspectroscopically,thegravityisrecom- eff 20 Fe II lines. EWs have been measured with DAOSPEC puted through the Stefan-Boltzmann equation in each itera- (Stetson&Pancino 2008), run iteratively by means of the tion according to the new value of T . The mass value of package 4DAO5(Mucciarelli 2013). EW, oscillator strength eff 0.82M is appropriatefor RGB stars butprobablytoo high ⊙ and excitation potential for all the measured transitions are for AGB stars, because of mass loss phenomena during the listed in Table 2 (available in its entirety in the online ver- RGBphase(Rood1973;Origliaetal.2002,2007,2014). In sion). 3.1. Analysiswithspectroscopicgravities 6 Note that Simmereretal. (2013) adopted as solar reference value 7.56 obtained from their own solar analysis, while we used 7.50 by First,weperformedafullyspectroscopicanalysis,asdone Grevesse&Sauval(1998). Througoutthepaperwerefertotheabundances bySimmereretal.(2013), in ordertoverifywhetherweob- bySimmereretal.(2013)correctedforthedifferentsolarzero-point. 7 Recently, Johnsonetal. (2014)analysed asample of35AGBstarsin tain the same evidence of a metallicity dispersion. In this 47Tucanae, findingnoclearevidence ofNLTEeffects. Evenifadetailed analysistheatmosphericparametershavebeenconstrainedas comparisonbetweenthetwoanalysesisnotthescopeofthispaper,wehigh- follows:(a)fortheeffectivetemperatures(T )werequested lightsomemaindifferencesbetweenthetwoworks: thespectralresolution eff (48000inLapennaetal.(2014)and22000inJohnsonetal.2014),thenum- 1http://www.eso.org/sci/software/pipelines/ berofFeIIlines(13inLapennaetal.(2014)and4inJohnsonetal.2014,, onaverage)andtheadoptedlinelistsforAGBandRGBstars(Lapennaetal. 2http://www.cosmic-lab.eu/gala/gala.php (2014)adoptedthesamelinelistforboththegroupsofstars,atvariancewith 3http://wwwuser.oats.inaf.it/castelli/sources/atlas9codes.html Johnsonetal.(2014)thatusedalinelistconsistent,butnotexactlythesame, 4http://wwwuser.oats.inaf.it/castelli/linelists.html withthatadoptedbyCorderoetal.(2014)wherethereferenceRGBstarsare 5http://www.cosmic-lab.eu/4dao/4dao.php discussed). 3 FIG.1.—CMDsforcentralandexternalregionsofNGC3201(leftandrightpanels,respectively),correctedfordifferentialreddening. Largecirclesarethe spectroscopic targetsflaggedasmetal-rich([Fe/H]>–1.58dex)inSimmereretal.(2013),whilelargetriangles thoseidentifiedasmetal-poor([Fe/H]≤–1.58 dex). TABLE1 Star RA Dec V I RVhelio Teff logg vturb [FeI/H] [FeII/H] (J2000) (J2000) (km/s) (K) (km/s) (dex) (dex) 63 154.3084680 -46.4125790 13.76 12.42 495.9±0.6 4730 1.54 1.45 -1.27±0.03 -1.35±0.05 89 154.3346190 -46.3860090 13.87 12.56 498.8±0.5 4855 1.63 1.60 -1.57±0.02 -1.35±0.03 91 154.3359600 -46.3355290 13.81 12.41 490.4±0.6 4705 1.56 1.50 -1.36±0.05 -1.35±0.05 105 154.3439854 -46.4201000 13.94 12.59 493.9±0.9 4760 1.61 1.45 -1.31±0.03 -1.29±0.05 124 154.3601786 -46.4140432 12.85 11.32 498.5±0.2 4375 0.96 1.55 -1.37±0.02 -1.40±0.05 129 154.3623900 -46.4312480 13.54 12.13 491.8±0.4 4580 1.36 1.50 -1.48±0.02 -1.43±0.04 181 154.3876490 -46.4126379 13.89 12.58 497.5±0.4 4920 1.65 1.65 -1.62±0.03 -1.37±0.04 200 154.3949420 -46.3972062 12.79 11.30 495.1±0.4 4515 0.99 1.85 -1.50±0.02 -1.40±0.04 222 154.4031199 -46.4257714 12.69 11.15 491.0±0.5 4355 0.88 1.65 -1.47±0.02 -1.45±0.05 231 154.4067690 -46.4012923 13.52 12.18 491.2±0.5 4785 1.45 1.60 -1.54±0.02 -1.39±0.03 240 154.4091582 -46.4277707 13.91 12.59 495.2±0.6 4855 1.64 1.55 -1.61±0.03 -1.38±0.04 244 154.4097946 -46.4024205 13.77 12.38 492.2±0.3 4690 1.51 1.50 -1.44±0.02 -1.44±0.05 249 154.4104867 -46.4270988 12.99 11.54 498.1±0.3 4545 1.11 1.60 -1.56±0.02 -1.42±0.04 277 154.4198397 -46.4124756 13.60 12.18 497.6±0.3 4620 1.39 1.50 -1.40±0.02 -1.42±0.05 279 154.4208433 -46.3954964 13.34 11.89 499.0±0.3 4555 1.26 1.50 -1.43±0.03 -1.43±0.04 303 154.4288640 -46.3800960 13.58 12.20 491.7±0.4 4630 1.39 1.50 -1.45±0.02 -1.45±0.04 308 154.4304349 -46.4108231 13.76 12.37 487.2±0.4 4620 1.45 1.45 -1.50±0.02 -1.45±0.04 312 154.4342122 -46.4240651 12.71 11.10 494.9±0.3 4330 0.85 1.65 -1.44±0.03 -1.44±0.06 332 154.4478331 -46.3982898 12.96 11.47 499.7±0.5 4500 1.08 1.65 -1.54±0.02 -1.38±0.04 344 154.4544130 -46.4162830 13.82 12.41 490.7±0.7 4655 1.49 1.40 -1.31±0.03 -1.29±0.05 374 154.5004800 -46.5194470 13.64 12.09 498.7±0.6 4595 1.38 1.50 -1.41±0.03 -1.36±0.05 <[FeI/H]> <[FeII/H]> –1.46±0.02 –1.40±0.01 NOTE.— Maininformationofthetargetstars.IdentificationnumbersarethesameadoptedbySimmereretal.(2013).[Fe I/H]and[FeII/H]havebeenobtainedadoptingphotometricgravities. fact,Grattonetal.(2010)providethemassesforasampleof T ,avoidinganypossiblebiasrelatedtoNLTEeffects. eff HBstarsinNGC3201,findingvaluesbetween0.62and0.71 The [Fe I/H] and [Fe II/H] abundancesobtained with this M . We initially analysed allthe targetsassuming the mass methodarelistedinTable1. TherightpanelofFig.2shows ⊙ ofaRGBstar. Then,theAGBcandidates,selectedaccording the[FeI/H]and[FeII/H]distributionsrepresentedasgener- to their position in T –log g plane (as discussed in Section alizedhistogramsobtainedfromthisanalysis.Thetwodistri- eff 4)havebeenre-analysedbyassumingthemedianvalue(0.68 butionsturnouttobequitedifferent.Theirondistributionob- M )oftheHBstarsestimatedbyGrattonetal.(2010). tainedfromFeIlinesresemblesthatobtainedwiththespec- ⊙ Thismethodallowsustotakeadvantageofthehigh-quality troscopic parameters (left panel of Fig. 2), with an average ofthespectra,derivingaccurateT thankstothelargenum- value of [Fe I/H]=–1.46±0.02dex (σ= 0.10 dex), while the eff beroftransitionsspanninga largerangeofexcitationpoten- distributionobtainedfromFeIIlineshasanarrowgaussian- tials. On the other hand, this approach does not require a shape([FeII/H]>=–1.40±0.01dex,σ=0.05dex)pointingto fullyspectroscopicdeterminationofloggthatisinsteadcal- aquitehomogeneousironcontent. culatedusingbothphotometricinformationandspectroscopic 4 FIG.2.—Generalized histogramsfor[FeI/H](emptyhistogram)and[FeII/H](greyhistogram)obtained fromtheanalysis performedwithspectroscopic gravities(leftpanel)andwithphotometricgravities(rightpanel). TABLE2 TABLE3 STARIDENTIFICATIONNUMBER,WAVELENGTH, ABUNDANCEUNCERTANTIESDUETOTHE OSCILLATORSTRENGTH,EXCITATIONPOTENTIAL ATMOSPHERICPARAMETERSFORTHESTARS#63AND ANDMEASUREDEWSFORALLTHEUSED #89. TRANSITIONS. Ion Parameters δTeff δlogg δvturb Star λ Ion log(gf) E.P. EW Uncertainty ±50K ±0.1 ±0.1km/s (Å) (eV) (mÅ) (dex) (dex) (dex) (dex) 63 4791.246 FeI -2.435 3.270 26.40 #63(RGB) 63 4834.507 FeI -3.330 2.420 27.90 FeI ±0.03 ±0.05 ±0.00 ∓0.03 63 4842.788 FeI -1.530 4.100 16.30 FeII ±0.04 ∓0.02 ±0.04 ±0.03 63 4892.859 FeI -1.290 4.220 29.50 #89(AGB) 63 4911.779 FeI -1.760 3.930 19.50 FeI ±0.02 ±0.04 ±0.00 ∓0.03 63 4917.230 FeI -1.160 4.190 35.90 FeII ±0.03 ∓0.02 ±0.04 ±0.02 63 4918.013 FeI -1.340 4.230 28.30 63 4950.106 FeI -1.670 3.420 54.10 NOTE. — The second column is the total un- certaintycalculatedaccordingtoCayreletal.(2004). The 63 4962.572 FeI -1.182 4.180 32.30 othercolumns listtheabundance variations related tothe 63 4969.917 FeI -0.710 4.220 46.00 variationofonlyoneparameter. 63 4985.253 FeI -0.560 3.930 75.30 63 5002.793 FeI -1.530 3.400 67.20 ters. For each target, the temperature has been varied by 63 5014.942 FeI -0.303 3.940 86.70 ±1σ ,thegravityhasbeenre-calculatedthroughtheStefan- 63 5022.236 FeI -0.560 3.980 76.40 Teff 63 5028.126 FeI -1.123 3.570 68.30 Boltzmann equation adopting the new values of Teff and the microturbulentvelocityre-optmizedspectroscopically. Table 1 lists the total uncertainty including both the terms NOTE. — Thistableisavailableinitsentirety inamachine-readable formintheonlinejournal. A (1) and (2). Also, Table 3 shows for two representative tar- portionisshownhereforguidanceregardingitsform gets(oneRGBandoneAGBstar)theabundanceuncertainty andcontent. obtained following the prescriptions by Cayreletal. (2004) (secondcolumn)andthoseobtainedwiththeusualmethodof 3.3. Uncertanties independentlyvaryingeach parameter(an approachthat ob- Internal uncertainties in the derived Fe abundances have viouslydoesnottakeintoaccountthecorrelationamongthe been calculated by adding in quadrature two sources of un- parametersandcanover-estimatethetotaluncertainty). certainties: (1)thosearisingfromtheEWmeasurement. Foreachtarget, 4. DISCUSSION we estimated this term as the line-to-linedispersionnormal- In this paper we present a new analysis of the UVES- izedtotherootmeansquareofthenumberoflines. Because FLAMES spectra of 21 member stars of NGC 3201 already ofthehighqualityoftheusedspectra,theline-to-linescatters discussed in Simmereretal. (2013). The Fe abundances are smaller than 0.1 dex, leading to internal uncertainties of have been calculated both using spectroscopic gravities (ob- about0.005-0.008dexfor[FeI/H]andofabout0.010-0.025 tained by imposing the ionization balance between Fe I and dexfor[FeII/H]. FeIIabundances)andphotometricones(obtainedthroughthe (2) those arising from the atmospheric parameters. To Stefan-Boltzmann equation). The two methods provide dif- estimate this term, we follow the approach described by ferentresultsconcerning[FeI/H]and[FeII/H].Inparticular, Cayreletal.(2004)totakeintoaccountthecovarianceterms theuse of spectroscopicloggprovidesa wide [Fe/H] distri- due to the correlations among the atmospheric parame- bution(allargeas∼0.4dex),inagreementwiththefindingof 5 Simmereretal.(2013)whoadoptedthesamemethod.Onthe Itisworthnotingthatthisbehaviourissomewhatpuzzling, otherhand,whenphotometricgravitiesareused,the[FeI/H] because theoretical models do not predict significant differ- distributionremainsquitelarge,whilethatof[FeII/H]isnar- encesintheNLTEcorrectionsforstarsintheparameterspace row. WecomputetheintrinsicspreadofthetwoFedistribu- coveredby our targets. For instance, the grid of NLTE cor- tionsadoptingtheMaximumLikelihoodalgorithmdescribed rectionscomputedbyBergemannetal.(2012)andLindetal. in Mucciarellietal. (2012). Concerning [Fe I/H] we derive (2012) predicts that the Fe I lines in AGB and RGB stars σ =0.09±0.01dex, while for[Fe II/H] σ =0.00±0.02 shouldbeaffectedina verysimilar wayatthemetallicityof int int dex. Hence, the [Fe II/H] distributionis compatiblewith no NGC 3201. However, some additional effects/mechanisms ironspread. couldplayaroleintheAGBphotospheres,leadingtothede- Simmereretal.(2013)highlightthatthe5mostmetal-poor parturefromtheLTEcondition,whicharenotyetaccounted starsoftheirsamplearebluerthantheotherstars,asexpected forintheavailabletheoreticalcalculations. incasesofalowermetallicity. TheleftpanelofFig.3shows WecheckedwhetherthemassassumedforAGBstarscould the position of the targets in the T –loggplane, with su- changeourconclusions. ThemassdistributionofHBstarsin eff perimposed, as reference, two isochroneswith the same age NGC3201providedbyGrattonetal.(2010)rangesfrom0.62 butdifferentmetallicity: Z=0.001(solidline)andZ=0.0006 to0.71M ,withamedianvalueof0.68M . Theminimum ⊙ ⊙ (dashedline).TheRGBoftheisochronewithZ=0.0006over- andmaximummassvaluescorrespondtoadifferenceinlogg lapsthepositionoftheAGBoftheZ=0.001isochrone.Seven of0.06,leadingtoavariationin[FeII/H]ofonly0.02-0.025 targets(includingthe5candidatemetal-poorstars)arelocated dex(anda variationin[Fe I/H]of0.002-0.005dex). Onthe inapositioncompatiblewithboththescenarios:metal-poorer otherhand,ifwe adopttheRGBmass(0.82M ) foralltar- ⊙ RGB or AGB at the cluster metallicity. These seven targets gets, as it is often done because of the difficulty to observa- haveaverageabundancesof[FeI/H]=–1.57±0.01dexand[Fe tionallydistinguishbetweenRGBandAGBstars, thevalues II/H]=–1.41±0.01dex,whiletheRGBstarshave[FeI/H]=– of [Fe II/H] increase by only 0.03 dex with respect to esti- 1.42±0.02dexand[FeII/H]=–1.40±0.01dex. mate obtained assuming 0.68 M . Hence, the precise value ⊙ However,ifthesestarsweremetal-poorRGBstars,theiron oftheadoptedmass(withinareasonablemassrange)cannot abundance derived from Fe I lines should be in agreement reconcilethedifferencebetween[FeI/H]and[FeII/H]. withthatobtainedfromFeII,sinceNLTEeffectsarenotob- As additional check, for each AGB stars, the stellar mass servedinRGBstarsofcomparableluminosityandmetallicity. has been varied until the ionization equilibrium was satis- The right panelof Fig. 3 shows the behaviourof ([Fe I/H] - fied.Thederivedvaluesrangefrom∼0.2and∼0.5M :such ⊙ [FeII/H])asafunctionofthedifferencebetweenthespectro- massesaretoolowwithrespecttothemassdistributionofthe scopic values of T and those obtained from the projection HBstarsderivedbyGrattonetal.(2010).Inparticular,forthe eff along the RGB of the best-fit isochrone. The stars located stars #89, #181 and #240, that exhibit the largest difference alongtheRGB(∆T ∼0)havesimilar[FeI/H]and[FeII/H] between[FeI/H]and[FeII/H](∼–0.2dex),asatisfyingion- eff abundances,compatiblewithnoNLTEeffects. Thestarshot- izationequilibriumcanbereachedonlywithmassessmaller terthanthereferenceRGBhavedifferencesbetween[FeI/H] than0.2-0.25M ,whichareveryunlikelyvaluesforglobular ⊙ and[Fe II/H]rangingfrom–0.07to –0.22dex, with a mean clusterAGBstars. valueof –0.15dex. Thegreyregionmarksthe expectedpo- sitionformetal-poorerRGBstars: theyshouldbehotterthan 5. CONCLUSIONS thereferenceRGB,butwith[FeI/H]-[FeII/H]∼0,ascom- Wedemonstratedthattheobservedintrinsicstar-to-starFe monlymeasured in the RGB stars. This revealsthe true na- scatter in the GC NGC 3201 is due to unaccounted NLTE tureofthesestars:theyaregenuineAGBstars,withthesame effects in the spectroscopic analysis of some AGB stars in- metallicityofthecluster(asmeasuredfromtheirFeIIlines) cluded in the sample. These stars suffer from NLTE effects butaffectedbyNLTEeffectsleadingtoasystematicdecrease driven by the iron overionization, a mechanism that affects of [Fe I/H]. This is the same effect observed by Ivansetal. mainly the less abundantspecies like Fe I, but has no a sig- (2001)andLapennaetal.(2014)intheAGBstarsofM5and nificanteffectonthedominantspecies(e.g. FeII).Whenthe 47Tucanae,respectively. gravityofthesestarsisobtainedspectroscopically,forcingto A direct inspection of the spectra reveals the differentbe- havethesameabundancefromFeIandFeIIlines,thederived haviourofFeIandFeIIlinesinAGBandRGBstars. Fig.4 [Fe/H]abundanceturnsouttobeunder-estimated. shows three Fe I lines (chosen with different excitation po- Our findings confirm the conclusion by Lapennaetal. tential) and one Fe II line in the spectra of the AGB star (2014)thatthechemicalanalysisofsamplesofstarsincluding #89(upperpanels)andoftheRGBstar#303(lowerpanels). bothAGBandRGBstars,andbasedonspectroscopicgravi- Syntheticspectracalculatedwiththeappropriateatmospheric ties,canleadtospuriousbroadeningoftheirondistribution. parameters and the metallicity derived from Fe II lines (red WeconcludethatNGC3201isanormalGC,withoutevi- lines). In the upperpanelswe also show the synthetic spec- denceofintrinsicironscatter. Inlightofthisresult, itisnot trumcomputedwith theaverage[Fe I/H](bluedashedline). necessary to suppose that NGC 3201 was more massive in Clearly,thesyntheticspectrumassumingthe[FeII/H]abun- thepasttoretaintheSNejecta,asinvokedbySimmereretal. dance well reproduces all the observed lines in the case of (2013). the RGB star, while it fails to fit the Fe I lines observed in theAGBstar, regardlessoftheexcitationpotential(pointing outthatthiseffectcannotbeattributedtoinadequaciesinthe We warmly thank the anonymous referee for suggestions adoptedT ). Ontheotherhand,theabundancederivedfrom thathelpedimprovingthe paper. Thisresearchispartofthe eff FeIlinesistoolowtowellreproducethedepthoftheAGB projectCOSMIC-LAB(http://www.cosmic-lab.eu)fundedby FeIIlineplottedinFig.4. Thisclearlydemonstratesadiffer- the European Research Council (under contract ERC-2010- entbehaviourofironlinesinAGBandRGBstars. AdG-267675). 6 FIG.3.—Leftpanel: positionofthetargetsintheTeff–loggplane. ABaSTIisochronewithageof11Gyr,Z=0.001andα-enhancementchemicalmixture (solidline)issuperimposedforsakeofcomparison. ThedashedlineindicatesthepositionoftheRGBforaBaSTIisochronewithageof11GyranZ=0.0006. Greytrianglesarethemetal-poorstarsofSimmereretal.(2013). Emptygreysquaresarethestarsinouranalysiswith[FeI/H]-[FeII/H]<–0.1dex. Right panel:Behaviourof[FeI/H]-[FeII/H]asafunctionofthedifferencebetweenthespectroscopictemperatureofeachtargetandthephotometricvalueestimate fromtheisochronewithZ=0.001shownintheleftpanel.Samesymbolsasintheleftpanel.Thegreylightareaindicatestheexpectedmeanlocusformetal-poor ([Fe/H]∼–1.6dex)RGBstars. REFERENCES Alonso,A.,Arribas,S.,&Martínez-Roger,C.1999,A&AS,140,261 Massari,D.,Mucciarelli,A.,Dalessandro,E.,Ferraro,F.R.,Origlia,L., Bergemann,M.,Lind,K.,Collet,R.,Magic,Z.,&Asplund,M.,2012, Lanzoni,B.,Beccari,G.,Rich,R.M.,Valenti,E.&Ransom,S.M.,2012, MNRAS,427,27 ApJ,755L,32 Cardelli,J.A.,Clayton,G.C.,&Mathis,J.S.,1989,ApJ,345,245 Massari,D.,Mucciarelli,A.,Ferraro,F.R.,Origlia,L.,Rich,R.M., Carretta,E.,Bragaglia,A.,Gratton,R.,D’Orazi,V.,&Lucatello,S.,2009a, Lanzoni,B.,Dalessandro,E.,Valenti,E.,Ibata,R.,Lovisi,L.,Bellazzini, A&A,505,139 M.,&Reitzel,D.,2014,ApJ,795,22 Carretta,E.,Bragaglia,A.,Gratton,R.G.,Lucatello,S.,Bellazzini,M., McLaughlin,D.E.,&vanderMarel,R.P.,2005,ApJS,161,304 Catanzaro,G.,Leone,F.,Momany,Y.,Piotto,G.,&D’Orazi,V.,2010, Mucciarelli,A.,Bellazzini,M.,Ibata,R.,Merle,T.,Chapman,S.C., ApJ,714L,7 Dalessandro,E.,&Sollima,A.,2012,MNRAS,426,2889 Carretta,E.,Gratton,R.G.,Lucatello,S.,Bragaglia,A.,Catanzaro,G., Mucciarelli,A.,Pancino,E.,Lovisi,L.,Ferraro,F.R.,&Lapenna,E.2013, Leone,F.,Momany,Y.,D’Orazi,V.,Cassisi,S.,D’Antona,F.,&Ortolani ApJ,766,78 S.,2010,ApJ,722L,1 Mucciarelli,A.2013,arXiv:1311.1403 Cayrel,R.,Depagne,E.,Spite,M.,etal.,2004,A&A,416,1117 Munoz,C.,Geisler,D.,&Villanova,S.,2013,MNRAS,433,2006 Cordero„M.J.,Pilachowski,C.A.,Johnson,C.I.,McDonald,I.,Zijilstra, Norris,J.E.,&DaCosta,G.S.,1995,ApJ,447,680 A.A.,&Simmerer,J.,2014,ApJ,780,94 Origlia,L.,Ferraro,F.R.,FusiPecci,F.&Rood,R.T.,2002,ApJ,571,458 Cote,P.,Welch,D.L.,F,Fischer,P.,DaCosta,G.S.,Tamblyn,P.,Seitezer, Origlia,L.,Ferraro,F.R.,Bellazzini,M.,&Pancino,E.,2003,ApJ,591,916 P.,&Irwin,M.J.,1994,ApJS,90,83 Origlia,L.,Rood,R.T.,Fabbri,S.,Ferraro,F.R.,FesiPecci,F.,&Rich,R. Covey,K.R.,Wallerstein,G.,Gonzalez,G.,Vanture,A.D.,&Suntzeff,N. M.,2007,ApJ,667L,85 B.,2003,PASP,115,819 Origlia,L.,Rich,R.M.,Ferraro,F.R.,Lanzoni,B.,Bellazzini,M., DaCosta,G.S.,Held,E.V.,&Saviane,I.,2014,MNRAS,438,3507 Dalessandro,E.,Mucciarelli,A.,Valenti,E.,&Beccari,G.,2011,ApJ, Ferraro,F.R.,Dalessandro,E.,Mucciarelli,A.,Beccari,G.,Rich,R.M., 726L,20 Origlia,L.,Lanzoni,B.,Rood,R.T.,Valenti,E.,Bellazzini,M.,Ransom, Origlia,L.,Massari,D.,Rich,R.M.,Mucciarelli,A.,Ferraro,F.R., S.M.,&Cocozza,G.,2009,Nature,462,483 Dalessandro,E.,&Lanzoni,B.,2013,ApJ,779L,5 Freeman,K.C.,&Rodgers,A.W.,1975,ApJ,201,71 Origlia,L.,Ferraro,F.R.,Fabbri,S.,FusiPecci,F.,Dalessandro,E.,Rich, Gonzalez,G.&Wallerstein,G.,1998,AJ,116,765 R.M.,&Valenti,E.,2014,A&A,564,136 Gratton,R.G.,Carretta,E.,Bragaglia,A.,Lucatello,S.&D’Orazi,V., Pancino,E.,Mucciarelli,A.,Sbordone,L.,Bellazzini,M.,Pasquini,L., 2010,A&A,517,81 Monaco,L.&Ferraro,F.R.,2011,A&A,527,18 Grevesse,N.,&Sauval,A.J.,1998,SSRv,85,161 Pasquini,L.,etal.,2000,SPIE,4008,129 Ivans,I.I.,Kraft,R.P.,Sneden,C.,etal.2001,AJ,122,1438 Pietrinferni,A.,Cassisi,S.,Salaris,M.&Castelli,F.,2006,ApJ,642,797 Johnson,C.I.,&Pilachowski,C.A.,2010,ApJ,722,1373 Renzini,A.,&Buzzoni,A.,1986,SpectralEvolutionofGalaxies,122,195 Johnson,C.I.,McDonald,I.,Pilachowski,C.A.,Mateo,M.,BailyeJ.I.,III, Rood,R.T.,1973,ApJ,184,815 Cordero,M.J.,Zijilstra,A.A.,Crane,J.D.,Olszewski,E.,Schectman,S. Sbordone,L.,2005,MSAIS,8,61 A.,&Thompson,I.,2014,arXiv1412.4108 Simmerer,J.,Ivans,I.I.,Filler,D.,Francois,P.,Charbonnel,C.,Monier,R., Lapenna,E.,Mucciarelli,A.,Lanzoni,B.,Ferraro,F.R.,Dalessandro,E., &James,G.,2013,ApJ,764L,7 Origlia,L.,&Massari,D.,2014,ApJ,797,124 Stetson,P.B.,&Pancino,E.,PASP,120,1332 Lind,K.,Bergemann,M.&Asplund,M.,2012,MNRAS,427,50 Villanova,S.,Geisler,D.,&Piotto,G.,2010,ApJ,722L,18 Marin-Franch,A.,etal.,2009,ApJ,694,1498 Yong,D.,Roederer,I.U.,Grundahl,F.,DaCosta,G.S.,Karakas,A.I., Marino,A.F.,Milone,A.P.,Piotto,G.,Villanova,S.,Bedin,L.R.,Bellini, Norris,J.E.,Aoki,W.,Fishlock,C.K.,Marino,A.F.,Milone,A.P.,& A.,&Renzini,A.,2009,A&A,505,1099 Shingles,L.J.,2014,MNRAS,441,3396 Willman,B.&Strader,J.,2012,AJ,144,76 7 FIG.4.—SpectralregionsaroundthreeFeIlineswithdifferentexcitationpotentialandoneFeIIline,fortheAGBstar#89(upperpanels)andtheRGBstar #303(lowerpanels).Syntheticspectracalculatedwiththecorrespondingatmosphericparameters(seeTable1)andadoptingtheaverageironabundancederived fromFeIIlinesaresuperimposedasredcurves. Thebluedashedcurveshownintheupperpanelsisthesyntheticspectrumcalculatedwiththeironabundance derivedfromFeIlines.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.