ebook img

The nuclear dust lane of Circinus: collimation without a torus PDF

1.9 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The nuclear dust lane of Circinus: collimation without a torus

Mon.Not.R.Astron.Soc.000,1–5(2013) Printed13January2016 (MNLaTEXstylefilev2.2) The nuclear dust lane of Circinus: collimation without a torus M. Mezcua1,2,3(cid:63), M. A. Prieto3,4, J.A. Ferna´ndez-Ontiveros5, K. R. W. Tristram6 1De´partementdePhysique,Universite´deMontre´al,C.P.6128,Succ.Centre-Ville,Montreal,QuebecH3C3J7,Canada 2Harvard-SmithsonianCenterforAstrophysics(CfA),60GardenStreet,Cambridge,Massachusetts02138,USA 6 3InstitutodeAstrof´ısicadeCanarias(IAC),E–38200LaLaguna,Tenerife,Spain 1 4UniversidaddeLaLaguna,Dept.Astrof´ısica,E–38206LaLaguna,Tenerife,Spain 0 5IstitutodiAstrofisicaePlanetologiaSpaziali(INAF-IAPS),ViaFossodelCavaliere100,00133Roma,Italy 2 6EuropeanSouthernObservatory,AlonsodeCo´rdova3107,Vitacura,Casilla19001,SantiagodeChile,Chile n a J 1 1 ABSTRACT ] A In some AGN, nuclear dust lanes connected to kpc-scale dust structures provide all the extinction required to obscure the nucleus, challenging the role of the dusty torus proposed G by the Unified Model. In this letter we show the pc-scale dust and ionized gas maps of . h Circinusconstructedusingsub-arcsec-accuracyregistrationofinfraredVLTAOimageswith p opticalHubbleSpaceTelescopeimages.Wefindthatthecollimationoftheionizedgasdoes - not require a torus but is caused by the distribution of dust lanes of the host galaxy on o ∼10 pc scales. This finding questions the presumed torus morphology and its role at parsec r t scales, as one of its main attributes is to collimate the nuclear radiation, and is in line with s interferometricobservationswhichshowthatmostofthepc-scaledustisinthepolardirection. a [ We estimate that the nuclear dust lane in Circinus provides 1/3 of the extinction required to obscure the nucleus. This constitutes a conservative lower limit to the obscuration at the 1 centralparsecs,wherethedustfilamentsmightgetopticallythickeriftheyarethechannels v thattransportmaterialfrom∼100pcscalestothecentre. 3 5 Keywords: techniques:highangular resolution–astrometry– galaxies:nuclei–galaxies: 6 Seyfert–infrared:galaxies. 2 0 . 1 0 6 1 INTRODUCTION theobscuration/reflectionscenarioofAntonucci&Miller(1985), 1 the ionization cones result from shadowing of the nucleus by an Supermassiveblackholesareubiquitousatthecentreofgalaxies : optically-thick pc-scale torus. Many type 2 nuclei are Compton v (McConnell&Ma2013),butonlyafractionofthemareactively thick in the X-rays, a result often interpreted as further evidence i accretingintheformofanactivegalacticnucleus(AGN).Those X forapc-scaletorus(e.g.Risalitietal.1999).However,notalways supermassive black holes powering an AGN are thought to be do type 2 AGN present large X-ray column densities (N > r surrounded on scales of a few parsec by a toroidal distribution H a 1022 cm−2;e.g.Panessaetal.2009;Bianchietal.2012;butsee ofwarmmoleculargasanddust(hencecalled“dustytorus”)that Burtscher et al. 2015) and high N can be caused by the host constitutes the reservoir of material that fuels the central engine. H galaxyseenedge-on(e.g.Ho¨nigetal.2014). According to the Unified Model of AGN (Krolik & Begelman 1988; Antonucci 1993; Urry & Padovani 1995) the dusty torus The torus is expected to be of parsec scales with a clumpy is also responsible for the AGN dichotomy into type 1 (face-on morphology and be made of cold molecular material, a large view, unobscured nuclei with broad and narrow optical emission fraction of it being dust particles that due to their proximity lines)andtype2(edge-onview,obscurednucleiwithonlynarrow to the nucleus will absorb the UV emission from the accretion optical emission lines) and for collimating the ionizing radiation. discandre-radiateitintheinfrared(IR;Krolik1998).CurrentIR Evidence for this scenario relies on two compelling results: (i) interferometricobservationsnowfeasibleforthenearestAGNhave spectro-polarimetric observations which reveal the presence of thecapabilitytoresolvethisstructure(e.g.Burtscheretal.2013). broademissionlinesinsometype2AGN(e.g.Antonucci&Miller Instead of the expected geometrically-thick torus, interferometric 1985; Kay 1994) and (ii) the observed anisotropy of the nuclear observations reveal the presence of a mid-IR pc-scale polar ionizingradiationfieldgivingrisetoconical-shapemorphologies elongationandadisc-likecomponentperpendiculartothesystem of the narrow-line regions with the cone apex at the nucleus axis (i.e. in NGC1068, Jaffe et al. 2004, Lo´pez-Gonzaga et al. (e.g. Tadhunter & Tsvetanov 1989; Prieto & Freudling 1993). In 2014); NGC424, Ho¨nig et al. 2012; NGC3783, Ho¨nig et al. 2013 and Circinus, Tristram et al. 2014). Extended mid-IR emission in the polar direction has been also observed on (cid:63) Email:[email protected] scales > 100 pc in the Circinus galaxy and a few other objects (cid:13)c 2013RAS 2 Mezcuaetal. (e.g.Packhametal.2005;Ho¨nigetal.2010;Reunanenetal.2010). subtracting the adjacent continuum following standard pure-line Although a radiatively-driven dusty wind could explain such extractionprocedures. polar-elongated dust structures (Ho¨nig et al. 2012, 2013), these findings pose a further challenge to the role of the torus in the frameworkoftheUnifiedModelandhowthisdisc-likecomponent 2.2 Radioobservations:thepc-scaleradiojet plus extended polar dust is able to account for the obscuration We searched for sub-arcsec resolution archival radio data of -viewingangledependent-andthemorphologyoftheionizedgas. Circinuswiththeaimofstudyingthemorphologyandorientation In this letter we provide direct observational evidence that of its radio jet at pc scales. We re-reduced archival 22 GHz data a dusty torus is not required to explain the collimation of the obtained in March 2005 with the Australia Telescope Compact conical-like ionized gas structure seen in Circinus. Circinus is Array (ATCA) using the MIRIAD package following standard an almost edge-on (∼65 deg) SA(s)b galaxy, considered to be a procedures. The data were then imaged with robust weighting, prototype Seyfert 2 AGN with a narrow emission line spectrum resultingina0.37arcsec×0.24arcsecbeamorientedataposition (Oliva et al. 1994), polarized broad emission lines (Oliva et al. angle(P.A.)of-8deg.ThecoreoftheradiojetofCircinus(central 1998)andaone-sidedionizationconethatextendsuptokpcscales component in Fig. 2, bottom right) has a flux of 364.5 ± 4.9 inHαand[OIII](e.g.Veilleux&Bland-Hawthorn1997),∼60pc mJy. The source is slightly resolved, with a size of 0.74 arcsec inX-rays(Smith&Wilson2001)and∼30pcinthecoronalline ×0.52arcsec(measuredfromthe5σ contour)withanextension [SiVII]2.48µm(Prietoetal.2005).ThenucleusisCompton-thick toward the North-West along a P.A. of about -80 deg. This P.A. (N ∼ 4 × 1024 cm−2; Matt et al. 1999) and only visible at H is consistent with the direction of the polar emission detected by wavelengthsλ > 1.6µm(Prietoetal.2004).Atadistanceof∼4 mid-IRinterferometry(P.A.=-76degNorthtoEast)androughly Mpc(Freemanetal.1977),1arcseccorrespondsto∼19pc. perpendiculartothenucleardustemitter(P.A.=46deg;Tristram etal.2014).Sixmoreblobsaredetectedabovea5σlevelandare most likely part of the large-scale radio lobes detected at lower 2 DATAANDANALYSIS frequencies(e.g.Elmouttieetal.1998). 2.1 IRadaptiveopticsandHSTopticaldata Circinus was observed with the adaptive optics (AO) assisted 3 RESULTSANDDISCUSSION near-IR instrument Naos-Conica (NaCo; Rousset et al. 2003) at the ESO Very Large Telescope (VLT) as part of a larger sample 3.1 Thelocationofthenucleus ofnearandbrightAGN.Thesampleanddatareductionhavebeen The position of the nucleus can be identified as an outstanding described elsewhere (Prieto et al. 2010; Reunanen et al. 2010; point-like source in the NaCo 2µm Ks-band image, where it Prieto et al. 2014; Mezcua et al. 2015). For the purpose of this reaches its maximum contrast. This is particularly important for Letter, we use the 2µm broad-band Ks filter (λ = 2.180µm, c those galaxies hosting a type 2 AGN, in which the nucleus is ∆λ=0.350µm)toobtainthenear-IRcontinuumimage,asatthis obscured either by a dust filament crossing the nuclear region bandamaximumcontrastbetweentheAGNandthehostgalaxyis (Prietoetal.2010,2014)orapc-scaletorus.Asaconsequence,an observed(e.g.Prietoetal.2010,2014).TheNaCobeamresolution offsetbetweentheKs-bandandopticalpeaksofemissionofseveral intheKs-bandisof0.16±0.02arcsec. tensofpcisobserved.SuchIR–opticalshiftwasfoundforsome We use the archival Hubble Space Telescope (HST) broad Sy2 galaxies (e.g. NGC1068, NGC1386 and NGC7582; Prieto I-bandimagefromtheF814WfilteroftheWFPC21toconstructan et al. 2014), including Circinus (Prietoetal.2004; Mezcua et al. extinctionmapKs/I ordustmap.Whenthereisdustatalocation, 2015).Hereweunambiguouslyidentifythepositionofthenucleus I is suppressed there whereas Ks is enhanced relative to other of Circinus, revealed as a bright point-like source in the 2µm locations where there is less or no dust. These enhanced regions K-bandimages,withaprecisionof30mas.Thisnear-IRnucleus show brighter in our Ks/I figure, indicating higher extinction isfoundtobeshiftedby160mas±30mastothepeakofI-band AV, and take the shape of filaments and lanes, suggesting emission,inagreementwiththe0(cid:48).(cid:48)15offsetderivedbyPrietoetal. these are dust regions. The HST/F814W image corresponds to (2004)andindicatingthatthenucleusisclearlyobscuredatoptical the reddest HST optical image available and provides a large wavelengths(seeFig.1,middleandrightpanels). number of common reference sources with the NaCo/Ks-band imagetobeusedfortheimagealignment.Theregistrationofthe NaCo/Ks and HST/F814W images is reported in Mezcua et al. 3.2 Collimationbydustlanes (2015) and was performed using the centroid position of three The nucleus (or 2µm peak of emission) is located behind a dust reference sources (the nucleus was not used; see Fig. 1, top left filament or lane that extends up to ∼1.5 arcsec (∼30 pc; see panel) to derive the relative offsets between the images. The Fig. 1 right panel) forming a horned shape. This horn-shaped alignmentuncertaintyisof30mas.Usingthesameprocedure,we registertheWFPC2/F502N,WFPC2/F656NandNICMOS/F187N filament appears to delimit the sharp edges of the [OIII] cone of emission as well as the main structure of the cone of Hα filter images and their corresponding adjacent continuum to the NaCo/Ks and HST/F814W images. Five common sources emission(Fig.2).AdditionalclumpyHαemissionisdetectedata 5σleveloutsidetheconedefinedbythehorn-shapedfilament.This are used in this image registration. The alignment uncertainties are of 10 mas, 40 mas and 20 mas for the WFPC2/F502N, clumpy Hα emission most likely traces low-level star formation WFPC2/F656N and NICMOS/F187N alignments, respectively. relatively unobscured by foreground dust, as supported by its The [OIII], Hα+[NII] and Paα images are then constructed by spatialcoincidencewithclumpywarmmolecularH21-0S(1)2.12 µmlinegasemissionNortheastofthenucleus(Fig.2,topmiddle; Mezcuaetal.2015).Thesharpdefinitionoftheedgesofthe[OIII] 1 Wide-FieldPlanetaryCamera2. cone (Fig. 2, top left) being strictly traced at the vortex region (cid:13)c 2013RAS,MNRAS000,1–5 Circinusdustlane 3 10 2 2 F814W + Ks F814W + Ks Ks/F814W + Ks 5 1 1 c) c) c) e e e cs cs cs ar ar ar ec. ( 0 ec. ( 0 ec. ( 0 D D D e e e v v v ati ati ati el el el R R R 5 1 1 N 2" 0.5" 38 pc 10 pc E 10 2 2 10 5 0 5 10 2 1 0 1 2 2 1 0 1 2 Relative R.A. (arcsec) Relative R.A. (arcsec) Relative R.A. (arcsec) Figure1.Left:HST/F814WimagewithNaCo/Ks-bandcontinuumcontoursinwhite.TheFoVis20arcsec×20arcsec.Bluecirclesmarkthepositionofthe point-likesourcesusedforimagealignment.Theinner4arcsec×4arcsecregion(bluesquare)isshownindetailinthenextpanels.Middle:HST/F814W imagewithNaCo/Ks-bandcontinuumcontoursinwhite.Right:Ks/F814WfluxratiowithNaCo/Ks-bandcontinuumcontoursinwhite.Thebrighterregions intheKs/F814Wimagedenotehigherextinctionandhencedustabsorption.Thepositionofthenucleusanditserrorismarkedwithacrossinthemiddleand rightpanels.TheangularresolutioninallpanelsisthatoftheNaCoKs-band(0.16arcsec). 2 2 2 ec) 1 ec) 1 ec) 1 s s s c c c ar ar ar c. ( c. ( c. ( e 0 e 0 e 0 D D D e e e v v v ati ati ati el 1 el 1 el 1 R R R 0.5" Ks/F814W + [OIII] 10 pc Ks/F814W + Hα +H2 Ks/F814W + [Si VII] 2 2 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 Relative R.A. (arcsec) Relative R.A. (arcsec) Relative R.A. (arcsec) 2 4 ATCA 22 GHz ec) 1 ec) 2 s s c c ar ar c. ( c. ( e 0 e 0 D D e e v v ati ati el 1 el 2 R R Ks/F814W + Paα 0.5-7 keV 2 4 2 1 0 1 2 4 2 0 2 4 Relative R.A. (arcsec) Relative R.A. (arcsec) Figure2.Ks/F814Wfluxratiowithemissionlinecontoursof[OIII](topleft),HαingreenandwarmH2moleculargasinblue(topmiddle),[Sivii](top right),andPaα(bottomleft).Thelowest[OIII],Hα,H2,andPaαcontourscorrespondto5σ,whilefor[Sivii]thelowestcontourcorrespondsto2σ(to bettermatchthemapofPrietoetal.2004).TheFoVis4arcsec×4arcsec.ThebrighterregionsintheKs/F814Wimagesdenotehigherextinctionandhence dustabsorption.TheangularresolutionoftheKs/F814Wimagesis0.16arcsec,thatofH2is0.16arcsec(Mezcuaetal.2015)andthatof[Sivii]is0.19arcsec (Prietoetal.2005).Bottommiddle:ChandraX-rayimageinthe0.5-7keVbandwithaFoVof8arcsec×8arcsec.Bottomright.ATCAradiocontinuum mapat22GHz.ThesynthesizedbeamhasaFWHMof0.37arcsec×0.24arcsecataP.A.of-8deg.Contoursareplottedas(5,10,20,40,80)timesthe off-sourcermsof3.3mJybeam−1.NorthisupandEastistotheleft. (cid:13)c 2013RAS,MNRAS000,1–5 4 Mezcuaetal. bythehorn-shapeddustlanesindicatesthattheionizingradiation Seyfert2likeCircinus.Athickerabsorberatthecentreistherefore is not necessarily collimated by a nuclear torus but that dust at neededtocompletelyobscurethenucleusandproducetheobserved scalesofafewtensofpcisresponsiblefortheobservedcone-like spectral energy distribution (SED). Still, as indicated before, our morphology.Ifthisisthecase,amoreextendeddistributionshould A estimateisaconservativelowerlimit;thedustfilamentsmay V beobservedinHαwhichislessaffectedbydustextinction,asit get thicker as we approach the centre, in particular if they trace isindeedthecase.Anevenmoreisotropicdistributionisexpected material flowing towards the centre. We see compelling evidence and indeed observed when the ionized gas is traced at the same forthisflowofmaterialthroughdustfilamentsandlanesinother ∼30pcscalebymuchredderemissionlinesthatarenotsomuch nearby AGN (Prieto et al. 2014; Nadolny et al. in preparation). affected by dust extinction (e.g. Paα or [Sivii] 2.48 µm). For Should that be the case, the dust filaments in Circinus must cast example, the emission in [Sivii] is rather isotropic extending in higher A at the centre. The interferometric mapping of the V rather symmetric form in all directions (Fig. 2, top right). The centralpcindicatesalreadyastronggradientinthesilicate-derived Paαemission(Fig.2,bottomleft)isevenmoreisotropicthanHα extinctionwithinthe2pc(theaverageextinctionagreeswithour and[OIII],reinforcingthatthelatterarestronglyshapedbydust estimatefromtheSED):anincreasingextinctionisseenfromthe extinction at a few tens of pc. Both the nuclear X-ray emission NWtotheSEclosetoaP.A.=-90deg(Tristrametal.2014),i.e. (Fig. 2, bottom middle; see also Smith & Wilson 2001) and the inlinewiththeWesternhorn-shapedfilament. pc-scale radio jet (Fig. 2, bottom right) also extend along the directionsoftheionizedgas.TheX-rayemissionmaytentatively 3.4 Whereisthedustytorus? be ascribed to the horn-shaped dust filaments. Still, the angular resolution in these two spectral regions is insufficient to set up a We have seen that in the Circinus galaxy the collimation of the preferentialdirectionormorphology. ionizingradiationdoesnotrequireapc-scaledustytorus.Instead, alargerdustdistributionthatextendsupto∼30pcisresponsible for collimating the ionizing radiation and hence for shaping the 3.3 Extinction cone-like distribution of the ionized gas, which is by definition To test to which degree the nuclear dust lanes contribute to the oneofthemainattributesofthetorus.Thislargerdustdistribution obscurationofthenucleus,weestimatetheextinctionA produced manifestsitselfintheformofanuclearhorn-shapedstructureinour V by these dust lanes by measuring the galaxy colours in several extinctionmaps.Thisresult,togetherwiththeresultfrommid-IR apertures(of0.1arcsecradius)inthedustystructureandcomparing interferometry that most of the pc-scale mid-IR dust emission themtodust-freeregions(ofapertureradius0.1–0.2arcsec)located extends in the polar rather than in the perpendicular direction atadistanceof∼3arcsec(∼60pc)fromthecentre.Wenotethat to the cone (Tristram et al. 2014), questions the presumed torus thesedust-freeregionsmaystillbeaffectedbydustextinctionas (donut-like) morphology, at least at pc scales. A much higher wearemeasuringatthelowestdetectionlevelofthedetector,thus obscurationthanthatinferredfromthehorn-shapedustfilaments wearederivingalowerlimitontheA .Theextinctionlawfrom is still needed to explain the high levels of obscuration and the V Cardellietal.(1989)isapplied.Ontheassumptionofaforeground detection of broad emission lines in polarized light. The nucleus dustscreen,whichisthemostappropriatedustdistributionforthe of Circinus at 2 and 5 µm resolves into a slightly elongated filaments, an extinction of A (cid:38) 3 mag is obtained in the dusty source with a size of 1.9 ± 0.6 pc (Prieto et al. 2004). This V structure at a distance ∼1 arcsec (∼19 pc) from the nucleus and size is in line with that of the interferometric polar direction A (cid:38)6.9magclosertothenucleus(atadistanceof0.2arcsec,∼4 component measured at 10 µm (Tristram et al. 2014) and is also V pc).Thisvalueisinagreementwithpreviousextinctionestimates, inbroadagreementwithourmeasuredshiftof3±0.6pcbetween also assuming a foreground dust screen: close to the nucleus, a the optical and the IR peaks (Section 3.1). This shift could be lowerlimitofA =6isderivedfromJ-Kextinctionmaps(Prieto interpretedasthesizeofthenuclearobscurer.Thedirectionofthe V et al. 2004); A = 6.3 mag is measured within the central 1.5 shift is coincident with that defined by the interferometric polar V arcsecofthestellarcomponentbyMaiolinoetal.(1998).Itshould dust component, but the outer region of the absorber may have be noted that with this method we cannot measure the extinction escaped detection by the interferometric observations if it gets directly on the nucleus as the colours at the nucleus locations progressivelylessopticallythickoutwards.Tristrametal.(2014) andimmediatesurroundingrelatetodustemittingatabout2µm interpret the polar dust component as the true cause of Circinus heated by the AGN. The location of our A measurements is a nuclearobscurationandcallitthetorus.Webroadlyagreewiththe V compromise between being the nearest to the centre and still far interpretation,butassociatetheobscurerwiththeinnermostparts forthedusttobeheatedattherighttemperaturestoemitat2µm; ofthelarge-scale(∼30pc)dustfilamentscrossingthenucleus,the therefore,theI-Kcoloursshouldreflectjustdustextinction. horn shape, for the following reasons: 1) the filaments shape the Taking A (cid:38) 6.9 mag as a face value, we check next morphology of the ionization cone (Section 3.2); 2) their width, V whetherthisamountofextinctionisenoughtohidethenucleusof ∼0.2arcsec(4pc;Fig. 2),justfitintherangeoftheabsorbersize Circinusintheoptical.Tothataim,wescaletheSeyfert1template discussed above; 3) they could naturally account for the nuclear from Prieto et al. (2010), also based on subarcsec-resolution obscuration if getting thicker toward the inner parsecs, which is observations,tothemid-IRfluxofCircinusmeasuredinthesame presumablythecasegiventhestrongextinctiongradientmeasured work (17.6Jy at 18.72µm). Assuming a foreground extinction by the interferometric observations. In addition, no temperature layer, we estimate that an A ∼ 20mag would be needed in gradient is observed down to 0.1 pc (Tristram et al. 2014), V order to obscure the Seyfert 1 template below the upper limit of which can be easily accommodated with a large-scale obscurer, 1.6mJyintheJ-bandderivedbyPrietoetal.(2010),inagreement filament-like,insteadofatorus.Still,thespatiallyresolvednuclear with the silicate optical depth from Tristram et al. (2007) and in structureseenat2µm,of2pc,indicatesthatsomefractionofthe line with the lower limit of A = 27.2 found by Burtscher et al. obscurer gets heated up to high temperatures as approaching the V (2015).Thus,thedusttracedinourmapsisabletoexplain(cid:38)1/3 centre. of the extinction needed to turn a bright Seyfert 1 nucleus into a The results showed in this Letter therefore explain how an (cid:13)c 2013RAS,MNRAS000,1–5 Circinusdustlane 5 ionizationconeofafewparsecsinsizecanbeshapedbythedust PrietoM.A.,MezcuaM.,Ferna´ndez-OntiverosJ.A.,Schartmann distribution of several tens of parsec of the host galaxy, instead M.,2014,MNRAS,442,2145 ofapc-scalegeometrically-thicktoroidalstructure,demonstrating Prieto M. A., Reunanen J., Tristram K. R. W., Neumayer N., that the nuclear obscuration responsible for the type 1/2 AGN Fernandez-OntiverosJ.A.,OrientiM.,MeisenheimerK.,2010, dichotomydoesnotnecessarilyarisefromthesamestructurethat MNRAS,402,724 collimates the ionizing radiation. If confirmed for a significantly ReunanenJ.,PrietoM.A.,SiebenmorgenR.,2010,MNRAS,402, largersample-assuggestedbyadditionalcaseslikeNGC3169or 879 NGC7582(Prietoetal.2014)-thismightimplyarevisionofthe RisalitiG.,MaiolinoR.,SalvatiM.,1999,ApJ,522,157 dustdistributioninthetorus. Rousset G. et al., 2003, in Wizinowich P. L., Bonaccini D., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 4839, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. pp ACKNOWLEDGEMENTS 140–149 The authors thank the referee, L. Burtscher, for his valuable SmithD.A.,WilsonA.S.,2001,ApJ,557,180 comments which have helped improve this manuscript, and M. TadhunterC.,TsvetanovZ.,1989,Nature,341,422 Elvisforinsightfuldiscussion.MMacknowledgessupportfromthe Tristram K. R. W., Burtscher L., Jaffe W., Meisenheimer K., NASAChandraGrantG05-16099X. Ho¨nig S. F., Kishimoto M., Schartmann M., Weigelt G., 2014, A&A,563,A82 TristramK.R.W.etal.,2007,A&A,474,837 UrryC.M.,PadovaniP.,1995,PASP,107,803 REFERENCES VeilleuxS.,Bland-HawthornJ.,1997,ApJ,479,L105 AntonucciR.,1993,ARA&A,31,473 AntonucciR.R.J.,MillerJ.S.,1985,ApJ,297,621 BianchiS.etal.,2012,MNRAS,426,3225 BurtscherL.etal.,2015,ArXiv:1511.05566 BurtscherL.etal.,2013,A&A,558,A149 CardelliJ.A.,ClaytonG.C.,MathisJ.S.,1989,ApJ,345,245 ElmouttieM.,HaynesR.F.,JonesK.L.,SadlerE.M.,EhleM., 1998,MNRAS,297,1202 FreemanK.C.,KarlssonB.,LyngaG.,BurrellJ.F.,vanWoerden H.,GossW.M.,MeboldU.,1977,A&A,55,445 Ho¨nig S. F., Gandhi P., Asmus D., Mushotzky R. F., Antonucci R.,UedaY.,IchikawaK.,2014,MNRAS,438,647 Ho¨nig S. F., Kishimoto M., Antonucci R., Marconi A., Prieto M.A.,TristramK.,WeigeltG.,2012,ApJ,755,149 Ho¨nig S. F., Kishimoto M., Gandhi P., Smette A., Asmus D., DuschlW.,PollettaM.,WeigeltG.,2010,A&A,515,A23 Ho¨nigS.F.etal.,2013,ApJ,771,87 JaffeW.etal.,2004,Nature,429,47 KayL.E.,1994,ApJ,430,196 Krolik J. H., 1998, Active Galactic Nuclei: From the Central BlackHoletotheGalacticEnvironment KrolikJ.H.,BegelmanM.C.,1988,ApJ,329,702 Lo´pez-Gonzaga N., Jaffe W., Burtscher L., Tristram K. R. W., MeisenheimerK.,2014,A&A,565,A71 Maiolino R., Krabbe A., Thatte N., Genzel R., 1998, ApJ, 493, 650 MattG.etal.,1999,A&A,341,L39 McConnellN.J.,MaC.-P.,2013,ApJ,764,184 MezcuaM.,PrietoM.A.,Ferna´ndez-OntiverosJ.A.,TristramK., NeumayerN.,KotilainenJ.K.,2015,MNRAS,452,4128 Oliva E., Marconi A., Cimatti A., di Serego Alighieri S., 1998, A&A,329,L21 Oliva E., Salvati M., Moorwood A. F. M., Marconi A., 1994, A&A,288,457 PackhamC.,RadomskiJ.T.,RocheP.F.,AitkenD.K.,Perlman E.,Alonso-HerreroA.,ColinaL.,TelescoC.M.,2005,ApJ,618, L17 PanessaF.etal.,2009,MNRAS,398,1951 PrietoM.A.,FreudlingW.,1993,ApJ,418,668 PrietoM.A.,MarcoO.,GallimoreJ.,2005,MNRAS,364,L28 PrietoM.A.etal.,2004,ApJ,614,135 (cid:13)c 2013RAS,MNRAS000,1–5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.