ebook img

The Neutrosophic Logic View to Schrodinger’s Cat Paradox, Revisited PDF

2008·0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Neutrosophic Logic View to Schrodinger’s Cat Paradox, Revisited

Volume3 PROGRESSINPHYSICS July,2008 The Neutrosophic Logic View to Schro¨dinger’s Cat Paradox, Revisited FlorentinSmarandache andVicChristianto (cid:3) y DepartmentofMathematics,UniversityofNewMexico,Gallup,NM87301,USA (cid:3) E-mail:[email protected] Sciprint.org—aFreeScientificElectronicPreprintServer, http://www.sciprint.org y E-mail:[email protected] The present article discusses Neutrosophic logic view to Schro¨dinger’s cat paradox. Wearguethatthisparadox involvessomedegreeofindeterminacy(unknown)which Neutrosophiclogiccantakeintoconsideration,whereasothermethodsincludingFuzzy logiccannot. Tomakethispropositionclear,werevisitourpreviouspaperbyoffering anillustrationusingmodifiedcointossingproblem,knownasParrondo’sgame. 1 Introduction where p , (cid:126) represents momentum at x direction, and ratio- x nalisedPlanckconstantsrespectively. The present article discusses Neutrosophic logic view to Byintroducingkineticenergyofthemovingparticle, T, Schro¨dinger’s cat paradox. In this article we argue that this andwavefunction,asfollows[9]: paradox involves some degree of indeterminacy (unknown) which Neutrosophic logic can take into consideration, mv2 p2 (cid:126)2 T = = x = k2; (3) whereasothermethodsincludingFuzzylogiccannot. 2 2m 2m In the preceding article we have discussed how Neutro- and sophiclogicviewcanofferanalternativemethodtosolvethe (x)=exp(ikx): (4) well-knownprobleminQuantumMechanics,i.e. theSchro¨- Thenonehasthetime-independentSchro¨dingerequation dinger’s cat paradox [1, 2], by introducing indeterminacy of from[1,3,4]: theoutcomeoftheobservation. Inotherarticlewealsodiscusspossiblere-interpretation (cid:126) @2 (x)=T (x): (5) of quantum measurement using Unification of Fusion Theo- (cid:0)2m@x2 (cid:1) ries as generalization of Information Fusion [3, 4, 5], which Itisinterestingtoremarkherethatbyconventionphysi- resultsinpropositionthatonecanexpecttoneglecttheprin- cistsassertthat“thewavefunctionissimplythemathematical ciple of “excluded middle”; therefore Bell’s theorem can be function that describes the wave” [9]. Therefore, unlike the considered as merely tautological. [6] This alternative view waveequationinelectromagneticfields,oneshouldnotcon- of Quantum mechanics as Information Fusion has also been siderthatequation[5]hasanyphysicalmeaning. Bornsug- proposed by G. Chapline [7]. Furthermore this Information gested that the square of wavefunction represents the prob- Fusion interpretation is quite consistent with measurement ability to observe the electron at given location [9, p.56]. theoryofQuantumMechanics,wheretheactionofmeasure- Although Heisenberg rejected this interpretation, apparently mentimpliesinformationexchange[8]. Born’sinterpretationprevailsuntiltoday. In the first section we will discuss basic propositions of NonethelessthefoundingfathersofQuantumMechanics Neutrosophic probability and Neutrosophic logic. Then we (Einstein,DeBroglie,Schro¨dingerhimself)weredissatisfied discusssolutiontoSchro¨dinger’scatparadox. Insubsequent withthetheoryuntiltheendoftheirlives.Wecansummarize sectionwediscussanillustrationusingmodifiedcointossing thesituationbyquotingasfollows[9,p.13]: problem,anddiscussitsplausiblelinktoquantumgame. “The interpretation of Schro¨dinger’s wave function While it is known that derivationof Schro¨dinger’s equa- (andofquantumtheorygenerally)remainsamatterof tionisheuristicinthesensethatweknowtheanswertowhich continuing concern and controversy among scientists the algebra and logic leads, but it is interesting that Schro¨- whoclingtophilosophicalbeliefthatthenaturalworld dinger’sequationfollowslogicallyfromdeBroglie’sgrande isbasicallylogicalanddeterministic.” loi de la Nature [9, p.14]. The simplest method to derive Furthermore,the“pragmatic”viewofBohrassertsthatfora Schro¨dinger’sequationisbyusingsimplewaveas[9]: givenquantummeasurement[9,p.42]: @2 exp(ikx)= k2 exp(ikx): (1) “Asystemdoesnotpossessobjectivevaluesofitsphys- @x2 (cid:0) (cid:1) ical properties until a measurement of one of them is Byderivingtwicethewaveanddefining: made; the act of measurement is asserted to force the 2(cid:25)mv mv p system into an eigenstate of the quantity being mea- k= = = x ; (2) h (cid:126) (cid:126) sured.” 16 F.SmarandacheandV.Christianto.TheNeutrosophicLogicViewtoSchro¨dinger’sCatParadox,Revisited July,2008 PROGRESSINPHYSICS Volume3 In1935, Einstein-Podolsky-Rosenarguedthattheaxiomatic theory, the definitive and unambiguous assignment of an el- basisofQuantumMechanicsisincomplete,andsubsequently ementoftheset{0,1}, andsotheassignmentofaninforma- Schro¨dinger was inspired to write his well-known cat para- tioncontentofthephotonitselfisfraughtwiththesamedif- dox.Wewilldiscusssolutionofhiscatparadoxinsubsequent ficulties [8]. Similarly, the problem becomes more adverse section. becausethefundamentalbasisofconventionalstatisticalthe- oriesisthesameclassicalset{0,1}. 2 Catparadoxandimpositionofboundaryconditions For example the Schro¨dinger’s cat paradox says that the quantumstateofaphotoncanbasicallybeinmorethanone Asweknow,Schro¨dinger’sdeepdisagreementwiththeBorn placeinthesametimewhich, translatedtotheneutrosophic interpretation of Quantum Mechanics is represented by his set,meansthatanelement(quantumstate)belongsanddoes catparadox,whichessentiallyquestioningthe“statistical”in- not belong to a set (a place) in the same time; or an ele- terpretation of the wavefunction (and by doing so, denying ment (quantum state) belongs to two different sets (two dif- thephysicalmeaningofthewavefunction). Thecatparadox ferentplaces)inthesametime. Itisaquestionof“alternative hasbeenwrittenelsewhere[1,2],buttheessenceseemsquite worlds”theoryverywellrepresentedbytheneutrosophicset similartocointossingproblem: theory. InSchro¨dinger’sequationonthebehaviorofelectro- “Given p=0.5 for each side of coin to pop up, we magnetic waves and “matter waves” in quantum theory, the will never know the state of coin before we open our wavefunction,whichdescribesthesuperpositionofpossible palm from it; unless we know beforehand the “state” states may be simulated by a neutrosophic function, i.e. a of the coin (under our palm) using ESP-like phenom- functionwhosevaluesarenotuniqueforeachargumentfrom ena. Prop. (1).” thedomainofdefinition(theverticallinetestfails,intersect- ingthegraphinmorepoints). The only difference here is that Schro¨dinger asserts that the Thereforethequestioncanbesummarizedasfollows[1]: stateofthecatishalfaliveandhalfdead,whereasinthecoin problemabove,wecanonlysaythatwedon’tknowthestate “How to describe a particle (cid:16) in the infinite micro- ofcoinuntilweopenourpalm;i.e. thestateofcoinisinde- universethatbelongstotwodistinctplacesP andP 1 2 terminateuntilweopenourpalm. Wewilldiscussthesolu- inthesametime? (cid:16) P and(cid:16) P isatruecon- 1 1 tionofthisprobleminsubsequentsection,butfirstofallwe tradiction,withrespe2cttoQuantum2 C:onceptdescribed shall remark here a basic principle in Quantum Mechanics, above.” i.e. [9,p.45]: NowwewilldiscusssomebasicpropositionsinNeutrosophic “Quantum Concept: The first derivative of the wave- logic[1]. function (cid:9) of Schro¨dinger’s wave equation must be single-valued everywhere. As a consequence, the 3a Non-standardrealnumberandsubsets wavefunctionitselfmustbesingle-valuedeverywhere.” LetT,I,Fbestandardornon-standardrealsubsets ] 0,1+[, Theaboveassertioncorrespondstoquantumlogic,whichcan (cid:0) (cid:18) bedefinedasfollows[10,p.30;11]: withsupT=t sup,infT=t inf, supI=i sup,infI=i inf, P Q=P +Q PQ: (6) supF=f sup,infF=f inf, _ (cid:0) As we will see, it is easier to resolve this cat paradox andn sup=t sup+i sup+f sup, by releasing the aforementioned constraint of “single- n inf=t inf+i inf+f inf. valuedness” of the wavefunction and its first derivative. In fact, nonlinear fluid interpretation of Schro¨dinger’s equation Obviously,t sup,i sup,f sup(cid:54)1+;andt inf,i inf,f inf(cid:62) 0, (cid:0) (using the level set function) also indicates that the physical whereasn sup(cid:54)3+andn inf(cid:62) 0.ThesubsetsT,I,Farenot (cid:0) meaningofwavefunctionincludesthenotionofmultivalued- necessarilyintervals,butmaybeanyrealsubsets: discreteor ness [12]. In other words, one can say that observation of continuous; single element; finite or infinite; union or inter- spin-halfelectronatlocationxdoesnotexcludeitspossibility sectionofvarioussubsetsetc. Theymayalsooverlap. These topopupsomewhereelse. Thiscounter-intuitiveproposition realsubsetscouldrepresenttherelativeerrorsindetermining willbedescribedinsubsequentsection. t,i,f(inthecasewhereT,I,Farereducedtopoints). For interpretation of this proposition, we can use modal logic[10]. Wecanusethenotionof“world”inmodallogic, 3 NeutrosophicsolutionoftheSchro¨dingercatparadox whichissemanticdeviceofwhattheworldmighthavebeen In the context of physical theory of information [8], Barrett like. Then, one says that the neutrosophic truth-value of a has noted that “there ought to be a set theoretic language statement A, NL (A)=1+ if A is “true in all possible t which applies directly to all quantum interactions”. This is worlds.” (syntagme first used by Leibniz) and all conjunc- becausethe idea of a bit is itself straight out of classical set tures, that one may call “absolute truth” (in the modal logic F.SmarandacheandV.Christianto.TheNeutrosophicLogicViewtoSchro¨dinger’sCatParadox,Revisited 17 Volume3 PROGRESSINPHYSICS July,2008 it was named necessary truth, as opposed to possible truth), normallymeansy isnotforsureinA);orz(0,1,0)belongs whereasNL (A)=1ifAistrueinatleastoneworldatsome toA(whichmeansonedoesknowabsolutelynothingabout t conjuncture,wecallthis“relativetruth”becauseitisrelated z’saffiliationwithA). toa“specific”worldandaspecificconjuncture(inthemodal More general, x((0.2–0.3), (0.40–0.45) [0.50–0.51], logicitwasnamedpossibletruth). Becauseeach“world”is {0.2,0.24,0.28})belongstothesetA,whichm[eans: dynamic, depending on an ensemble of parameters, we in- — with a probability in between 20-30% particle x is in troduce the sub-category “conjuncture” within it to reflect a apositionofA(onecannotfindanexactapproximate particularstateoftheworld. becauseofvarioussourcesused); Inaformalway,let’sconsidertheworldWasbeinggen- — withaprobabilityof20%or24%or28%xisnotinA; erated by the formal system FS. One says that statement A belongs to the world W if A is a well-formed formula (wff) — the indeterminacy related to the appurtenance of x to A is in between 40–45% or between 50–51% (limits in W, i.e. a string of symbols from the alphabet of W that included). conforms to the grammar of the formal language endowing W.Thegrammarisconceivedasasetoffunctions(formation The subsets representing the appurtenance, indeterminacy, rules)whoseinputsaresymbolsstringsandoutputs“yes”or and falsity may overlap, and n sup=30%+51%+28%> “no”. Aformalsystemcomprisesaformallanguage(alpha- 100%inthiscase. bet and grammar) and a deductive apparatus (axioms and/or To summarize our proposition [1, 2], given the Schro¨- rulesofinference). Inaformalsystemtherulesofinference dinger’scatparadoxisdefinedasastatewherethecatcanbe aresyntacticallyandtypographicallyformalinnature, with- dead, orcanbealive, oritisundecided(i.e. wedon’tknow outreferencetothemeaningofthestringstheymanipulate. if it is dead or alive), then herein the Neutrosophic logic, Similarly for the Neutrosophic falsehood-value, basedonthreecomponents,truthcomponent,falsehoodcom- NL (A)=1+ if the statement A is false in all possible ponent,indeterminacycomponent(T,I,F),worksverywell. f worlds,wecallit“absolutefalsehood”,whereasNL (A)=1 In Schro¨dinger’s cat problem the Neutrosophic logic offers f if the statement A is false in at least one world, we call it the possibility of considering the cat neither dead nor alive, “relative falsehood”. Also, the Neutrosophic indeterminacy but undecided, while the fuzzy logic does not do this. Nor- valueNL (A) = 1ifthestatementAisindeterminateinall mallyindeterminacy(I)issplitintouncertainty(U)andpara- i possibleworlds,wecallit“absoluteindeterminacy”,whereas dox(conflicting)(P). NL (A) = 1 if the statement A is indeterminate in at least We have described Neutrosophic solution of the Schro¨- i oneworld,wecallit“relativeindeterminacy”. dinger’s cat paradox. Alternatively, one may hypothesize four-valued logic to describe Schro¨dinger’s cat paradox, see Rauscheretal. [13,14]. 3b Neutrosophicprobabilitydefinition In the subsequent section we will discuss how this Neu- Neutrosophic probability is defined as: “Is a generalization trosophicsolutioninvolving“possibletruth”and“indetermi- oftheclassicalprobabilityinwhichthechancethatanevent nacy” can be interpreted in terms of coin tossing problem Aoccursist%true—wheretvariesinthesubsetT,i%in- (albeit in modified form), known as Parrondo’s game. This determinate — where i varies in the subset I, and f% false approachseemsquiteconsistentwithnewmathematicalfor- — where f varies in the subset F. One notes that NP(A) = mulationofgametheory[20]. (T,I,F)”.Itisalsoageneralizationoftheimpreciseprobabil- ity,whichisaninterval-valueddistributionfunction. 4 Analternativeinterpretationusingcointossproblem Theuniversalset,endowedwithaNeutrosophicprobabil- itydefinedforeachofitssubset,formsaNeutrosophicprob- Apartfromtheaforementionedpuremathematics-logicalap- abilityspace. proach to Schro¨dinger’s cat paradox, one can use a well- knownneatlinkbetweenSchro¨dinger’sequationandFokker- Planckequation[18]: 3c SolutionoftheSchro¨dinger’scatparadox @2p @(cid:11) @p @p Let’sconsideraneutrosophicsetacollectionofpossiblelo- D p (cid:11) =0: (7) cations (positions) of particle x. And let A and B be two @z2 (cid:0) @z (cid:0) @z (cid:0) @t neutrosophicsets. Onecansay, bylanguageabuse, thatany Aquitesimilarlinkcanbefoundbetweenrelativisticclas- particlexneutrosophicallybelongstoanyset,duetotheper- sical field equation and non-relativistic equation, for it is centagesoftruth/indeterminacy/falsityinvolved,whichvaries known that the time-independent Helmholtz equation and between 0 and 1+. For example: x(0.5, 0.2, 0.3) belongs Schro¨dinger equation is formally identical [15]. From this (cid:0) toA(whichmeans,withaprobabilityof50%particlexisin reasoningonecanarguethatitispossibletoexplainAharo- apositionofA,withaprobabilityof30%xisnotinA,and noveffectfrompureelectromagneticfieldtheory;andthere- the rest is undecidable); or y(0, 0, 1) belongs to A (which fore it seems also possible to describe quantum mechan- 18 F.SmarandacheandV.Christianto.TheNeutrosophicLogicViewtoSchro¨dinger’sCatParadox,Revisited July,2008 PROGRESSINPHYSICS Volume3 ical phenomena without postulating the decisive role of pliedexternalfield. “observer”asBohrasserted. [16,17]. Inidiomaticform,one With respect to the aforementioned Neutrosophic solu- can expect that quantum mechanics does not have to mean tion to Schro¨dinger’s cat paradox, one can introduce a new that“theMoonisnottherewhennobodylooksat”. “indeterminacy”parametertorepresentconditionswherethe With respect to the aforementioned neat link between outcome may be affected by other issues (let say, apparatus Schro¨dinger’sequationandFokker-Planckequation, itisin- setting of Geiger counter). Therefore equation (14) can be teresting to note here that one can introduce “finite differ- writtenas: ence”approachtoFokker-Planckequationasfollows. First, 1 we can define local coordinates, expanded locally about a p = " (cid:17) p + i;j i 1;j 1 point (z , t ) we can map points between a real space (z;t) 2 (cid:0) (cid:0) (cid:1) (cid:0) (cid:0) 0 0 (cid:18) (cid:19) 1 andanintegerordiscretespace(i;j). Thereforewecansam- +a p + +" (cid:17) p ; (17) 0 i;j 1 i+1;j 1 plethespaceusinglinearrelationship[19]: (cid:1) (cid:0) 2 (cid:0) (cid:1) (cid:0) whereunlikethebiaspara(cid:18)meter( 1/2(cid:19)00),theindeterminacy (z;t)=(z +i(cid:21);t +j(cid:28)); (8) parametercanbequitelargedepen(cid:24)dingonthesysteminques- 0 0 tion. ForinstanceintheNeutrosophicexamplegivenabove, where (cid:21) is the sampling length and (cid:28) is the sampling time. wecanwritethat: UsingasetoffinitedifferenceapproximationsfortheFokker- PlanckPDE: (cid:17) 0.2 0.3=k d (cid:0)1 =k t (cid:54)0.50: (18) @@zp =A1 = p(z0+(cid:21);t0(cid:0)(cid:28))2(cid:0)(cid:21)p(z0(cid:0)(cid:21);t0(cid:0)(cid:28)); (9) The(cid:24)onlyp(cid:0)roblemher(cid:18)eits(cid:19)thatinor(cid:18)igdin(cid:19)alcointossing,one cannotassertan“intermediate”outcome(wheretheoutcome @2p @z2 =2A2 = isneitherAnorB).Thereforeoneshallintroducemodallogic definition of “possibility” into this model. Fortunately, we = p(z0(cid:0)(cid:21);t0(cid:0)(cid:28))(cid:0)2p(z0;t0(cid:0)(cid:28))+p(z0+(cid:21);t0(cid:0)(cid:28)); (10) can introduce this possibility of intermediate outcome into (cid:21)2 Parrondo’sgame,soequation(17)shallberewrittenas: and @p p(z ;t ) p(z ;t (cid:28)) =B1 = 0 0 (cid:0) 0 0(cid:0) : (11) p = 1 " (cid:17) p + @t (cid:28) i;j i 1;j 1 2 (cid:0) (cid:0) (cid:1) (cid:0) (cid:0) Wecanapplythesameproceduretoobtain: (cid:18) (cid:19) 1 +(2(cid:17)) p + +" (cid:17) p ; (19) i;j 1 i+1;j 1 @@(cid:11)z =A1 = (cid:11)(z0+(cid:21);t0(cid:0)(cid:28))2(cid:0)(cid:21)(cid:11)(z0(cid:0)(cid:21);t0(cid:0)(cid:28)): (12) Forinstance,(cid:1)bys(cid:0)etting(cid:18)(cid:17)2 0.2(cid:0)5,th(cid:19)en(cid:1) onege(cid:0)tsthefinite Equations (9–12) can be substituted into equation (7) to differenceequation: (cid:24) yieldtherequiredfinitepartialdifferentialequation[19]: p =(0.25 ") p +(0.5) p + i;j i 1;j 1 i;j 1 (cid:0) (cid:1) (cid:0) (cid:0) (cid:1) (cid:0) p(z0;t0)=a 1 p(z0 (cid:21);t0 (cid:28)) a0 p(z0;t0 (cid:28))+ +(0.25+") p ; (20) (cid:0) (cid:1) (cid:0) (cid:0) (cid:0) (cid:1) (cid:0) i+1;j 1 +a+1 p(z0+(cid:21);t0 (cid:28)): (13) whichwillyieldmoreorlessthesamere(cid:1)sultco(cid:0)mparedwith (cid:1) (cid:0) Thisequationcanbewrittenintermsofdiscretespaceby Neutrosophicmethoddescribedintheprecedingsection. using[8],sowehave: For this reason, we propose to call this equation (19): Neutrosophic-modified Parrondo’s game. A generalized ex- p =a p +a p +a p : (14) pressionofequation[19]is: i;j 1 i 1;j 1 0 i;j 1 +1 i+1;j 1 (cid:0) (cid:1) (cid:0) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) Equation (14) is precisely the form required for Parron- p =(p " (cid:17)) p +(z(cid:17)) p + i;j 0 i 1;j 1 i;j 1 do’sgame.ThemeaningofParrondo’sgamecanbedescribed (cid:0) (cid:0) (cid:1) (cid:0) (cid:0) (cid:1) (cid:0) insimplestwayasfollows[19].Consideracointossingprob- +(p0+" (cid:17)) pi+1;j 1; (21) (cid:0) (cid:1) (cid:0) lemwithabiasedcoin: wherep ,zrepresentstheprobableoutcomeinstandardcoin 0 p = 1 "; (15) tossing, and a real number, respectively. For the practical head 2 (cid:0) meaning of (cid:17), one can think (by analogy) of this indetermi- where"isanexternalbiasthatthegamehasto“overcome”. nacyparameterasavariablethatisinverselyproportionalto Thisbiasistypicallyasmallnumber,forinstance1/200.Now the “thickness ratio” (d=t) of the coin in question. There- wecanexpressequation(15)infinitedifferenceequation(14) fore using equation (18), by assuming k=0.2, coin thick- asfollows: ness=1.0mm, and coin diameter d=50mm, then we get pi;j = 12 (cid:0)" (cid:1)pi(cid:0)1;j(cid:0)1+0(cid:1)pi;j(cid:0)1+ 21 +" (cid:1)pi+1;j(cid:0)1: (16) dif=wt=eu5s0e,aorth(cid:17)ic=k0c.o2i(n5(0f)o(cid:0)r1in=st0a.n0c0e4b,ywhgilcuhinigs1n0eg0licgoiibnlse.aBltou-t Furt(cid:16)hermor(cid:17)e, thebiasparameterc(cid:16)anber(cid:17)elated to an ap- gether),thenbyassumingk=0.2,cointhickness=100mm, F.SmarandacheandV.Christianto.TheNeutrosophicLogicViewtoSchro¨dinger’sCatParadox,Revisited 19 Volume3 PROGRESSINPHYSICS July,2008 and coin diameter d=50mm, we get d=t=0.5, or 3. SmarandacheF.andChristiantoV.Anoteongeometricandin- (cid:17)=0.2(0.5) 1=0.4,whichindicatesthatchancetogetout- formationfusioninterpretationofBell’stheoremandquantum (cid:0) comeneitherAnorBisquitelarge. Andsoforth. measurement.ProgressinPhysics,2006,no.4. It is worth noting here that in the language of “modal 4. SmarandacheF.andChristiantoV.Multivaluedlogic,neutros- logic”[10,p.54],the“intermediate”outcomedescribedhere ophy and Schro¨dinger equation. Hexis, Phoenix (AZ), 2006, isgivenname‘possibletrue’,written A,meaningthat“itis p.52–54. notnecessarilytruethatnot-Aistrue”}. Inotherword,given 5. Smarandache F. and Dezert J. Advances and applications of that the cat cannot be found in location x, does not have to DSmT for information fusion. American Research Press, Re- hoboth(NM),2004. meanthatitshallbeiny. Usingthisresult(21),wecansaythatourpropositionin 6. Kracklauer A. La theorie de Bell, est-elle la plus grande meprise de l’histoire de la physique? Ann. Fond. Louis de the beginning of this paper (Prop. 1) has sufficient reason- Broglie,2000,v.25,193. ing;i.e. itispossibletoestablishlinkfromSchro¨dingerwave 7. Chapline G. arXiv: adap-org/9906002; quant-ph/9912019; equationtosimplecointossproblem,albeitinmodifiedform. GranikA.andChaplineG.arXiv:quant-ph/0302013. Furthermore, this alternative interpretation, differs apprecia- blyfromconventionalCopenhageninterpretation. 8. Zurek W. (ed.) Complexity, entropy and the physics of infor- mation.Addison-WesleyPubl.,1990,p.378. ItisperhapsmoreinterestingtoremarkherethatHeisen- 9. Hunter G. Quantum chemistry: wave mechanics applied to berghimselfapparentlyhasproposedsimilarthoughtonthis atoms and molecules. Lecture notes. Chapter 1: Genesis of problem, by introducing “potentia”, which means “a world QuantumMechanics.2001,p.14,26,42. devoid of single-valued actuality but teeming with unreal- 10. deVriesA.Algebraichierarchyoflogicsunifyingfuzzylogic ized possibility” [4, p.52]. In Heisenberg’s view an atom is andquantumlogic.arXiv:math.LO/0707.2161,p.30,54. certainly real, but its attributes dwell in an existential limbo 11. AertsD.Descriptionofmanyseparatedphysicalentitieswith- “halfway between an idea and a fact”, a quivering state of outtheparadoxesencounteredinQuantumMechanics.Found. attenuated existence. Interestingly, experiments carried out Phys.,1982,v.12,no.12,p.1142,1149–1155. by J. Hutchison seem to support this view, that a piece of 12. Jin S., Liu H., Osher S., and Tsai R. Computing multival- metalcancomeinandoutfromexistence[23]. ued physical observables for the semiclassical limits of the Inthissectionwediscussaplausiblewaytorepresentthe Schro¨dingerequation.J.Comp.Phys.,2005,v.205,222–241. Neutrosophic solution of cat paradox in terms of Parrondo’s 13. RauscherE.A.andTargR.Thespeedofthought:investigation game. Further observation and theoretical study is recom- ofcomplexspacetimemetrictodescribepsychicphenomena. mendedtoexploremoreimplicationsofthisplausiblelink. J.ScientificExploration,2001,v.15,no.3,344–354. 14. Rauscher E.A. and Amoroso R. The physical implications 5 Concludingremarks of multidimensional geometries and measurement. Intern. J. Comp.AnticipatorySystems,D.Dubois(ed.),2006. InthepresentpaperwerevisittheNeutrosophiclogicviewof 15. LuJ.,GreenleafJ.,andRecamiE.Limiteddiffractionsolutions Schro¨dinger’s cat paradox. We also discuss a plausible way toMaxwellandSchro¨dingerequation.arXiv:physics/9610012. torepresenttheNeutrosophicsolutionofcatparadoxinterms 16. AharonovY.,etal.arXiv:quant-ph/0311155. ofParrondo’sgame. 17. Goldstein S. Quantum theory without observers — part one. Itisrecommendedtoconductfurtherexperimentsinorder PhysicsToday,March1998,42–46. toverifyandexplorevariousimplicationsofthisnewpropo- 18. Ho C.-L. and Sasaki R. Deformed Fokker Planck equations. sition,includingperhapsforthequantumcomputationtheory. arXiv:cond-mat/0612318. 19. AllisonA., etal.Statespacevisualizationandfractalproper- tiesofParrondo’sgame.arXiv: cond-mat/0205536;cond-mat/ Acknowledgment 0208470. The writers would like to thank to D. Rabounski for early 20. Wu J. A new mathematical representation of game theory. discussionconcerninginterpretationofthiscatparadox. arXiv:quant-ph/0404159. 21. SmarandacheF.Unificationoffusiontheories(UFT).Intern.J. SubmittedonMarch31,2008/AcceptedonApril10,2008 Appl.Math.andStat.,2004,v.2,1–14. 22. Smarandache F. An in-depth look at information fusion rules References andunificationoffusiontheories.InvitedspeechatNASALan- gleyResearchCenter,Hampton,VA,USA,November5,2004. 1. Smarandache F. An introduction to the Neutrosophic proba- 23. SmarandacheF.,ChristiantoV.,KhrapkoR.,YuhuaF.,Hutchi- bility applied in quantum physics. Bull. Pure and Appl. Sci., sonJ.Unfoldinglabyrinth: openproblemsinphysics,mathe- Physics,2003,v.22D,no.1,13–25. matics,astrophysics,andotherareasofscience.Hexis,Phoenix 2. Smarandache F. and Christianto V. The Neutrosophic logic (AZ),2006. viewtoSchro¨dinger’scatparadox.Progr.inPhys.,2006,no.2. 20 F.SmarandacheandV.Christianto.TheNeutrosophicLogicViewtoSchro¨dinger’sCatParadox,Revisited

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.