Research The medial dorsal thalamic nucleus and the medial prefrontal cortex of the rat function together to support associative recognition and recency but not item recognition Laura Cross,1,3 Malcolm W. Brown,1 John P. Aggleton,2 and E. Clea Warburton1,4 1SchoolofPhysiologyandPharmacology,UniversityofBristol,Bristol,AvonBS81TD,UnitedKingdom;2SchoolofPsychology, CardiffUniversity,CardiffCA103AT,UnitedKingdom Inhumansrecognitionmemorydeficits,atypicalfeatureofdiencephalicamnesia,havebeententativelylinkedtomediodor- salthalamicnucleus(MD)damage.AnimalstudieshaveoccasionallyinvestigatedtheroleoftheMDinsingle-itemrecogni- tion,buthavenotsystematicallyanalyzeditsinvolvementinotherrecognitionmemoryprocesses.InExperiment1ratswith bilateralexcitotoxiclesionsintheMDorthemedialprefrontalcortex(mPFC)weretestedintasksthatassessedsingle-item recognition (novel object preference), associative recognition memory (object-in-place), and recency discrimination (recencymemorytask).Experiment2examinedthefunctionalimportanceoftheinteractionsbetweentheMDandmPFC using disconnection techniques. Unilateral excitotoxic lesions were placed in both the MD and the mPFC in either the same(MD+mPFCIpsi)oroppositehemispheres(MD+mPFCContragroup).BilaterallesionsintheMDormPFCimpaired object-in-placeandrecencymemorytasks,buthadnoeffectonnovelobjectpreference.InExperiment2theMD+mPFC Contragroupwassignificantlyimpairedintheobject-in-placeandrecencymemorytaskscomparedwiththeMD+mPFC Ipsigroup,butnovelobjectpreferencewasintact.Thus,connectionsbetweentheMDandmPFCarecriticalforrecognition memorywhenthediscriminationsinvolveassociativeorrecencyinformation.However,therodentMDisnotnecessaryfor single-itemrecognitionmemory. Recognition memory, the ability to judge the prior occurrence mationconcerningpriorstimulusoccurrence(Fahyetal.1993; ofastimulus,involvesmultipleprocessesandrequiresmultiple XiangandBrown1998,2004). brainregions.Researchintohumanamnesiashowsthatthemedi- TheimportanceoftheratMDforsingle-itemrecognitionis, al diencephalon is critical for normal recognition memory, al- however,farlessclear-cut(Mumbyetal.1993;Parkeretal.1997). though neuropsychological studies have largely failed to link Thisuncertaintymayreflectdifferencesinthelearningdemands thecontributionsofparticulardiencephalicsitestoaspectsofrec- ofthevariousstudies(Aggletonetal.2011).Thefirstgoalwas, ognition(Aggletonetal.2011).Theprincipalreasonisthatthe therefore,toreexaminetheimportanceoftheratMDforitemrec- pathology in human clinical cases almost invariably involves ognitionusingspontaneoustasksthatminimizeprocedurallearn- multiplediencephalicnuclei. ing. The second goal was to extend the classes of recognition Onediencephalicsitepotentiallylinkedtohumanrecogni- problemusedtoexaminetheratMD.Inadditiontosingle-item tionmemoryisthemediodorsalthalamicnucleus(MD)(Victor recognition(testedusingthenovelobjectrecognitiontask[Fig. et al. 1971; Victor 1987; Parkin et al. 1994; Isaac et al. 1998). 1A]), the present study examined object spatial memory (Fig. Thislinkismoreevidentinanimallesionexperimentswithmon- 1B)associativerecognition(distinguishingbetweenmultiplefa- keys,whichhaveconsistentlyindicatedarolefortheMDinitem miliaritemsintheiroriginalornovelconfigurationassessedusing recognition (Aggleton and Mishkin 1983b; Zola-Morgan and anobject-in-placetask[Fig.1C])andrecencydiscriminations(as- Squire 1985; Parker et al. 1997). From such findings, Aggleton sessedusingarecencyrecognitiontask[Fig.1D]).Thechoiceof andBrown(1999)proposedamodelofitemrecognitionmemory taskwaspromptedbythefindingthatmPFClesionsinratsspare thatincorporatestheMDwithinalargerneuralnetworkcentered single-itemrecognition,butdisruptassociativerecognitionand on the perirhinal cortex and involving the prefrontal cortex recencyjudgments(Barkeretal.2007).Furthermore,inviewof (AggletonandBrown1999).Thismodelissupportedbytheana- the dense, reciprocal interconnections between the MD and tomical connections from the perirhinal cortex to the MD mPFC (Krettek and Price 1977; Groenewegen 1988; Ray and (Russchenetal.1987;Saundersetal.2005)andtheobservation Price 1992, 1993; Taber et al. 2004) it might be predicted that that the primate perirhinal cortex, medial prefrontal cortex theMDfunctionsinconcertwiththeprefrontalcortextoenable (mPFC),andMDcontainneuronalpopulationsthatsignalinfor- associative recognition and recency judgments selectively. This predictionissupportedindirectlybysomeoftheparalleleffects 3Present address: Department of Biochemistry & Physiology, of MD lesions and prefrontal lesions on memory in humans UniversityofSurrey,Guildford,SurreyGU27TE,UnitedKingdom (Milner and Petrides 1984; Sandson et al. 1991; Van der Werf 4Correspondingauthor etal.2000),monkeys(ParkerandGaffan1998),andrats(Hunt [email protected] andAggleton1998;DiasandAggleton2000),butremainstobe Articleisonlineathttp://www.learnmem.org/cgi/doi/10.1101/lm.028266.112. FreelyavailableonlinethroughtheLearning&MemoryOpenAccessoption. testeddirectly.Thus,thethirdgoalofthepresentstudywasto 20:41–50#2013ColdSpringHarborLaboratoryPress 41 Learning&Memory ISSN1549-5485/13;www.learnmem.org MDthalamusandrecognitionmemory A Novel object preference malshad someunilateral damagetothe central lateralnucleus andpartialdamagetothecentralmedialnucleus.Forsixofthean- Sample imals,minordamage(,10%)wasincurredunilaterallyintheven- tralanteriorlateralnucleusandanterodorsalnucleus.Fouranimals had extensive damage to the paraventricular nucleus and five hadbilateraldamagetotheposteriorparataenialnucleus.Three animalsshowedminorunilateral(,10%)damagetothedentate gyrus(DG)andoneanimalsustainedminordamagetotheDGbi- B Object Location laterally.Importantly,theMDwastheonlycommonsiteoftissue Sample Test lossacrossthecases.Diagrammaticrepresentationsofthecases withthelargestandsmallestlesionsareshowninFigure2B. Experiment2:IpsilateralMD+mPFClesions TwoanimalswereexcludedastherewasnodamageintheMD.In theremaining10casesalltheanimalshadnear-completeunilat- C Object-in-place erallesionsintheMDandmPFC.ThuswithinthemPFCtherewas Sample Test extensivedamagetotheprelimbicandtheinfralimbiccortices,al- thoughoneanimalshowedposterioranddeeplayersparingofthe PL.Inonecasetheprimarymotorcortexshowedminordamage (,10%)andinanothertherewasevidenceofveryminordamage tothecorpuscallosum.Inhalfthecasestherewasminordam- ageinthecingulatecortex,althoughthisdamagewasconfined totheborderofthePL.Alltheanimalshadextensiveunilateral D Recency Memory damageintheMD.Oneanimalhadsomeminorsparinginthelat- eralMD,whiletwohadadditional lateraldamageaffecting the Sample 1 Sample 2 Test dorsomedialpartofthelateraldorsalthalamus;inonecasethis damageextendedintotheventrolateralpartofthelateraldorsal thalamusandthemedialrostralpartofthelateralposteriorthal- amus(largestlesioninFigure3).Sevenanimalsshowedasmall amount of unilateral damage in the DG and anterior dorsal Figure 1. Diagram of the four object recognition memory tasks. (A) Novel object recognition task. (B) Object location task. (C) Object- in-placetask.(D)Recencytask. usedisconnectionproceduresthatexaminetheinteractionofMD andmPFC. Results Histology Experiment1:BilateralmPFClesions AlltheanimalshadbilateraldamageinthemPFC.Allbuttwoan- imalshadcompletelesionsofboththeprelimbiccortex(PL)and theinfralimbic(IL)cortex.Thetwootheranimalshadsparingin thedeeplayers.Alltheanimalsalsohadminorcingulatecortex damagearoundtheborderwiththePL.Threeanimalshadasmall amountofdamagetothemedialorbitalcortexandventralorbital cortex.Twoanimalshadlesionsthatextendedtoaminordegree intothesecondarymotorcortex,andoneanimalhadsustained damageinthedorsalpeduncularcortex.Diagrammaticrepresen- tationsofthecaseswiththelargestandsmallestlesionsareshown inFigure2A. Experiment1:BilateralMDlesions Figure 2. Diagrammatic reconstructions showing the cases with the Fouranimalswereexcluded,threeduetoincompletedamageto largest(gray)andsmallest(black)lesionsinthemPFC(A)andMD(B) theMD,particularlyinonehemisphere,andoneastherewasaddi- lesiongroups.Thenumberscorrespondtotheapproximatepositionrel- ative to bregma (Swanson 1998). (AC) Anterior cingulate cortex; (AV) tionalbilateraldamagetoanteriorthalamicnucleiwithsomespar- anteroventral thalamic nucleus; (AMD) anteromedial thalamic nucleus; ing ofthe MD.Inthe remainingeightcasestherewasbilateral (ILA)infralimbiccortex;(LD)lateraldorsalthalamicnucleus;(LP)lateral damagetotheMD;however,allshowedaminoramount(,10%) posteriorthalamicnucleus; (MD) mediodorsal thalamic nucleus; (ORB) ofsparinginthelateralextremesofonehemisphere.Alltheani- orbitalfrontalcortex;(PL)prelimbiccortex;(PT)parataenialnucleus. www.learnmem.org 42 Learning&Memory MDthalamusandrecognitionmemory Novelobjectrecognitiontask Recognition during the test phase. Figure 5, A and B, shows the performance of all three groups (MD, mPFC, and sham) in the testphasefollowingretentiondelaysofeither5min(Fig.5A)or 3h (Fig. 5B). Two-way ANOVA with the lesion and delay as factors showed that therewas no significant main effect of the lesion (F ¼0.5, P.0.1), no significant effect of the delay (2,57) (F ¼0.9, P.0.1), and no significant lesion-by-delay (1,57) interaction(F ¼1.8,P.0.1).Furtheranalysesrevealedthat (2,57) allgroupsshowedsignificantdiscriminationbetweennoveland familiarobjectsacrossbothdelays(5-minsham:t ¼4.2,P, (11) 0.001;MD:t ¼6.3,P,0.001;mPFC:t ¼4.1,P,0.01;3-h (7) (11) sham: t ¼5.7, P,0.001; MD: t ¼3.5, P,0.001; mPFC: (11) (7) t ¼5.8,P,0.001). (11) ThesedataindicatethatbilaterallesionsinneithertheMD northemPFCaffectobjectrecognitionmemory. Exploration in sample and test phases. Analysis of the total amount of exploration completed in the sample phase or test phase revealed no effect of the lesion in either phase at either delay (all F’s,2.0). The data are presented in Table 1. In addition, therewasnodifferenceintheamountofexplorationcompleted in the test phase following a 5-min or 3-h delay F ¼3.64, (1,28) P.0.05. Objectlocationtask Figure 3. Diagrammatic reconstructions showing the cases with the Recognitionduringthetestphase.Theperformanceofallthegroupsinthe largest (gray) and smallest (black) lesions in the mPFC-MD Ipsi lesion objectlocationtaskisshowninFigure5,CandD.Atthe5-min group.Thenumberscorrespondtotheapproximatepositionrelativeto bregma(Swanson1998).(AC)anteriorcingulatecortex;(AV)anteroven- tralthalamicnucleus;(AMD)anteromedialthalamicnucleus;(ILA)infra- limbiccortex;(LD)lateraldorsalthalamicnucleus;(LP)lateralposterior thalamic nucleus; (MD) mediodorsal thalamic nucleus; (ORB) orbital frontalcortex;(PL)prelimbiccortex;(PT)parataenialnucleus. thalamusatthesiteoftheMDinjection.Diagrammaticrepresen- tationsofthecaseswiththelargestandsmallestlesionsareshown inFigure3. ContralateralMD+mPFClesions Twoanimalswereexcluded.Oneanimalwasexcluded asthere wasnodamageintheMDandonebecauseofextradamagein the mammillothalamic tract region. In the remaining 10 cases all the animals had unilateral lesions in the MD and mPFC in thecontralateralhemispheres.Alltheanimalshadlargeunilateral lesionsintheprelimbicandinfralimbiccortices,althoughonean- imalshowedsparinginthe deeplayersof thePL. Twoanimals showedminimal(,10%)damagetothemotorcortex.Inallcases, the cingulate cortex was damaged by about 50% in the region closest tothe PL.Inall casestherewasa largeunilateral lesion intheMD.Theanimalsshowedasmalldegreeofsparingofeither theanteriororposteriorpartsoftheMD,butneverofboth.Sixan- imalsalsoshowedadegreeofunilateraldamagetotheDGandthe anteriordorsalthalamicnucleusaroundtheareaoftheinjection site.Sixanimalsalsohadminor(,10%)damagetotheintrame- dullarylamina.Diagrammaticrepresentationsofthecaseswith thelargestandsmallestlesionsareshowninFigure4. Figure 4. Diagrammatic reconstructions showing the cases with the Behavior: Experiment 1 largest (gray) and smallest (black) lesions in the mPFC–MD Contra Afterhistologicalanalysis,thefinalgroupnumberswereasfol- lesiongroup.Thenumberscorrespondtotheapproximatepositionrela- lows:sham,n¼12;mPFC,n¼12;MD,n¼8.Asstated,thosean- tivetobregma(Swanson1998).(AC)anteriorcingulatecortex;(AV)ante- roventralthalamicnucleus;(AMD)anteromedialthalamicnucleus;(ILA) imalsthat didnotcompletethe necessarylevels ofexploration infralimbiccortex;(LD)lateraldorsalthalamicnucleus;(LP)lateralposte- wereexcludedfromthefinalanalyses,asindicatedbyreducedde- riorthalamicnucleus;(MD)mediodorsalthalamicnucleus;(ORB)orbital greesoffreedominthequotedstatisticaltests. frontalcortex;(PL)prelimbiccortex;(PT)parataenialnucleus. www.learnmem.org 43 Learning&Memory MDthalamusandrecognitionmemory withthelesiongroupanddelayasfactorsrevealedasignificant maineffectofthelesion(F ¼19.3,P,0.001),butnoeffect (2,57) ofthedelay(F ¼3.1, P.0.1)andnosignificantlesion-by- (1,57) delay interaction (F ¼1.5, P.0.1). Post hoc analyses (2,57) showedthattheperformancesoftheMDandmPFCgroupswere significantlyworsethanthatoftheshamgroupfollowingbotha 5-min delay (MD, P,0.001; mPFC, P,0.05) and a 3-h delay (MD, P,0.01; mPFC, P,0.05). The sham control group displayed significant discrimination between the stationary objects and the objects that had exchanged position following both retention delays (5min: t ¼7.1, P,0.001; 3h: t ¼ (11) (11) 3.1,P,0.01),butthemPFCgroupdidnot(5min:mPFC:t ¼ (10) 1.3,P.0.1;3h:mPFC:t ¼0.7,P.0.1).TheMDgroupalso (11) didnotdiscriminateatthe5-mindelay(MD:t ¼1.3,P.0.1), (7) but at the 3-h delaythis group showed a significant preference for the stationary objects compared with the objects that had exchanged position (MD: t ¼ 22.7, P,0.05); hence the MD (7) lesionproducedonlypartialimpairmentatthe3-hdelay. ThesedatasuggestthatboththeMDandmPFCarenecessary fornormalobject-in-placeassociativememory. Figure5. PerformanceofthebilateralMDandmPFClesiongroupsin object recognitionandobject locationtaskswhentestedwitha5-min or3-hdelay.(A)Objectrecognitionperformance ata5-min delay.(B) Exploration in sample and test phases. Analysis of the total amount of Objectrecognitionperformanceata3-hdelay.(C)Objectlocationperfor- explorationconductedinthesamplephaseortestphaserevealed manceata5-mindelay.(D)Objectlocationperformanceata3-hdelay. Shownforeachgroupisthemean(+SEM)discriminationratio(DR). noeffectofthelesionfollowingeitherdelay(allF’s,1.5).The explorationdataareshowninTable1. delay experiment one animal from each lesion group was Recencymemorytask excludedduetoinsufficientlevelsofobjectexploration,andat Recognitionduringthetestphase.Theperformancesofthesham,bilateral the3-hdelaytwoMDanimalswereexcluded.ANOVAwiththe MD,andmPFClesiongroupsintherecencymemorytaskareshown lesion group and delay as factors revealed no significant main in Figure 6C, and a statistical comparison of the mean effect of the lesion (F ¼0.1, P.0.1) and of the delay (2,51) discriminationratiosagainstzeroperformanceshowedthatonly (F ¼3.4, P.0.1), and no significant lesion-by-delay (1,51) theshamcontrolgroupsignificantlydiscriminatedbetweenthe interaction(F ¼0.04,P.0.1).Furtheranalysisshowedthat (2,51) ‘old’and‘recent’objects(sham:t ¼2.5,P,0.05),whilethe all the lesion groups were able to discriminate between novel (11) MD and mPFC groups did not (MD: t ¼0.5, P.0.1; mPFC: andfamiliarlocationsfollowingadelayof5min(sham:t ¼ (7) (10) t ¼0.2, P.0.1). Thus, while the ANOVA did not reveal any 5.2, P,0.001; MD: t ¼2.5, P,0.05; mPFC: t ¼5.5, P, (11) (6) (10) significantgroupeffect(F ¼1.0,P.0.1),bothlesiongroups 0.001) or 3h (sham: t ¼3.9, P,0.01; MD: t ¼3.9, P, (2,29) (10) (5) failedto showan ability to use recency information to effect a 0.01;mPFC:t ¼6.7,P,0.001). (10) recognitionmemoryjudgment. ThesedataindicatethatthebilaterallesionsintheMDand mPFC had no effect on the performance of the object location task. Exploration in sample and test phases. Analysis of the total amount of exploration conducted in the sample phases or test phase Exploration in sample and test phases. Analysis of the total amount of revealed no effect of the lesion (all F’s,1.5). The data are exploration completed in the sample phase or test phase showninTable2. revealed no effect of the lesion (all F’s,1.5). The data are presentedinTable1. Behavior:Experiment 2 Following histological analysis the final numbers of animals in Object-in-placetask the MD+mPFC Ipsi and MD+mPFC Contra lesion groups Recognitionduringthetestphase.Figure6,AandB,showstheperformance were10ineachgroup.Asstated,animalsthatdidnotcomplete ofthebilateralMDandmPFCgroupsintheobject-in-placetask thenecessarylevelsofexplorationwereexcludedfromthefinal followinga5-min(Fig.6A)or3-hdelay(Fig.6B).OnemPFCwas analyses,asindicatedbyreduceddegreesoffreedominthequoted excludedfromtheanalysisatthe5-mindelay.Two-wayANOVA statisticaltests. Table1. Meanexplorationtimes+SEMduringthesampleandtestphaseoftheobjectrecognition,objectlocation,andobject-in-place tasksat5-minor3-hdelay Objectrecognition Objectlocation Object-in-place Sample(s) Test(s) Sample(s) Test(s) Sample(s) Test(s) 5min 3h 5min 3h 5min 3h 5min 3h 5min 3h 5min 3h Sham 30.8+2.6 30.2+2.7 27.1+2.9 22.0+2.0 24.6+1.8 28.3+2.1 16.2+1.3 15.3+1.6 46.0+2.8 47.4+4.9 20.7+2.5 33.7+3.4 MD 32.0+2.1 29.7+3.4 24.7+4.1 17.8+2.0 27.3+2.7 29.1+2.3 22.3+1.6 16.8+2.6 44.7+3.7 48.0+4.5 20.9+4.3 33.1+3.8 mPFC 29.4+1.7 29.9+2.0 21.8+1.5 22.7+1.4 24.9+1.6 27.5+2.8 19.8+2.5 15.1+1.2 47.9+4.0 52.7+3.6 21.9+2.4 27.6+1.8 www.learnmem.org 44 Learning&Memory MDthalamusandrecognitionmemory object-in-place task. One animal from the MD+mPFC group was excluded from the analyses due to insufficient levels of exploration.One-wayANOVAconfirmedasignificantmaineffect of lesion type (F ¼8.6, P,0.01). Subsequent ana-lyses (1,18) confirmed that only the MD+mPFC Ipsi lesion group showed sig-nificantdiscriminationbetweentherearrangedandunmoved objects in the test phase (MD+mPFC Ipsi: t ¼4.6, P,0.01; (8) MD+mPFC Contra: t ¼1.1, P.0.1). Thus contralateral (9) unilateral lesions in the MD and mPFC resulted in significant impairmentsinobject-in-placeperformance. Exploration in sample and test phases. Analysis of the total amount of exploration conducted in the sample or test phase of the object-in-placetaskrevealednosignificantdifferences(allF’s, 1.0).ThedataareshowninTable3. Recencytask Figure6. PerformanceofbilateralMDandmPFClesiongroupsinthe Recognition during the test phase. Figure 8B shows the performance of object-in-place and temporal order memory tasks. (A) Object-in-place both lesion groups in the recency task. One-way ANOVA performance following a 5-min delay. (B) Object-in-place performance showedasignificantmaineffectoflesiontype(F ¼4.8,P, following a 3-h delay. (C) Temporal order memory performance. (∗) 0.05). Additional analyses revealed that only th(1e,1M8)D+mPFC P,0.05, (∗∗) P,0.01, (∗∗∗) P,0.001. Shown for each group is the Ipsi lesion group showed a significantly greater preference for mean(+SEM)discriminationratio(DR). the object previously seen in the first sample phase (MD+ mPFC Ipsi: t ¼3.6, P,0.01; MD+mPFC Contra: t ¼0.7, (9) (9) P.0.1). Contralateral unilateral lesions in the MD and mPFC Novelobjectrecognitiontask significantly impaired performance in the recency task Recognition during the test phase. Figure 7, A and B, shows the comparedwithanimalswithipsilaterallesions. performance of the MD+mPFC Ipsi and MD+mPFC Contra lesiongroupsintheobjectrecognitiontaskandshowsthatthe performance of these two groups did not differ from one Exploration in sample and test phases. Analysis of the total amounts of another. ANOVA with the lesion group and delay as factors explorationconductedintherecencytaskrevealednoeffectof showed no significant main effect of lesion type (F ¼1.3, thelesionineitherthesamplephaseorthetestphase(allF’s, (1,36) P.0.1), of delay (F ¼0.3, P.0.1), and no lesion 1.0).ThedataareshowninTable4. (1,36) type-by-delay interaction (F ¼0.08, P.0.1). Additional (1,36) analyses revealed that both groups significantly discriminated Discussion the novel from the familiar objects following delays of 5min (MD+mPFCContra:t(9)¼4.1,P,0.01;MD+mPFCIpsi:t(9)¼ Thepresentstudyisthefirsttoexaminesystematicallythemne- 4.7,P,0.01),and3h(MD+mPFCContra:t(9)¼3.7,P,0.01; monic importance of the rodent MD in recognition memory MD+mPFCIpsi:t(9)¼4.1,P,0.001). anditrevealedfourimportantfindings.First,theMDwasshown nottobenecessaryforsingle-itemrecognition.Second,theMD Exploration in sample and test phases. Analysis of the total amount of wasfoundtobecriticalforobject-in-placeassociativerecognition explorationconductedinthesamplephaseortestphaseofthe andrecencyrecognition.Third,thisstudyclearlyshowedthatthe novelobjectrecognitiontaskrevealednosignificantdifferences effectsofMDdamageonalltherecognitionmemorytaskstested atanydelay(allF’s,2.0).ThedataareshowninTable3. in the current study using these measurements were indistin- guishable from the effects of damage to the mPFC. The fourth findingwasthatdisconnectionoftheMDandmPFCsignificantly Objectlocationtask impairedobject-in-placeandrecencyrecognitionmemory.Thus Recognitionduringthetestphase. TheperformancesoftheMD+mPFC togethertheseresultsdemonstratethattheMDmaybeincorpo- Ipsi and MD+mPFC Contra lesion groups in the object ratedwithinaneuralcircuitforrecognitionmemorywhenjudg- locationtaskfollowinga3-hdelayareshowninFigure7C;the ments of prior occurrence involve a spatial/associational or two lesion groups did not differ from one another. Analysis recencycomponent. revealednoeffectoflesiontype(F(1,18)¼0.7,P.0.1)andboth MDdamagehasbeenshowntoimpairdelayednonmatch- groups showed significant discrimination between novel and ing-to-sample(DNMS)tasksinprimates(AggletonandMishkin familiarlocations(MD+mPFCIpsi:t(9)¼6.8,P,0.001;MD+ 1983a; Zola-Morgan and Squire 1985); however, the results for mPFCContra:t(9)¼3.0,P,0.01). ratsappeartobelessconsistent(Aggletonetal.2011).Testsusing Exploration in sample and test phases. Analyses of the total amount of exploration in the sample or test phases of the object location Table2. Meanexplorationtimes+SEMduringsamplephases andtestphaseofthetemporalordertask task revealed no significant differences (all F’s,1.0). The data areshowninTable3. Firstsample Secondsample Test exploration exploration exploration Object-in-placetask Sham 35.3+2.9 36.4+2.9 23.5+2.2 MD 32.6+2.4 34.9+3.1 20.8+2.7 Recognitionduringthetestphase.Figure8Ashowstheperformancesofthe mPFC 38.8+3.0 40.3+4.1 24.6+2.3 MD+mPFC Ipsi and MD+mPFC Contra lesion groups in the www.learnmem.org 45 Learning&Memory MDthalamusandrecognitionmemory portanceofthemPFCincertainrecognitionmemoryprocesses,it wasimportanttocomparedirectlytheroleoftheMDwiththatof themPFCindifferentformsofrecognitionmemoryotherthan single-itemobjectrecognition, i.e.,objectlocationrecognition, object-in-place, and recency memory. Bilateral lesions in both theMDandmPFCsignificantlyimpairedobject-in-placeandre- cencymemoryperformance,buthadnoapparenteffectonob- jectlocationmemory.Theobjectlocationtaskassessestherat’s abilitytorecognizethatanobjectisinapreviouslyunoccupied place, but does not require identification of which object goes where, and therefore does not require associative recognition. Whileregionsimportantforspatiallearning,e.g.,thehippocam- pusandfornix,arerequiredforthistask(EnnaceurandAggleton 1997; Barkerand Warburton2011b), the intactperformance of theratswithMDandwithmPFClesionsisconsistentwithagrow- ingnumberofstudiesthatreportalackofspatialmemorydeficit inratsfollowingMD(Neaveetal.1993;HuntandAggleton1998; Mitchell and Dalrymple-Alford 2005; Dolleman-van der Weel Figure7. PerformanceoftheMD+mPFCIpsiandMD+mPFCContra etal.2009)ormPFClesions(Barkeretal.2007). lesiongroupsinobjectrecognitionandobjectlocationtasksfollowinga Three animals in the mPFC group had a small amount of 5-mindelayor3-hdelay.(A)Objectrecognitionperformancefollowing damage in the medial and ventral orbital cortex. Inspection of a 5-min delay. (B) Object recognition performance following a 3-h delay.(C)Objectlocationperformancefollowinga5-mindelay.Shown their individual discrimination ratios revealed that the pattern foreachgroupisthemean(+SEM)discriminationratio(DR). ofperformanceoftheseanimalswasnodifferenttothatofthe groupasawhole.Thustheseanimalsshowednodeficitsintheob- jectrecognitionorobjectlocationtasks,but,consistentwiththe reinforcedDNMShavefoundthatMDlesionsinratsimpairthe remainderofthemPFClesiongroup,theyshowedpoorerdiscrim- learning of task contingencies (Hunt and Aggleton 1991; ination in the object-in-place and temporal order tasks. While Mumbyetal.1993),butrecognitionperformanceoverrelatively withasmallgroup(n¼3)onecannotdrawfirmconclusions,it shortdelaysappearsnormal,followingtaskmastery.Thesingle doesnotappearfromthepatternofperformanceintheseanimals previousstudy to usespontaneous objectrecognition(Mitchell thatdamagetotheorbitalfrontalcortexcontributestothemne- andDalrymple-Alford2005)reportednoeffectofMDlesionsafter monicdeficitsseen. theone(2-h)retentiondelayexamined. ThedemonstrationthatbilaterallesionsinMDhavenoef- Inlightofthecontradictoryevidenceconcerningtheimpor- fectonanobjectlocationtaskallowsustoexcludethepossibility tanceoftheMDinsingle-itemrecognition,thefindingsfromthe thattheobserveddeficitsinobject-in-placeandrecencymemory presentstudy,i.e.,thatbilateralMDlesionshavenoeffectonnov- maybetheresultoftheslightdamagetotheDGthatoccurredin elobjectrecognitionafterashortorlongretentiondelayareofim- someoftheanimals(unilateraldamageinthreecases,bilateral portanceastheysuggestthatthedeficitspreviouslyseeninrats damage in one case). Further, as MD lesions had no effect on whenusingrewardedDNMS(HuntandAggleton1991;Mumby single-item recognition or object location, the object-in-place etal.1993)mayreflecttheeffectsofMDdamageonaspectsof andrecencyrecognitionmemorydeficitsarenottheresultofim- taskperformanceotherthanrecognition.Onepossiblecandidate pairedobjectidentificationorobjectfamiliaritydiscrimination. isrewardassociationlearning,aprocesscriticalforDNMStaskac- Astheobject-in-placetaskrequiresthesubjecttoencodefourdif- quisition,andindeedpreviousstudiesshowthatrewardlearning ferentobjectsitmaybeconsideredtobeamoredifficulttaskthan iscompromisedbyMDdamage(Corbitetal. 2003). Numerous theobjectrecognitiontask.Thusinthepresentstudythesample studieshaveshowntheperirhinalcortextobecriticalforobject timeintheobject-in-placetaskisgreaterthanthatintheobject recognition memory (Ennaceur et al. 1996; Ennaceur and recognitiontasktoenablethesubjectstospendlongerexploring Aggleton1997;Busseyetal.2000;Barkeretal.2007)andinlight andencodingtheobjects.Ifweconsidertheperformanceofthe ofthepresentnullresultitisnoteworthythatanatomicalstudies shamgroupinbothtasksitisclearthatthereisnodifferencein haveshownlittleevidenceofdirectconnectionsbetweentheMD the levels of discrimination, indicating that the sham group andperirhinalcortexintherat(RayandPrice1992).Thisarrange- doesnotfindtheobject-in-placetaskmoredifficult.Theabsence mentappearsdifferenttothatintheratbrainwheredirectperirhi- ofanydifferencesinperformancesupportstheconclusionthat nal projections to the MD have been traced (Aggleton and theimpairmentsinobject-in-placerecognitionmemoryfollow- Mishkin1983a;Russchenetal.1987). ing lesions in the MD and the mPFC reflect the importance of There are strong anatomical connections between the MD thesebrainregionsselectivelyinassociativerecognitionmemory, andthemPFCand,asourpreviousstudiesdemonstratedtheim- andnotthedifferencesintaskdifficulty. Table3. Meanexplorationtimes+SEMduringsamplephasesandtestphaseoftheobjectrecognition,objectlocation,and object-in-placetasks Objectrecognition Objectlocation Object-in-place Sample(s) Test(s) Sample(s) Test(s) Sample(s) Test(s) 5min 3h 5min 3h MD+mPFCContra 39.0+1.4 39.2+1.7 34.3+3.4 39.6+4.8 44.7+3.9 29.8+3.8 62.1+5.2 28.0+2.8 MD+mPFCIpsi 37.5+1.4 36.0+1.7 32.0+3.4 41.6+4.8 46.2+3.9 31.4+3.8 59.6+5.5 32.5+2.9 www.learnmem.org 46 Learning&Memory MDthalamusandrecognitionmemory object-in-placeandrecencytaskswassignificantlyabovechance. Therefore,damagetobothregionswithinthesamehemisphere appearedtospareperformance,afindingconsistentwithnumer- ousotherstudiesthatemployadisconnectiontechniquetoestab- lishregionalinterdependencies(Florescoetal.1997;Barkeretal. 2007;BarkerandWarburton2011b).Theseresultsthereforesug- gestthattheconjointnecessityfortheMDandmPFCforsuccess- ful recognition memory is due to the fact that these regions operatewithinanintegratedneuralcircuit. Asthepresentstudyusedpermanentlesionstoestablishthe importanceofMDandmPFCinrecognitionmemory,wecannot Figure8. PerformanceoftheMD+mPFCIpsiandMD+mPFCContra identifywhetherthecontributionsoftheMDandmPFCareatthe lesion groups in object-in-place and temporal order memory tasks. (A) sameoratdifferentstagesofrecognitionmemory.Wehaveprevi- Object-in-place task performance. (B) Temporal order memory perfor- mance task. (∗) P,0.05, (∗∗) P,0.01. Shown for each group is the ouslyshownthatthemPFCiscriticalforboththeacquisitionand mean(+SEM)discriminationratio(DR). retrievalofobject-in-placememoryandthatitsrolemaybeinthe integrationofobjectandspatialinformationorfortheretrievalof object–spatialinformationthroughanengagementwiththehip- pocampus (Barker et al. 2007; Barker and Warburton 2011b). One previousstudyalso foundthatlesionsin the MDim- ConcerningtheMD,onepossibilityisthatthisregionactsasa paired a spontaneous recency memory task (Mitchell and critical relay between the medial temporal lobe and the mPFC, Laiacona 1998), however the present study has extended upon though such an explanation goes against present views of the thisresultbysystematicallyexploringtheroleoftheMDinrecog- roleofthalamicnuclei(Sherman2007;Tsanovetal.2011)and nitionmemory,anddirectlycomparingthisrolewiththatofthe leavesuncertainwhythemanydirectconnectionslinkingtempo- mPFCfordifferenttypesofinformation(singleitem,spatialloca- ralandfrontalregionsarenotsufficient.Ithasalsobeensuggested tion,object-in-place,andrecency)usingidenticalapparatusand thatablationoftheMDinprimatesproduceshypoactivityinthe stimulustypesandsimilarretentiondelays.Further,theorderin mPFC(ParkerandGaffan1998)and,therefore,thedeficitsinrats whichtheanimalsweretestedinthebatteryoftasksinterleaved withMDlesionsmightbeascribedtosuchafrontaldysfunction. thenovelobjectrecognition,objectlocation,andobject-in-place Inthepresentstudy,histologicalanalysisofthemPFCinanimals tasks,andthusitisunlikelythattaskordercanaccountfortheob- withabilateralMDlesionshowednoindicationofcellloss,yet serveddeficits.Thisstudythereforedemonstratesforthefirsttime previous studies have shown disruptive effects in regions distal thattheMDisselectivelyrequiredforbothassociativeandrecen- toalesionsite,evenwhensuchregionsappearnormalbystan- cyrecognitionmemoryinrats. dardhistologicalmeasures(VanGroenetal.1993;Gardenetal. Inlightoftheseresults,theAggletonandBrown(1999)mod- 2009), and thus further study of potential diaschesis in the elofrecognitionmemory,whichplacedtheMDsolelywithina mPFCisrequired. neural circuit for item familiarity through an interaction with Itispossiblethatduringrecognitionmemoryperformance theperirhinalcortex,requiresadegreeofreevaluation.Inarecent theMDiscriticalfornon-mnemoniccognitiveprocessessuchas reviewAggletonetal.(2011)proposedanewmodelofthalamic behavioral flexibility (Block et al. 2007). If this were the case contributionstorecognitionmemory,themulti-effectmultinu- then during associative or recency recognition memory tasks, clei(MEMN)model.ThismodelassertsthattheMDcancontrib- theMD–mPFCconnectionmightbenecessarytodirectongoing utetobothfamiliarityandrecollectiveprocesseseitherdirectly behaviortoward,forexample,thenovelobject–placeconfigura- viaaninteractionwiththeprefrontalcortexorindirectlyasare- tion. Alternatively, the MD may be required for acquisition of sultofcorticaldiaschesis(Aggletonetal.2011).Thismodelissup- newinformationorforretrieval.Inprimatesthemagnocellular portedbythecurrentfindingsregardingassociativerecognition, MD has previously been shown to be necessary for acquisition alongwithmorerecentclinicalresults(Pergolaetal.2012)that butnotforretrievalofpreoperativelylearntobject-in-placedis- pointtocontributionsfromtheparvicellularMDforrecollective criminations(MitchellandGaffan2008).However,assuchtasks aspectsofrecognition.Atthesametime,theredoesappeartobe are quite distinct from those used here, an examination of the apotentialincreaseintheimportanceoftheMDforfamiliarity- separate roles of the rat MD in acquisition or retrieval is now basedobjectrecognitioninmonkeysversusrats,potentiallyre- warranted. flecting species differences in afferents to the MD (Russchen Thepresentstudyaddstoagrowingbodyofevidencethatfor etal.1987)andthegreaterinfluenceofprefrontalareasforobject associativeandrecencyrecognitionmemory,informationneces- recognitionmemoryinprimates(Aggletonetal.2011). saryforsuccessfulperformanceisheldinmultiplebrainregions, TotestthefirstofthepossibilitiesraisedbytheMEMNmod- includingtheperirhinalcortex,hippocampus,andMD.Further, el,i.e.,thattheinvolvementoftheMDinrecognitionmemoryis itappearsthateachoftheseregionsisrequiredtointeractwith through an interaction with the prefrontal cortex, we explored themPFC(Hannessonetal.2004;Barkeretal.2007;Barkerand the functional importance of an interaction between these re- Warburton2011b).Takentogethertheseresultsshowthatduring gionsusingadisconnectionanalysis.Inanimalswithcombined unilateral MD and mPFC lesions in opposite hemispheres (MD+mPFCContragroup),performanceintheobject-in-place Table4. Meanexplorationtimes+SEMduringsamplephases and recency tasks was significantly impaired compared with andtestphaseofthetemporalordermemorytask that of animals with combined ipsilateral lesions (MD+mPFC Ipsigroup).HeretheMD+mPFCIpsigroupservedascontrols, Firstsample Secondsample Test exploration exploration exploration as these animals sustained the same amount of damage, albeit inthesamehemisphere,asanimalsintheMD+mPFCContra MD+mPFC 53.0+2.2 36.7+3.0 31.3+2.1 Contra group.Whileitisimpossibletoruleoutentirelythepossibility MD+mPFC 50.8+4.5 39.3+2.9 32.8+3.0 thattheipsilaterallesionsproducedsomesmalleffectonperfor- Ipsi mance,thediscriminationoftheMD+mPFCIpsigroupinthe www.learnmem.org 47 Learning&Memory MDthalamusandrecognitionmemory complex recognition memory tasks in which the processing of line. The scalp was further anesthetized using lidocaine, cut, itemsrequiresacontextual(placeortime)tag,theMDappears andretracted.Aftercraniotomy,excitotoxiclesionstothetarget tohaveakeyrolewithinthisneuralnetwork,Further,theresults regionsweremadeusingN-methyl-D-aspartate(NMDA)dissolved inphosphatebuffer(PB),injectedthrougha1-mLHamiltonsy- indicatethatthenatureofto-be-remembereddetermineswhich ringeatthefollowingcoordinatesrelativetobregma:mPFC,ante- brainregionsbecomeengaged. rior–posterior (AP) +2.7mm, mediolateral (ML) +0.7mm, Recognitionmemoryperformancehasbeencarefullyexam- dorsoventral (DV) 24.5mm and 22.2mm, and AP +4.0mm, inedinalimitednumberofclinicalcasesinwhichtheMDisdam- ML +0.7mm, DV 23.5mm and 22.0; MD, AP +3.7mm, ML aged,andresultsindicateaninvolvementofthisthalamicnucleus +0.7mm,DV +4.6.ThecoordinatesforthemPFC lesionwere in associative recognition (Aggleton et al. 2011; Pergola et al. calculated relative to bregma, while the coordinates for MD 2012).Ofparticularinterestisastudyofapatientwithaninfarct were calculated relative to ear-bar zero. For the mPFC lesion involvingtheinferiorcapsulargenu,whichdisruptedtheconnec- each NMDA injection (0.09 M, 0.28 mL) was made gradually tionbetweenthethalamus(includingtheMD)andtheprefrontal over 4min and the needle left in situ for a further 4min. For theMDlesion,NMDA(0.12M,0.36mL)wasinjectedintoeach cortex (Schnider et al. 1996). On testing, nonassociative recog- sitegraduallyover5minandtheneedleleftinsituforafurther nitionmemorywasfoundtobenormalwhileassociativeandtem- 5min. poralorderrecognitionmemorywerebothsignificantlyimpaired Oncesurgerywascompletedtheskinwassuturedandanan- (Schnideretal.1996).Thepreciselocusofdamageresponsiblefor tibiotic powder (Acramide) applied. All the animals received at thememorydeficitsinthisstudyisunclearasinevitablythelesion least5mLofglucosesalinesubcutaneouslyandsystemicanalge- involved other regions, including the anterior thalamic nuclei siaintramuscularly(0.05mLVetergesic)beforetheendofsurgery. andthalamicconnectionswiththeamygdala.However,thedefi- Hypromelloseeyedropsweregivenatthebeginningandendof citsinbothtemporalorderandcontextualrecognitionmemory surgery.Theanimalswereallowedtorecoverforatleast10dbe- accordwellwiththeresultspresentedhere. forehabituationtothebehavioralarenacommenced. Insummary,resultsfromthisstudydemonstratethattheMD iscriticalforobject-in-placeandrecencymemoryperformance. Histology Furthermore,fortheserecognitionmemoryjudgments,aninter- actionbetweentheMDandthemPFCisequallynecessaryasthe Oncompletionofthebehavioraltaskstheanimalsweresacrificed bytranscardialperfusionwithPBfollowedby4%paraformalde- integrity of the structures themselves. Our previous studies re- hyde(PFA).Thebrainswerepost-fixedin4%PFAforaminimum vealedaneuralcircuitinvolvingthehippocampus,perirhinalcor- of24hfollowedby48hin30%sucroseinPB.Coronalsections tex,andmPFCforbothassociativerecognitionandrecognition (40mm)werecutonacryostatandthesectionsmounteddirectly memory discriminations based on recency information (Barker ontogelatin-coatedslides,stainedusingcresylviolet,andcover- etal.2007;BarkerandWarburton2011a).Theevidencenowsug- slippedusingDPXmountingmedium.Slideswerethenviewed geststhattheMDisafurthercriticalcomponentofthiscircuit. underalightmicroscopeandtheextentoflesionsrecorded. ToassesstheextentofthemPFClesionallsectionsalongthe APaxisofeachratbrainbetween+4.7mmand+1.5mm(relative Materials and Methods tobregma)wereselectedandcomparedwiththoseinaratbrain atlas(Swanson1998).ToassesstheextentoftheMDlesion,all Subjects sections along the AP axis of each rat brainbetween 21.5 and Experiment1used36maleratsandExperiment2used24male 24.20(relativetobregma)wereselectedandcomparedwiththe rats(DAstrain;BantinandKingman,Hull,UK),weighing220– ratbrainatlas(Swanson1998). 290gpriortotesting.Alltheanimalswerehousedingroupsof four, under a 12-h light/dark cycle (light phase, 18.00 to 6.00) withadlibitumaccesstofoodandwater.Behavioraltestingwas Apparatus conductedduringthedarkphaseofthiscycle.Allanimalproce- Behavioral testing took place in a wooden open-topped arena dureswereperformedinaccordancewithUKAnimalsScientific (50-cm high, 95-cm wide, and 100-cm long), with gray walls ProceduresAct(1986)andassociatedguidelines.Alleffortswere andexternalblackcurtainstoaheightof1.5mtorestrictdistal madetominimizeanysufferingandthenumberofanimalsused. cues.Thefloorwascoveredinsawdust,whichservedtoconceal the identical green Duplo mats (15cm×15cm), onto which Surgery the objects were attached to prevent them being displaced. In alltheexperimentsthesawdustwascleanedbetweeneachani- Experiment1 mal.Explorationwasmonitoredusinganoverheadcameraand recordedontovideotape.Theamountofobjectexplorationwas Rats received bilateral excitotoxic lesions in the mPFC or MD. determined using in-house counting software on a computer Controlanimalsreceivedshamsurgery;halfthecontrolanimals withintheroomwhich,inresponsetoakeypressfromtheexper- received sham mPFC lesions, and the other half received sham imenter(onekeyfortheleftobject,onekeyfortherightobject), MDsurgeries.Fortheshamsurgeriestheanimalsunderwentthe recordedtheamountofexplorationcompletedwithin20-sectime samesurgicalproceduresasthetwolesiongroupswiththeexcep- bins.ObjectswereconstructedfromDuploandvariedincolorand tionthatnoexcitotoxinwasinjectedoncetheneedlehadbeen sizefrom9×8×7cmto25×15×10cm.Newobjectswereused lowered(n¼12forallgroups). foreveryexperiment. Experiment2 Behavioral procedures AlltheratsreceivedcombinedunilaterallesionsintheMDand the mPFC. In one group these lesions were placed in the same hemisphere (MD+mPFC Ipsi group), while in the other group Habituation these lesions were placed in contralateral hemispheres (MD+ Priortotesting,alltheanimalswerehandledforaweekandhabit- mPFCContragroup)(n¼12forbothgroups).Thesideofdamage uatedtotheemptyarenaforfourdays.Forthefirsttwoofthese (i.e.,leftorrighthemisphere),wascounterbalancedwithineach dayseachcageofanimals(fourrats)washabituatedtothearena group. togetherfor15min.Forthenexttwosessions,eachratwashabit- Beforesurgeryalltheratswereanesthetized(isoflurane:in- uated individually for 5min in the emptyarena. Animals were duction 4%; maintenance 2%–4%) and placed in a stereotaxic alsohabituatedindividuallyfora5-minperiodpriortothetasks frame with the incisor bar set at +5mm above the interaural in which the appearance of the arena had been altered from www.learnmem.org 48 Learning&Memory MDthalamusandrecognitionmemory that of the standard arena (i.e., for the object location and across the rats. A representation of the procedure is shown in object-in-placetasks). Figure1D. Behavioral measuresand statistical analyses Familiaritydiscrimination(anovelobjectrecognitiontask) Explorationoftheobjects,definedastheanimalorientatingits Inthesamplephase,theanimalswereintroducedtoanarenacon- nosetowardtheobjectatadistanceof ,1cmfromtheobject, tainingtwoidenticalcopiesofoneobject.Animalswereallowed was measured with the experimenter blind to the lesion status toexplorethetwocopiesfreelyuntiltheyhadcompletedatotal oftheanimal.Anyotherbehavior,suchaslookingaroundwhile of40secofobjectexploration,orhadspent4mininthearena. sittingonorrestingagainsttheobjectorusingtheobjecttorear Animalswereremovedfromthearenaandplacedintheirhome whilelookingaroundthearena,wasnotconsideredasexplora- cagewithinthetestingroom,foradelayperiod(5minor3h)dur- tion. Animals were excluded from the analysis on the basis of ingwhichtimethearenaandobjectswerecleaned.Followingthe lowexplorationlevels(,15secinthesamplephase).Adiscrimi- delay,animalswereplacedbackintothearena,whichnowcon- nationratiowasgeneratedforeachanimal.Thediscriminationra- tainedanothercopyoftheobjectseeninthesamplephaseand tiowascalculatedasthetimespentbyeachanimalexploringthe anovelobject.Theanimalwasallowedtoexploretheobjectsfree- novelobjectminusthatexploringthefamiliarobject,dividedby lyfor3minandwasthenreturnedtoitshomecage.Theobject thetotaltimespentexploringbothobjects.Inthecaseoftheob- actingasthesampleobjectandthepositionoftheobjectswere jectrecognitiontask,thenovelobjectwasanobjectthathadnev- counterbalancedacrosstheanimals.Arepresentationofthepro- er been previously encountered, while for the object-in-place cedureisshowninFigure1A. and object location tasks the novel stimulus was considered to betheobjectthathadaltereditspositioninthearenafromthat inthesamplephase.Inthecaseofthetemporalordertask,the Spatialdiscrimination(objectlocationtask) ‘novel’stimulus wasthe object encountered in the firstsample Theobjectlocationtaskwasconductedinasimilarwaytotheob- phase. Group comparisons used ANOVA followed by post-hoc jectrecognitiontask;however,twoofthecurtainssurrounding Newman–Keulstests.Additionalanalysisexaminedwhetherin- thearenawereremovedtoallowtherattoviewextra-mazecues dividual groups had discriminated between the objects using a andoneofthearenawallswaspaintedadifferentcolortoprovide one-sample t-test (two-tailed) where significance was assumed an intra-maze cue. During the sample phase, animals were al- whenP,0.05. lowedtoexploretwoidenticalcopiesofanobjectfor4minbefore Therecognitionmemoryexperimentswereconductedinthe beingremovedfromthearenaforthedelayperiod(5-minor3-h followingorder:Objectrecognitionwitha3-hdelay,objectloca- delay in Experiment 1 and 3-h delay only in Experiment 2). tionwitha5-mindelay,object-in-placewitha5-mindelay,object Followingthedelay,theanimalswereplacedbackintothearena, locationwitha3-hdelay,recency,object-in-placewitha3-hde- whichnowcontainedtworeplicasoftheobjectsfromthesample lay, and object recognition with a 5-min delay. The animals phase.Oneobjectwasreplacedinthelocationpreviouslyoccu- were run in this order to minimize the effects of task orderon pied bya sample-phase object,but the otherobject was placed performance. inanewlocationwithinthearena.Objectexplorationwasrecord- edfor3min.Thepositionofthemovedobjectwascounterbal- ancedacrossrats.Arepresentationoftheprocedureisshownin Acknowledgments Figure1B. This research was funded by a project grant from the Biotechnology and Biological Sciences Research Council (grant no. BB100310X1) and the Wellcome Trust. We thank Jane Associativerecognitionmemory(object-in-placetask) RobbinsforassistancewiththehistologyandLucyWilliamsfor Object-in-place testing was conducted in an arena identical to conductinganumberofpreliminarystudies. thatusedfortheobjectlocationtask.Inthistask,fourdifferent objectswereplacedinthefourcornersofthearenaandduring thesamplephasetheanimalswereallowedtoexplorethesefour References objects for a 5-min sample phase. The animals were removed AggletonJP,BrownMW.1999.Episodicmemory,amnesia,andthe fromthearenaforthedelayperiod(5minor3h)andtheobjects hippocampal-anteriorthalamicaxis.BehavBrainSci22:425–444. cleanedwithethanol.Inthe testphasethe positionsof twoof AggletonJP,MishkinM.1983a.Memoryimpairmentsfollowingrestricted theseobjectswereexchanged.Thepositionsofthe objectsand medialthalamiclesionsinmonkeys.ExpBrainRes52:199–209. particular objects moved were counterbalanced across animals. AggletonJP,MishkinM.1983b.Visualrecognitionimpairmentfollowing ArepresentationoftheprocedureisshowninFigure1C. medialthalamiclesionsinmonkeys.Neuropsychologia21:189–197. AggletonJP,DumontJR,WarburtonEC.2011.Unravelingthe contributionsofthediencephalontorecognitionmemory:Areview. Recencyrecognitionmemory(recencytask) LearnMem18:384–400. BarkerGRI,WarburtonEC.2011a.Evaluatingtheneuralbasisoftemporal Forthistaskthearenawasidenticaltothatusedfortheobjectrec- ordermemoryforvisualstimuliintherat.EurJNeurosci33:705–716. ognitionexperiment.Thetaskcomprisedtwosamplephasesand BarkerGRI,WarburtonEC.2011b.Whenisthehippocampusinvolvedin onetesttrial.Inthefirstsamplephase,animalswereallowedto recognitionmemory?JNeurosci31:10721–10731. exploretwoidenticalobjectsfor4minbeforebeingreturnedto BarkerGR,BirdF,AlexanderV,WarburtonEC.2007.Recognitionmemory forobjects,place,andtemporalorder:Adisconnectionanalysisofthe theirhomecageforadelayof1h.Forthesecondsamplephase, roleofthemedialprefrontalcortexandperirhinalcortex.JNeurosci27: animalswereplacedbackintothearena,whichnowcontained 2948–2957. twoidenticalobjectsthatweredifferenttothoseseeninsample BlockAE,DhanjiH,Thompson-TardifSF,FlorescoSB.2007. phase1.Animalswereallowedtoexplorethesenewobjectsfor Thalamic-prefrontalcortical-ventralstriatalcircuitrymediates 4minandthenremovedtotheirhomecages.Followinga3-hde- dissociablecomponentsofstrategysetshifting.CerebCortex lay, the animals were returned to the arena for the test phase 17:1625–1636. whereexplorationofacopyoftheobjectseeninsamplephase BusseyTJ,DuckJ,MuirJL,AggletonJP.2000.Distinctpatternsof 1andacopyoftheobjectfromsamplephase2wasrecorded.As behaviouralimpairmentsresultingfromfornixtransectionwith neurotoxiclesionsoftheperirhinalandpostrhinalcorticesintherat. thecontrol animalsin thistaskhad relativelylowbaselinedis- BehavBrainRes111:187–202. criminationlevelsassociatedwithappreciablevariance,thetask CorbitLH,MuirJL,BalleineBW.2003.Lesionsofmediodorsalthalamus wasrepeated,withtheleft–rightpositionoftheobjectsfromsam- andanteriorthalamicnucleiproducedissociableeffectson ple phase 1 and sample phase 2 counterbalanced and the data instrumentalconditioninginrats.EurJNeurosci18:1286–1294. from the two runs were combined. Objects used in all sample DiasR,AggletonJP.2000.Effectsofselectiveexcitotoxicprefrontallesions phases and the locations of the objects were counterbalanced onacquisitionofnonmatching-andmatching-to-placeintheT-maze www.learnmem.org 49 Learning&Memory MDthalamusandrecognitionmemory intherat:Differentialinvolvementoftheprelimbic–infralimbicand ParkerA,EacottMJ,GaffanD.1997.Therecognitionmemory anteriorcingulatecorticesinprovidingbehaviouralflexibility.EurJ deficitcausedbymediodorsalthalamiclesioninnon-human Neurosci12:4457–4466. primates:Acomparisonwithrhinalcortexlesion.EurJNeurosci9: Dolleman-vanderWeelM,MorrisR,WitterM.2009.Neurotoxiclesions 2423–2431. ofthethalamicreuniensormediodorsalnucleusinratsaffectnon- ParkinAJ,ReesJE,HunkinNM,RosePE.1994.Impairmentofmemory mnemonicaspectsofwatermazelearning.BrainStructFunct213: followingdiscretethalamicinfarction.Neuropsychologia32:39–51. 329–342. PergolaG,OnurO,KochB,SchwarzM,DaumI,SuchanB.2012.Recall EnnaceurA,AggletonJP.1997.Theeffectsofneurotoxiclesionsofthe deficitsinstrokepatientswiththalamiclesionscovarywithdamage perirhinalcortexcombinedtofornixtransectiononobjectrecognition totheparvocellularmediodorsalnucleusofthethalamus. memoryintherat.BehavBrainRes88:181–193. Neuropsychologia50:2477–2491. EnnaceurA,NeaveN,AggletonJP.1996.Neurotoxiclesionsofthe RayJP,PriceJL.1992.Theorganizationofthethalamocortical perirhinalcortexdonotmimicthebehaviouraleffectsoffornix connectionsofthemediodorsalthalamicnucleusintherat,related transectionintherat.BehavBrainRes80:9–25. totheventralforebrain-prefrontalcortextopography.JCompNeurol FahyFL,RichesIP,BrownMW.1993.Neuronalsignalsofimportancetothe 323:167–197. performanceofvisualrecognitionmemorytasks:Evidencefrom RayJP,PriceJL.1993.Theorganizationofprojectionsfromthe recordingsofsingleneuronesinthemedialthalamusofprimates.Prog mediodorsalnucleusofthethalamustoorbitalandmedialprefrontal BrainRes95:401–416. cortexinmacaquemonkeys.JCompNeurol337:1–31. FlorescoSB,SeamansJK,PhilipsAG.1997.Selectiverolesforhippocampal, RusschenFT,AmaralDG,PriceJL.1987.Theafferentinputtothe prefrontalcorticalandventralstriatalcircuitsinradialarmmazetasks magnocellulardivisionofthemediodorsalthalamicnucleusinthe withorwithoutadelay.JNeurosci17:1880–1890. monkey,Macacafascicularis.JCompNeurol256:175–210. GardenDLF,MasseyPV,CaruanaDA,JohnsonB,WarburtonEC, SandsonTA,DaffnerKR,CarvalhoPA,MesulamM-M.1991.Frontallobe AggletonJP,BashirZI.2009.Anteriorthalamiclesionsstopsynaptic dysfunctionfollowinginfarctionoftheleft-sidedmedialthalamus. plasticityinretrosplenialcortexslices:Expandingthepathologyof ArchNeurol48:1300–1303. diencephalicamnesia.Brain132:1847–1857. SaundersRC,MishkinM,AggletonJP.2005.Projectionsfromthe GroenewegenHJ.1988.Organizationoftheafferentconnectionsofthe entorhinalcortex,perirhinalcortex,presubiculum,andparasubiculum mediodorsalthalamicnucleusintherat,relatedtothe tothemedialthalamusinmacaquemonkeys:Identifyingdifferent mediodorsal-prefrontaltopography.Neuroscience24:379–431. pathwaysusingdisconnectiontechniques.ExpBrainRes167:1–16. HannessonDK,HowlandJG,PhillipsAG.2004.Interactionbetween SchniderA,GutbrodK,HessCW,SchrothG.1996.Memorywithout perirhinalandmedialprefrontalcortexisrequiredfortemporalorder context:Amnesiawithconfabulationsafterinfarctionoftheright butnotrecognitionmemoryforobjectsinrats.JNeurosci24: capsulargenu.JNeurolNeurosurgPsychiatry61:186–193. 4596–4604. ShermanSM.2007.Thethalamusismorethanjustarelay.CurrOpin HuntPR,AggletonJP.1991.Medialdorsalthalamiclesionsandworking Neurobiol17:417–422. memoryintherat.BehavNeuralBiol55:227–246. SwansonLW.1998.Brainmaps:Structureoftheratbrain.Elsevier, HuntPR,AggletonJP.1998.Neurotoxiclesionsofthedorsomedial Amsterdam. thalamusimpairtheacquisitionbutnottheperformanceofdelayed TaberKH,WenC,KhanA,HurleyRA.2004.Thelimbicthalamus.J matchingtoplacebyrats:Adeficitinshiftingresponserules.JNeurosci NeuropsychiatryClinNeurosci16:127–132. 18:10045–10052. TsanovM,VannSD,ErichsenJT,WrightN,AggletonJP,O’MaraSM.2011. IsaacCL,HoldstockJS,CezayirliE,RobertsJN,HolmesCJ,MayesAR.1998. Differentialregulationofsynapticplasticityofthehippocampaland Amnesiainapatientwithlesionslimitedtothedorsomedialthalamic thehypothalamicinputstotheanteriorthalamus.Hippocampus nucleus.Neurocase4:497–508. 21:1–8. KrettekJE,PriceJL.1977.Thecorticalprojectionsofthemediodorsal VanderWerfYD,WitterMP,UylingsHB,JollesJ.2000. nucleusandadjacentthalamicnucleiintherat.JCompNeurol171: Neuropsychologyofinfarctionsinthethalamus:Areview. 157–191. Neuropsychologia38:613–627. MilnerB,PetridesM.1984.Behaviouraleffectsoffrontal-lobelesionsin VanGroenT,VogtB,WyssJ.1993.Interconnectionsbetweenthethalamusand man.TrendsNeurosci7:403–407. retrosplenialcortexintherodentbrain.Birkhauser,Boston. MitchellAS,Dalrymple-AlfordJC.2005.Dissociablememory VictorM.1987.Theirrelevanceofmammillarybodylesions effectsaftermedialthalamuslesionsintherat.EurJNeurosci inthecausationoftheKorsakoffamnesicstate.IntJNeurol21–22: 22:973–985. 51–57. MitchellAS,GaffanD.2008.Themagnocellularmediodorsalthalamusis VictorM,AdamsRD,CollinsGH.1971.TheWernicke-Korsakoffsyndrome. necessaryformemoryacquisition,butnotretrieval.JNeurosci28: Aclinicalandpathologicalstudyof245patients,82withpost-mortem 258–263. examinations.ContempNeurolSer7:1–206. MitchellJB,LaiaconaJ.1998.Themedialfrontalcortexandtemporal XiangJZ,BrownMW.1998.Differentialneuronalencodingofnovelty, memory:Testsusingspontaneousexploratorybehaviourintherat. familiarityandrecencyinregionsoftheanteriortemporallobe. BehavBrainRes97:107–113. Neuropharmacology37:657–676. MumbyDG,PinelJP,DasturFN.1993.Mediodorsalthalamiclesionsand XiangJZ,BrownM.2004.Neuronalresponsesrelatedtolong-term objectrecognitioninrats.Psychobiology21:27–36. recognitionmemoryprocessesinprefrontalcortex.Neuron42: NeaveN,SahgalA,AggletonJP.1993.Lackofeffectofdorsomedial 817–829. thalamiclesionsonautomatedtestsofspatialmemoryintherat.Behav Zola-MorganS,SquireLR.1985.Amnesiainmonkeysafterlesionsofthe BrainRes55:39–49. mediodorsalnucleusofthethalamus.AnnNeurol17:558–564. ParkerA,GaffanD.1998.Interactionoffrontalandperirhinalcorticesin visualobjectrecognitionmemoryinmonkeys.EurJNeurosci10: 3044–3057. ReceivedAugust20,2012;acceptedinrevisedformOctober24,2012. www.learnmem.org 50 Learning&Memory