ebook img

The mass-period distribution of close-in exoplanets PDF

3.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The mass-period distribution of close-in exoplanets

Astronomy&Astrophysicsmanuscriptno.15774 (cid:13)c ESO2011 January19,2011 The mass-period distribution of close-in exoplanets P.Ben´ıtez-Llambay1,F.Masset2,andC.Beauge´1 1 ObservatorioAstrono´mico,UniversidadNacionaldeCo´rdoba,Argentina 2 InstitutodeCienciasF´ısicas,UniversidadNacionalAuto´nomadeMe´xico,ApdoPostal48-3,62251Cuernavaca,Mor.,Me´xico⋆⋆ Preprintonlineversion:January19,2011 ABSTRACT 1 Context.ThelowerlimittothedistributionoforbitalperiodsPforthecurrentpopulationofclose-inexoplanetsshowsadistinctive 1 discontinuitylocatedatapproximatelyoneJovianmass.Mostsmallerplanetshaveorbitalperiodslongerthan P ∼ 2.5days,while 0 highermassesarefounddowntoP∼1day. 2 Aims.Weanalyzewhetherthisobservedmass-perioddistributioncouldbeexplainedintermsofthecombinedeffectsofstellartides andtheinteractionsofplanetswithaninnercavityinthegaseousdisk. n Methods.Weperformedaseriesofhydrodynamicalsimulationsoftheevolutionofsingle-planetsystemsinagaseousdiskwithan a innercavitymimickingtheinnerboundaryofthedisk.Thesubsequenttidalevolutionisanalyzedassumingthatorbitaleccentricities J aresmallandstellartidesaredominant. 8 Results.We find that most of the close-in exoplanet population isconsistent with an inner edge of the protoplanetary disk being 1 locatedatapproximatelyP&2daysforsolar-typestars,inadditiontoorbitaldecayhavingbeencausedbystellartideswithaspecific ] ttyidpaelIpIamraimgreatetiroonn,ctrhoessoirndgerthoefgQa′∗p≃,a1n0d7fi.Tnahlelydhataaltiisngbraotatdhleyicnotenrsiiosrte2n/t1wmitehanp-lamnoettisomnorerseomnaansscievewtihthanthoendeisJkupeidtegrem.Samssaullnedreprlgaonientgs P do not open a gap in the disk and remain trapped in the cavity edge. CoRoT-7b appears detached from the remaining exoplanet E population,apparentlyrequiringadditionalevolutionaryeffectstoexplainitscurrentmassandsemimajoraxis. . h p - o 1. Introduction r st Close-inplanets(semimajoraxisa < 0.1AU)constituteaspe- 8 a cial subset of the exoplanetary population. Since it is unclear [ whetherin-situformationoccurs,thecurrentorbitalandphysical 1 characteristicsoftheseplanetsprovideimportantconstraintson 4 v theirpastevolutionandformationprocess.Severalmechanisms d] 5 havebeenproposedtoexplainthepile-upofhotplanetswitha d [ o 4 three day orbital period, including a truncation of the gaseous eri 2 GJ876d P 5 diskbythestar(Linetal.1996,KuchnerandLecar2002),plan- GJ1214b 3 etaryscatteringcombinedwithKozairesonanceandtidalcircu- . 1 larization(Nagasawaetal. 2008),planetaryevaporation(Davis 1 0 and Wheatly 2009), and tidal interactions with the parent star CoRoT-7b 1 (Jacksonetal.2009). 1 In particular, Kuchner and Lecar (2002) suggested that a 0.5 : giant planet in circular orbit could halt its migration when its 0.01 0.1 1 10 v mass [M ] i orbital period was half that of the inner edge of the disk. In Jup X this configuration,allthe planet’scircular Lindbladresonances Fig.1. Distribution of orbital periods and planetary masses for r wouldlie in theinnercavity(IC)andnofurtherinterchangeof close-in exoplanets with orbital period P < 12 days. Data a angularmomentumwouldtakeplace.Masset etal. (2006)per- fromhttp://exoplanets.eu.Blackcirclesdenoteplanetswithboth formedaseriesofhydrodynamicalsimulationstofollowtheevo- Doppler and transit data, while gray circles mark bodies with- lutionoflow-massplanetsindisksincludinganIC.Theyfound outdetectedtransits.Emptysquarescorrespondtoplanetswith thatallbodiesmigrateduntilreachingapointslightlyexteriorto retrogradeorbitswithrespecttothestellarspin. thecavityedge,wheretheywereeffectivelytrappedina stable configurationin almostcircular orbits. Althoughthis resultap- pearsdifferentfromthatpredictedbyKuchnerandLecar(2002), eachis valid,as we shallsee, fora differentrangeofplanetary masses. al.(2007)andDavisandWheatley(2009)extendedtheanalysis The first reference to a possible correlation between mass toalargertransitingpopulation,findingasimilarresultalthough and orbital periodfor close-in planetswas proposedby Mazeh with a much broader dispersion. They proposed that smaller etal.(2005)foronlysixtransitingbodies.Theyfoundthatboth planetsclosertothestarmighthavebeenlostbecauseofevap- parameters seemed to follow a linear law, with more massive oration,similartothatcurrentlyongoingatleastinHD209458b bodiesbeing located at smaller semimajor axes. Southworthet (Vidal-Madjaretal.2003)andWASP-17(Andersonetal.2010). 2 P.Ben´ıtez-Llambay1etal.:Themass-perioddistributionofclose-inexoplanets Jacksonetal.(2009)alsoanalyzedthedistributionofclose- in planets, this time focusing on the correlation between the semimajor axis of the planet and the age of its star. They foundthat the lower limit of the semimajor axis was lower for youngerstars, which impliesthattidal effectscouldbe respon- sible. Exoplanets with very short orbital periods in older stars would have had enough time to be tidally disrupted, thus they wouldonlybepresentlyobservableinrelativelyyoungsystems. In this paper, we revisit the mass-period distribution, tak- ingadvantageoftherecentincreaseintheexoplanetpopulation. Figure1showstheorbitalperiodsP,asafunctionofthemassm, forthe knownpopulationofexoplanetswith P ≤ 12days(137 planets).Blackcirclescorrespondtocasesforwhichbothtran- sitsandDopplerdataareavailable;bodieswithoutdetectedtran- sits are shown in gray. Exoplanets in apparent retrograde mo- tion with respect to stellar rotation are identified by an empty square. These are WASP-8b (Queloz et al. 2010), WASP-17b (Anderson et al. 2010), WASP-33b (Collier Cameron 2010), Hat-P-7b(Winnetal.2009),WASP-2b(Triaudetal.2010),and WASP-15bandWASP-17b(Triaudetal.2010).Althoughitmay bearguedthatthesebodiesarenotconsistentwithplanetarymi- gration(Triaudetal.2010),theymayalsopointtowardsprimor- dial spin-orbit misalignment and not be related to subsequent orbitalevolutionoftheplanets(Laietal.2010). 1 x 10-4 The distribution exhibits a noticeable “step”, exoplanets Planet 9 x 10-5 largerthanoneJupitermass(M )appeartohavealowerinner Jup boundary(downto∼1day)whileform< MJupthedistribution 8 x 10-5 seems restricted to larger values of P. The only exceptionsare threebodiesintheSuper-Earthrange,CoRoT-7b,GJ1214b,and 7 x 10-5 GJ876d,whichareallmarkedintheplot.Ofthese,thelattertwo plalranmeatsssbeesl,ornegsptoecltoivwe-lmy)a,stshsutsarcso(nMst∗itu=te0.s1p7ecainadlcMas∗e=s.0C.o3R2osTo-- Σ(r) 6 x 10-5 5 x 10-5 7b, however, belongs to a solar-type star (Rouan et al. 2009). Thisplanethasaveryshortorbitalperiod(∼0.85days)butalso 4 x 10-5 averylowmass(m∼0.015M ),anddoesnotseemtocomply Jup withtherestoftheexoplanetdistribution.Inparticular,Jackson 3 x 10-5 et al. (2009)pointedoutthatCoRoT-7b couldreachthe Roche radiusontimescalesof107−109years,dependingonthevalue 2 x 10-5 ofthespecifictidalparameterQ′. Regardlessoftheseisolated∗cases, thereseemstobea very 1 x 10-5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 cleardiscontinuity(orbump)inthemass-perioddistribution,lo- r catedatapproximatelym= M .Moreover,forhighmassesthe Jup Fig.2.Snapshotofthesurfacedensityprofileofoneofoursim- lowerlimitinorbitalperiodsappearsveryclosetoa2/1mean- ulations. The inner cavity is centered around r = 1.8. In the motionresonancewiththediskedgeforsmallplanetarybodies. top frame, the low-density regions are shown in black, while This appears consistent with a scenario in which the planetary the high-density regions are shown in white. The planet (m = trapsproposedbyMassetetal.(2006)woulddominatethelow- 0.1M )islocatedonthex-axis. massregion,whilethemechanismofKuchnerandLecar(2002) Jup wouldbemainlyresponsiblefortheupperendofthemassspec- trum. mechanismsisconsistentwiththeobserveddistributionofclose- Themainobjectiveofthisstudyistotestwhetherthecom- in planets. Section 3 is devoted to the subsequent evolution of bined action of planetary traps in the gaseous disk plus subse- exoplanetsunder the stellar tide and their effects on any initial quent tidal interactions with the parent star could explain the disk-drivendistribution in the mass-period diagram.In Section observeddistributionofclose-inexoplanets.Sinceexoplanetsin 4, we analyze the case of the CoRoT-7 planetary system and retrogradeorbitsshouldhaveexoticdisk-planetandtidalevolu- presentpossibleexplanationsofthepresentlocationofCoRoT- tions, thestudy ofthese exosystemsis beyondthe scopeof the 7b.Finally,conclusionsclosethepaperinSection5. present work, and we focus mainly on bodies believed to have orbitalmotioninthesame directionasthestellar spin.Evenin thiscase,weassumeazeroinclinationwithrespecttothestellar 2. Hydrodynamicalsimulations equator. In Section 2, we present a series of hydrodynamicalsimu- 2.1.Initialconditions lations adopting different planetary masses and analyzing the Our simulations were carried out using the FARGO1 hydro- relative halting distance from the central star. Not only are we code(Masset2000a,b)withacentralstarofonesolarmass.We interested in seeing whether such a hybrid and mass-selective processispossible,butalsowhethertheboundarybetweenboth 1 Seehttp://fargo.in2p3.fr P.Ben´ıtez-Llambay1etal.:Themass-perioddistributionofclose-inexoplanets 3 place for the planet, as long as its mass is sufficiently low to 2.4 avoiddisruptionofthedensity(andtorque)profile. 2.1 m=0.1 MJup 2.2.Testsimulationsofplanettrapping IC 1.8 Afterthediskdensityprofilehadstabilized,weincludedaplanet r ofmassminaninitiallycircularorbitatr = 2.5r0.Thesystem m=10 MJup was allowed to evolve until the planet reached a stationary so- 1.5 lutionandtheorbitaldecayeffectivelystopped.Figure3shows theresultsoftworuns,thefirstwithm=0.1M andthesecond Jup withm=10M .ThelocationofthecenteroftheICismarked 1.2 2/1 MMR Jup bythetophorizontaldashedline,whilethelowercorrespondsto theinterior2/1mean-motionresonance(MMR)withthecenter 0.9 oftheIC. 100 1000 10000 1e+05 time The smaller planet suffers an almost constantorbital decay untilitishaltedatalocationslightlyoutsidethecavity,inaccor- Fig.3. Evolution of semimajor axis of two one-planetsystems dance with the findingsof Masset et al (2006).The more mas- migratingandhaltingnearthediskinnercavityedge(IC).Black sive planet, however, suffers a Type II migration that opens a curvecorrespondstom=0.1M andgraytom=10M .The Jup Jup gapin its co-orbitalregionand completelydisruptsthe density IC is centeredat r = 1.8, while its interior2/1 mean-motion IC profile of the disk in its vicinity. The cavity edge is therefore resonance(MMR)islocatedatr ≃1.13.Timeisinorbitalperi- incapable of generating a strong corotation torque and fails to ods. traptheplanet,whichcontinuesitsorbitaldecayinsidethecav- ity.Themigrationisfinallystoppedveryclosetothelocationof considertwo-dimensional,locallyisothermaldisks.Theunitof the2/1MMRwiththeICwherethedifferentialLindbladtorque length, r , is arbitrary (our simulations are scale free and can reducestozero,aspredictedbyKuchnerandLecar(2002). 0 berescaledtodisksofarbitrarysizes),butitcanbeconsidered, Inallcases,theeccentricitiesweredamped,andthefinalor- for our purpose, that r0 ∼ 0.01 AU. Our disks, prior to a 1D bitswereobservedtobequasi-circularwithe∼10−3.Thisfinal relaxation dedicated to the creation of the IC, have a uniform eccentricityisdifferentfromtheresultspresentedbyRiceetal. surfacedensityΣ = 10−4 M⊙.r0−2,whichtranslates,inourcase, (2008), where a significant eccentricity excitation is observed toΣ∼900g.cm−2.Theasymptoticradiusofourplanetsisvirtu- forTypeIImigrationinsidetheinnerdiskedge.Fromwhatwe allyindependentofthisvalue,whichessentiallyprescribeshow havebeenable to see, the discrepancyarisesfromthe different longittakesforthemtoreachit.Inasimilarmanner,thekine- numericalsetup.Riceetal(2008)truncatethediskatthemesh’s maticviscosityofourdisksisuniformoutsidethecavity,andis inner edge, and the planets that they consider essentially orbit set to ν = 10−5r2Ω−1, where Ω is the orbital frequency at ra- in a vacuum.This isin contrastto oursituation in whichsome 0 0 0 diusr .Someinitialtestrunswereperformedwithothervalues residual material surrounds the orbit. This material, by the ac- 0 of Σ and ν with no significant change in the results, except for tion of co-orbitalLindbladresonances, is a powerfulsource of themigrationtimescale.Thediskaspectratioissetuniformlyto eccentricitydamping. H/r = 0.05,hencethe valueof the α parameterthatcharacter- izes turbulence (Shakura & Sunyaev,1973) just outside the IC (seebelow)isα∼3·10−3. 2.3.Scalingandcomparisonwithobservations Ourdisksaredescribedonapolargridwith384zonesinaz- Werepeatedthesimulationsforatotalof18runs,withplanetary imuthand306zonesinradius.Theinnerradiusofthemeshisat massesrangingfrom0.01to20Jupitermasses,allstartingfrom 0.2r ,whiletheouterradiusisat3.5r .TheICwasgeneratedus- 0 0 initial circular orbits at r = 2.5r . The orange curve in the top inganadhocstepinkinematicviscosityaroundr=1.8r ,using 0 0 plot of Figure 4 presents the final orbital period as function of thesamerecipeasdescribedinMassetetal.(2006),adoptinga the planetary mass. For comparison,the observationaldata are value of F = Σ /Σ = 10 for the ratio of the surface densi- o i againdrawnincircles. tiesoutsideandinsidethecavity.WeobtainarathersharpICof width∆r ≃ 0.5r .Boundaryconditionswerechosentobenon- SincethelocationofourICwasinarbitraryunits,we have 0 reflectingfortheinneredgeandsuchthattherewasacontinuous a degree of freedom in the sense that we may shift the orange outer source mass to maintain the surface density in the exter- curvearbitrarilyinthey-axistofittheobservedexoplanets.We nal regions of the disk (Masset et al. 2006 used non-reflecting findthatthebestfitgivesaninnercavityedgelocatedatapprox- boundaryconditionsforbothedges).Noplanetwasconsidered imatelya ∼ 0.03AU correspondingtoanorbitalperiodof∼ 2 atthispoint. days.Thisvalueiscomparablewiththeinferredinnergasradii An initial one-dimensionalrun was performedto allow the ofTTauristar disksfromCO spectroscopy(Najitaetal. 2007, cavity to form and reach a steady state configuration. The re- Carr 2007)which seems to be located around0.03−0.04AU. sultingdensityprofileandtotaltorquewereanalogoustothose Although our best-fit distance is slightly lower, any difference showninMassetetal.(2006),showingtheexistenceofastable couldbeduetostellarparametersandthemaximumCOveloc- fixedpointinthetorqueatadistancer∗ slightlylargerthanthe ity(Carr2007). nominaledge of the IC (Figure 2). A planet located outside r∗ ExoplanetswithmassesbelowoneJovianmassseemtohave wouldfeelanegativetorqueandsufferanegativeorbitaldecay alower-limitorbitalperiodofabout2−3days,consistentwith towardsthe star. Conversely,a bodyplaced ata radialdistance the position of the equilibrium point being slightly beyond the slightlysmallerthanr∗ wouldfeelapositivetorqueandanout- IC(Massetetal.2006).Ontheotherhand,theorbitalperiodsof wardradialmigration.Thus,thepointr = r∗ isastablenesting moremassiveplanetshavealowerlimit,thistimeinaccordance 4 P.Ben´ıtez-Llambay1etal.:Themass-perioddistributionofclose-inexoplanets (seeFerraz-Melloetal.2008,Jacksonetal.2009).Thisexpres- 8 sioncanbeeasilyintegratedtoyield 117 G 1/2 R5M 4 a(t)13/2 = ∗ p t+a13/2, (2) d [d] " 4 M∗! Q′∗ # 0 erio 2 where a0 = a(t = 0) is the initial value of the semimajor axis. p Aftersomesimplealgebraicmanipulations,wecanexpressthis solutionas 1 a¯(t)13/2 =a¯13/2−βt, (3) 0 0.5 0.01 0.1 1 10 where mass [M ] Jup 117 G 1/2 M 0.1 β= R 5 p (4) 0.08 4 M⊙! ⊙ Q′∗ 0.06 and M 1/13 R 10/13 0.04 a¯ =a ∗ ⊙ . (5) a M⊙! R∗! Equation(3)isthenindependentofthestellarparameters,whose 0.02 valuesareincorporatedintothe“normalized”semimajoraxisa¯. We note that the rate of orbital decay is given by β, which is linearly proportional to the planetary mass and inversely pro- portionalto the stellar dissipation parameter Q′. Is it of course 0.01 ∗ 0.01 0.1 1 10 probablethatthetidalparameteritselfdependsonthestellarpa- mass [M ] rameters(seeBarkerandOgilvie2009),buttherehassofarbeen Jup noclearindicationofhowitmayvarynorbywhatmagnitude. Fig.4. Gray circles reproduce the mass-period distribution of The lower plot in Figure 4 shows the distribution of a¯ as known close-in exoplanets. The broad orange band represents a function of m for the close-in exoplanet population. The or- the finalsemimajorobtainedfromtheruns,scaled alongthe y- ange curve marks the position of the simulated lower limit to axisto fit the observationaldata. In the lowerframe,a¯ denotes thesemimajoraxis.Asexpected,bothGJ876dandGJ1214bare thenormalizedsemimajoraxisdefinedinEq.(5). nowabovethelowerlimit,althoughCoRoT-7bstillremainsde- tached.We notethatthebumpinthedistributionisstillclearly visible. We cannowuseequation(3)to checkwhetherthepresent- withthelocationofthe2/1mean-motionresonancewiththeIC, day distribution could originate solely from tidal evolution. To aspredictedbyKuchner&Lecar(2002). test this idea, we generated a synthetic population of 104 ficti- tious exoplanetsdistributed randomlyin planetary mass across theintervalm ∈ [0.01,12]M andwithrandomstellar agesT Jup 3. Tidalevolutionofclose-inexoplanets betweenoneandeightGyr.Thenormalizedsemimajoraxisa¯ of each planet was then evolved tidally for the age of the system Althoughthe resultspresentedin the topgraphofFigure4 ap- usingastellartidalparameterQ′ =106. peartobeencouraging,therearetwoimportantapproximations ∗ Figure5showsresultsconsideringthreedifferentinitialdis- thatmustbeexamined.First,theexoplanetsorbitstarswithdif- tributions,chosentobeuniforminorbitalperiodPandlog(m). ferent radii and masses, and we have assumed that the scaling In all cases, the lowest mass was equal to m = 0.01M , and in the y-axis is the same. Although we have not assumed any Jup thelargesttotenJovianmasses.Sincethispreliminaryanalysis originfortheinnercavity(MRI,stellar wind,etc.),itisalmost is only intended to be illustrative, we assumed solar-type stars certain that the location of the IC should be a function of the forallbodies;consequently,thenormalizedsemimajoraxisa¯ is stellar mass. If we assume a very simple model in which r IC equaltothenominalsemimajoraxisa. scales with R , then the position of both GJ1214band GJ876d ∗ Forthetopplots,we assumedfictitiousplanetswith orbital wouldbedisplacedabovethebroadorangecurve,thuseliminat- periodsthathavenolowerlimit.Theinitialdatasetisshownin ing their incongruitywith respect to the simulations. However, theleftplot,whiletheright-handplotpresentsthefinaldistribu- CoRoT-7 has a stellar mass of 0.93M and its location in the ⊙ tionafterevolutionthroughstellartidesforT =8Gyr.Sincethe diagramwouldstillbeconflicting. decayrateβisproportionaltotheplanetarymass,moremassive A second approximation is that we have neglected the planetsfallmorerapidlytowardsthestar,leadingtoafinalpop- later evolution of the planetary periods caused by stellar tides. ulationthathasalackoflargebodieswithsmallorbitalperiods. Assumingalmostcircularplanarorbitsfortheclose-inplanets, This distribution shows little relation to the real distribution of wecanneglecttheplanetarytidesandapproximatethedifferen- planets. tialequationfororbitaldecayas Forthe middleplots,weconsideredalowerlimittotheor- bitalperiodsequalto3days.Thisvalueissufficientlylargefor da =− 9 G 1/2 R5∗Mp a−11/2 (1) terrestrial-type bodies to be virtually unaffected, although gi- dt "2 M∗! Q′∗ # ant planets still suffer significant orbital decay. Depending on P.Ben´ıtez-Llambay1etal.:Themass-perioddistributionofclose-inexoplanets 5 original today 0.10 0.08 77 8 8 QQ** == 1100 00..0066 d] 4 4 0.04 d [ a o 2 2 eri p 0.02 1 1 0.5 0.5 0.01 0.01 0.1 1 10 0.01 0.1 1 10 0.01 0.1 1 10 mass [M ] Jup 8 8 0.10 0.08 6 4 4 Q* = 10 d] 00..0066 d [ erio 2 2 0.04 p a 1 1 0.02 0.5 0.5 0.01 0.1 1 10 0.01 0.1 1 10 0.01 8 8 0.01 0.1 1 10 mass [M ] Jup 4 4 d] 0.10 d [ 0.08 5 o 2 2 Q* = 10 eri 00..0066 p 1 1 0.04 a 0.5 0.5 0.01 0.1 1 10 0.01 0.1 1 10 mass [M ] mass [M ] 0.02 Jup Jup Fig.5. Tidal evolution of fictitious planets (stellar tides alone) with Q′ = 106.Initialdistributionsareshownontheleft,while 0.01 ∗ 0.01 0.1 1 10 the evolved distributions are shown on the right. Stellar ages mass [M ] wherechosenuniformlybetweenoneandeightGyr. Jup Fig.6. Distribution of close-in exoplanets in the a¯-m diagram. Graycurvesshowtheendevolutionduetostellartides(atT =8 Gyr) of initial constant values of a¯. Each curve correspondsto adifferenta¯ .Stellartidalparametersaregiveninthetopright- theirinitialsemimajoraxisandstellarage,manymassiveplan- 0 handsideofeachgraph.Thebroaddashedcurveinthetoppanel, ets reach the Roche radius and are engulfed by the star, but a correspondingtoa¯ =0.035,givesthebestfittothelowerlimit portionofthepopulationremains.Wenotethefinalstep-likedis- 0 ofthecurrentexoplanetpopulation. tribution,whichisreminiscentoftherealpopulation.However, thebumpisnowlocatedat∼0.3M ,thusatalowermassthan Jup fortherealexoplanets. areshowninFigure6forthreevaluesofthestellartidalparam- Finally,inthelowerplotsofFigure5weconsideredanini- eter.Eachgraycurveshowsthefunction tial population with a step in the orbital period, similar to that resultingfromthehydrodynamicalsimulations.Eventhoughthe 2/13 initialconditionsaredifferentfromthosedepictedinthemiddle a¯ = a¯13/2−βT with T =8Gyr (6) 0 ! plots, there is no significant difference in the final distribution. Thisseemstoindicatethatanyevidenceofaninitialdisk-related fordifferentvaluesofa¯ .Forcomparison,eachplotalsorepro- 0 structurewouldbesmearedbythelatertidalevolution.Thus,a ducesthepresentdistributionofclose-inexoplanets. bumpinthepresentrealpopulationisnotnecessarilyindicative The present-day lower limit to the normalized semimajor of a dynamicalstructure priorto the dissipation of the gaseous axis shows a very good agreement assuming a¯ ≃ 0.035 and 0 disk. a tidal evolution with Q′ = 107, represented by a bold dashed ∗ Theseresultsindicatetheclearpossibilitythattheobserved curveinthetopgraph.Thisvalueofthenormalizedsemimajor bumpin the exoplaneta¯-m distributioncould be mainly due to axiscorrespondstooriginalorbitalperiodsof P ∼ 2.5daysfor stellartidaleffects.Totestthisproposalinmoredetail,wecal- solar-type stars. We note that the other plots, correspondingto culatedhowalowerboundinthevaluesofa¯ wouldbemodified, smallervaluesof Q′ donotshowgoodcorrespondenceforany ∗ fordifferentvaluesofQ′,afteratimescaleofT =8Gyr.Results adoptedvalueofa¯ .Thisresultappearstoindicatethatsmaller ∗ 0 6 P.Ben´ıtez-Llambay1etal.:Themass-perioddistributionofclose-inexoplanets today original (Q* = 107) theSimbaddatabaseforstellarpropertiesandfromJacksonetal. 0.1 0.1 (2009). 0.08 0.08 Thepresent-daya¯-mdistributionforthisreducedpopulation 0.06 0.06 is shown as black circles in the left-hand plot of Figure 7. For 0.04 0.04 comparison,graycirclesshowthoseplanetsforwhichcomplete a a stellar data is currently unavailable. The location of the lower boundtothesemimajoraxisdeducedfromthehydrosimulations 0.02 0.02 is shown as a bold dashed curve.Unfortunately,manysystems with giantplanetswith a¯ < 0.025do nothavecompletestellar 0.01 0.01 properties,andthebumpinthedistributionisnotclearlyvisible 0.01 0.1 1 10 0.01 0.1 1 10 mass [M ] mass [M ] forthesmallerpopulation. Jup Jup Theright-handsideplotofFigure7showsthe“original”lo- Fig.7. Left: Current-day distribution of exoplanets in the a¯-m cationofthesmallerpopulationafterthebackwardsintegration diagram.Blackcirclesshowplanetsforwhichvaluesof M∗,R∗ for each stellar age. For comparison, the inner-cavity-induced andstellaragesT∗areavailable.Graycirclesshowthosebodies lower limit is again shown as a bold dashed curve, although for which stellar data is missing. Right: Reconstructed origi- the scaling in the y-axis has been modified to fit the new val- naldistributionassumingbackwardorbitalevolutionfromstel- ues of semimajor axis. Although the distribution still shows a lartidesfortheageofeachparentstar.Inbothplots,thedashed goodagreementforplanetarymassesuptom ∼ 1M ,mostof Jup curvesshowthelowerlimittonormalizedsemimajoraxis,asa the higher masses have increased their semimajor axis beyond functionoftheplanetarymass,obtainedfromthehydrodynami- a¯ ∼0.03,andlittleevidenceremainsofthebump. calsimulationsandscaledalongthey-axistofittheexoplanets. Apossibleexplanationcouldbethatmostgiantplanetswith smallvaluesofa¯ weresubsequentlylostduetotidaldisruption. 0.1 0.1 Tocheckthishypothesis,theleftplotofFigure8showsthere- 0.08 0.08 lation between the current values of the normalized semimajor 0.06 0.06 axis as a functionof the stellar age. Althoughplanets with rel- 0.04 0.04 ativelylargesemimajoraxesexistforallvaluesofT∗,itseems a a veryclear thatgiantplanetswith a¯ < 0.025,which areprimar- T = 8 Gyr * ilyresponsibleforthebumpinthedistribution,belongtoyoung 0.02 0.02 systemswithamaximumstellarageofT ≃3Gyr. T = 1 Gyr ∗ * From Eq. (3), it is possible to estimate, for each planetary 0.01 0.01 mass, the critical value of the normalized semimajor axis (i.e. 0 3 6 9 12 0.01 0.1 1 10 stellar age [Gyr] mass [MJup] a¯∗0) that falls towards the star of a given stellar age T∗. This is givenapproximatelyby Fig.8. Left: Current values of the normalized semimajor axis a¯∗ =(βT )2/13, (7) a¯ for close-in exoplanets as a function of the stellar age T∗. 0 ∗ Notice that bodieswith a¯ < 0.03 are limited to youngsystems whichissimply obtainedbysettingthe finalsemimajoraxisto (T∗ <3Gyr),whilelargersemimajoraxesarefoundforallstellar beequaltozero.Althoughtheplanetisbelievedtodisruptupon ages.Right:Originaldistributioninthem-a¯ diagram.Diagonal reaching the Roche radius and, thus, before impacting the star curvesgive limits to the orbitaldecay leadingto disruptionfor itself,asshownbyJacksonetal.(2009)theorbitaldecayatsuch twostellarages:thecontinuouslineshowresultsforT∗ =1Gyr, smallsemimajoraxesissoswiftthatthetimescalesforbothsce- whilethedashedlinecorrespondstoT∗ =8Gyr. nariosarepracticallyequal. The right-hand plot of Figure 8 once again reproduces the “original”distributionofexoplanetsin the m-a¯ diagramshown valuesofQ′,andconsequentlyfasterorbitaldecaysduetostel- beforeinFigure7.Thediagonallinesshowthevaluesofa¯∗,asa ∗ 0 lartides,areinconsistentwiththecurrentpopulationofclose-in functionoftheplanetarymass,fortwostellarages:T = 1Gyr ∗ exoplanets. (continuousline) and T = 8 Gyr (dashed line). It is clear that ∗ Althoughthetimescale(T =8Gyr)chosenforFigure6may evenifgiantplanetsweredepositedbyahypotheticaldiskinner seemarbitrary,equations(4)and(5)showthatthemostrelevant cavity at small values of the semimajor axis (a¯ < 0.025), they parameter for the orbital evolution is actually the ratio T/Q′. would be rapidly absorbed by the parent star because of tidal ∗ Sincetheuncertaintyinthetidalparameterismuchlargerthan effects, even for planetary systems as young as 1 Gyr. Thus, it in theage ofthe system, itseemsjustified to use a single fixed is not unexpected that if any original bump in the distribution value of T and to assume that no qualitative differenceswould werecreatedbydisk-planetinteractions,subsequenttidaleffects beobservedforotherstellarages. wouldhaveeliminatedmosttraces. As a final test, we can attempt to reconstruct the original mass/semimajor-axis distribution of the exoplanet population, 4. CoRoT-7b integratingeachcurrentvalueofa¯backwardsintimeusingequa- tion(6),adoptinginthiscasethevalueofT equaltotheageof CoRoT-7 appears to be a special case. As seen from the lower each parent star T . To perform this calculation, we require in plotofFigure4,itslowmassandshortorbitalperiodmeanthat ∗ additiontothestellarmass M andradiusR ,estimatesofeach itiswellseparatedfromthem-a¯ distributionobservedforother ∗ ∗ stellarageT .However,thisinformationisnotavailableforall close-inexoplanets.Werecallthatthisplanetorbitsasolar-type ∗ planetarysystems.Outofthe133originalplanetsfromourdata starofmassM ≃0.93M . ∗ ⊙ setin directorbits(i.e.eliminatingthebodiesbelievedto be in Jackson et al. (2009) proposed that these planetary bodies retrogrademotion),wewereonlyabletoobtainafullsetofstel- shouldbe undergoingsignificanttidalevolutionandorbitalde- larparametersfor94exoplanets.Stellardatawereobtainedfrom cay.Mostbodiesinthismassrangewouldthenbeabsorbedby P.Ben´ıtez-Llambay1etal.:Themass-perioddistributionofclose-inexoplanets 7 thestarontimescalesshorterthantheageofthestar.According for T Tauri stars as estimated from CO spectroscopy(Najita et to this idea, CoRoT-7b owes its present existence solely to its al.2007,Carr2007). starbeingrelativelyyoung(∼1.5Gyr). Planetsbelowacertaincriticalmassm ∼ M aretrapped c Jup However, numerical simulations of the tidal evolution of just outside the IC as foundby Masset et al. (2006).The loca- the CoRoT-7 planetary system (Ferraz-Mello et al. 2010) in- tion of the stationary solution with respect to the IC is practi- dicate that the current eccentricities should be extremely low cally mass-independent.In contrast, bodieswith m > m enter c (e ≪ 10−3), and that any primordial departure from circular a regime characterized by a Type II migration that causes sig- motionwouldhavebeenrapidlydampedbeforeanysignificant nificant perturbations to the density profile of the disk; conse- orbital decay occurred. Thus, tidal evolution would have been quentlytheICedgecannotgenerateasignificantpositivecoro- given primarily by stellar tides alone. In this case, the original tationaltorqueanddoesnotstoptheorbitaldecay.Aspredicted locationofCoRoT-7bintheprimordialm-a¯ distributionshould byKuchnerandLecar(2002),migrationonlybrakesinsidethe begivenbytheright-handplotsofFigures7and8;onceagain inneredgeata2/1mean-motionresonancewiththecavityedge. this planet appears to be detached from the remaining close-in Forreasonablevaluesofthediskviscosity,weexpectagap planetarypopulation. opening to occur when the height of the disk is approximately Since CoRoT7 harbors at least one additional planet, it is equal to the Hill radius of the planet. For a scale height equal possible that mutual dynamicalinteractions might also explain to H/r ≃ 0.05, this implies a minimum mass of m ≃ 0.4M , Jup this planet’s proximity to the star. In multiple-planet systems, a value similar to our critical mass m . Adopting a value of c scatteringisbelievedtohaveplayedanimportantroleinsculpt- one Jovian mass for the critical mass leads to a slightly larger ing the general exoplanet distribution, and the same phenom- valueofH/r ≃ 0.07.However,giventheuncertaintiesinvolved ena may have occurred in this system. According to this idea, in both the gap openingcriteria and its dependenceon the vis- CoRoT7-b could have had a close encounter with CoRoT7- cosity,the valuesmay be consideredto be virtuallyequivalent. c (or with an additional ejected planet) and suffered a signif- Thus, the location of the bump in the observed distribution of icant reduction in its semimajor axis. Subsequent tidal inter- close-in planets appears to be consistent with a mass thresh- actions would have circularized its orbit to its present state. old for gap opening (Crida et al. 2006 and referencestherein). However,CoRoT7isnottheonlymultiple-planetsysteminthis Although the present data are sparse and plagued by the ad- region. Both the GI581 and HD40307 planetary systems have ditional effects described in this work, we may expect that the two known super-Earths with short orbital periods that never- aforementionedresultswillbeconfirmedbyfurtherdetections. theless lie above the expected lower limit. Hence once again In contrast, when the statistics become sufficiently robust, the CoRoT7seemstobedifferent. location of this bump may be used to place constraints on the A possible explanation may lie elsewhere. Valencia et al. physicalpropertiesof theinnerdisk, in termsofbothtempera- (2010)andJacksonetal.(2010)proposedthatCoRoT-7bcould tureandeffectiveviscosity,asthesequantitiesfeatureinthegap bethesolidcoreofaprimordialgiantplanetwhosegaseousen- openingcriterion. velopewaslostduetoevaporation.Arecentre-evaluationofthe SincetheedgeoftheICcreatedinoursimulationsisplaced radialvelocitydatabyseveralauthorsindicatethatthemassof atanarbitrarydistancefromthestar,wehaveacertaindegreeof CoRoT-7b could be as high as 9M (Ferraz-Mello et al. 2010) ⊕ freedomwhen fitting the numericalmass-perioddistribution to or as low as 2M (Pont et al. 2010). Although a high current ⊕ therealplanets(asseeninFigure4).Wehaveadoptedavertical massappearsindicativeofarocky/ironcompositionandthatthe displacementthatminimizesthenumberofexoplanetinsidethe original mass was at most twice the present value (Valencia et cavityedge,butthisisnottheonlyoption.Itmaybearguedthat al.2010),alowermassisconsistentwithalightercomposition itwouldbebetterto fitthesyntheticcurvewiththe locationof andaenvelope-depletedgasgiant. sub-giants(i.e.m ∼ 0.5M )inthem-Pdiagram.We notethat IfCoRoT-7bwereindeedthesolidcoreofaprimordialgas Jup these bodies exhibit a smaller dispersion in orbital period than giant, then its location in the m-a¯ diagram (right-hand plot of observed for any other mass range, and can be seen as a com- Figure7)wouldbelocatedclosetothedashedcurveand,thus, pactgroupinbothplotsofFigure4.However,thisdisplacement consistentwiththerestoftheplanetarypopulation.Westillneed would lead to our accepting a larger number of small planets ofcoursetoexplainhowthisplanetsufferedanevaporationofits insidethecavityedge,bodieswhosesubsequenttidalevolution gaseousenvelopeontimescalesshorterthanoneGyr,andwhyit shouldhavebeenverysmall. appearstobetheonlyexampleofthiseffect. Whateverthechoice,thequalitativeresultsarenotaffected. Moreover, the ratio of the stopping values of P (for small and large bodies) is scale-independent, and found to be slightly 5. Conclusions largerthan2.Thisisbecausealthoughhighermassesarestopped Wehaveattemptedtounderstandthedynamicaloriginandevo- ina2/1MMRwiththeIC,thesmallbodiesaretrappedoutside lutionofthemass-perioddistributionofclose-inexoplanets.The thediskedge.Onceagain,thedistributionofrealplanetsseems present-daypopulationshowsadistinctivediscontinuitylocated toyieldasimilarratio. atapproximatelyoneJovianmass.Smallerplanetshaveorbital Thesubsequenttidalevolutionoftheclose-inplanetsiscon- periodslongerthanP∼2.5days,whilehighermassesarefound sistentwithastellar tidalparameterof Q′ = 107,avaluesimi- ∗ tohaveperiodsasshortasP∼1day. lartothatpredictedbySchlaufmanetal.(2010)fromsynthetic We have found that the combined effects of tidal evolution populationmodels. Smaller parameters, leading to higher rates and disk-planet interactions with an inner cavity (IC) in the of orbital decay, do not lead to distributions similar to the ob- gaseous disk can explain most of the observed characteristics. served population. This is also consistent with the analysis of The current distribution appears to be compatible with an in- Ogilvie & Lin (2007). A consequence of the tidal evolution is nerdisk edge locatedapproximatelyatdistancesof a¯ ≃ 0.035, theremovalofmostoftheoriginalgasgiantswithshortorbital whichforsolar-typestarscorrespondsroughlytoorbitalperiods periodsandtheirsubstitutionbyexoplanetsthatwereoriginally ofP≃2.5days.Thisvalueisconsistentwiththeinnergasradii fartheraway.Thus,weexpectthatmanyoftheprimordialplan- 8 P.Ben´ıtez-Llambay1etal.:Themass-perioddistributionofclose-inexoplanets ets with P < 2 days and m > 1MJup might have been tidally Najita,J.R.,Carr,J.S.,Glassgold,A.E.,etal.2007,in:B.Reipurth,D.Jewittand disruptedandabsorbedbytheirparentstars. K.Keil(eds.),ProtostarsandPlanetsV,Tucson,UniversityofArizona,p. 507 Although this scenario is consistent with the properties of Ogilvie,G.I.,&Lin,D.N.C.2007,ApJ,661,1180 most of the exoplanetary population, it appears difficult to ex- Queloz,D.,Bouchy,F.,Moutou,etal.2009,A&A,506,303 plain the present-day mass and orbit of CoRoT-7b. A possible Queloz,D.,Anderson,D.,CollierCameron,A.,etal.2010.A&A,inpress explanationis to assume that the planetstarted its life as a gas Pont,F.,Aigrain,S.,&Zucker,S.2010,MNRAS,submitted giantwhosegasenvelopewascompletelyevaporated(Valencia Rice,W.K.M.,Armitage,P.J.,&Hogg,D.F.2008,MNRAS,384,1242 Rouan,D.,LegerA.,&SchneiderJ.2009,In:CoRoTInternationalSymposium etal.2010,Jacksonetal.2010). I Lastofall,inthepresentscenariowehaveneglectedtherole Schlaufman,K.C.,Lin,D.N.C.,&Ida,S.2010,ApJ,724,L53 of the orbitalinclinations;however,the same results should be Shakura,N.I.,&Sunyaev,R.A.1973,A&A,24,337 Shu,F.H.,Najita,J.R.,Shang,H.,etal.2000.In“ProtostarsandPlanetsIV,ed. expected as long as the inclinations are not very large. Three- V.Mannings,A.P.BossandS.S.Russel,Univ.ArizonaPress,Tucson,pp dimensionalstudiesofdisk-planetinteractionsin thelinearap- 789 proximation(e.g.TanakaandWard2004),aswellasnumerical Southworth,J.,Wheatly,P.J.,&Sams,G.2007,MNRAS,379,L11 simulations (e.g. Cresswell et al. 2007), show little effect on a Starczewski,S.,Gawryszczak,A.J.,Wu¨nsch,R.,etal.2007,ActaAstronomica, finiteinclinationonthemigrationtimescale.Similarresultsare 57,123 Tanaka,H.,&Ward,W.R.2004,ApJ,602,388 alsofoundfororbitalevolutionduetotidaleffects(e.g.Ferraz- Triaud,A.H.M.J.,Collier Cameron,A.,Queloz, D.,etal.2010.A&A524, Melloetal.2008,BarkerandOgilvie2009).Forplanetsinret- id.A25 rogradeorbitsresultsare,however,ismoredifficulttoevaluate. Valencia,D.,Ikoma,M.,Guillot,T.,etal.2010,A&A,516,A20 It is unclear whether gas disks in retrograde motion (with re- Vidal-Madjar A.,Lecavelier des Etangs A.,De´sertJ.-M.,et al.2003, Nature, 422,143 spectto thestellar spin)wouldhaveinnercavitiesorhowsuch Winn,J.N.,Johnson,J.A.,Albrecht,S.,etal.2009,ApJL,703,L99 astructurewouldinteractwithplanetsinitsvicinity.Similarly, the tidalevolutionof bodiesin retrogrademotionispoorlyun- derstood, thus it is impossible at present to ascertain how the resultsofthisworkcouldbeextendedtothesesystems. Acknowledgments This work has been partially supported by the Argentinian Research Council -CONICET-. F.M. and C.B. would like to acknowledge the invitation to participate in the XII Brazilian ColloquiumofOrbitalDynamics,wheretheoriginalideaforthis work was discussed. A substantial part of the work was devel- opedduringtheprogram”DynamicsofDisksandPlanets”,held fromAugust15toDecember12,2009attheNewton’sInstitute ofMathematicalScienceattheUniversityofCambridge(UK). C.B. would like to thank the organizersof the program and to fruitful discussions with all the participating researchers. Most ofthe numericalsimulationsperformedin thiswork havebeen run on a 140 core cluster funded by the program Origine des Plane`tesetdela Vie (OPV)of theFrenchInstitutNationaldes Sciencesdel’Univers(INSU). References Anderson,D.R.,Hellier,C.,Gillon,M.,etal.2010,ApJ,709,159 Barker,A.J.,&Ogilvie,G.I.2009,MNRAS,395,2268 CameronCollier,A.,Guenther,E.,Smalley,etal.2010,MNRAS,inpress Carr,J.S.2007,in:J.BouwierandI.Appenzeller,eds.,Star-DiskInteractionsin YoungStars,IAUSymposium243 Cresswell,P.,Dirksen,G.,Kley,W.,etal.2007,A&A,473,329 Crida,A.,MorbidelliA.,&Masset,F.2006,Icarus,181,587 Davis,T.A.,&Wheatly,P.J.2009,MNRAS,396,1012 Ferraz-Mello,S.,Rodriguez,A.,&Hussmann,H.2008,CeMDA101,171 Ferraz-Mello,S.,TadeudosSantos,M.,Beauge´,C.,etal.2010.A&A,submitted Jackson,B.,Barnes,B.,&Greenberg,R.2009,ApJ,698,1357 Jackson,B.,Miller,N.,Barnes,R.,etal.2010,MNRAS,407,910 Kuchner,M.J.,&Lecar,M.2002,ApJ,574,L87 Lai,D.,Foucart,&F.Lin,D.N.C.2010,MNRAS,submitted Lin,D.N.C.,Bodenheimer,P.,&Richardson,D.C.1996,Nature,380,606 Masset,F.S.2000a,A&ASS,141,165 Masset,F.S.2000b,inAstronomicalSocietyofthePacificConferenceSeries, Vol.219,Disks,Planetesimals,andPlanets,ed.G.Garzo´n,C.Eiroa,D.de Winter,&T.J.Mahoney,75 Masset,F.S.,Morbidelli,A.,Crida,A.,etal.2006,MNRAS,642,478 Mazeh,T.,Zucket,S.,&Pont,F.2005,MNRAS,356,955 Nagasawa,M.,Ida,S.,&Bessho,T.2008,ApJ,678,498

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.