ebook img

The Logic Manual PDF

193 Pages·2009·0.842 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Logic Manual

THE LOGIC MANUAL for Introduction to Logic 2008/2009 Volker Halbach Oxford 8thAugust2008 Thistextistobeusedbycandidates intheirfirstyearin2008/2009. The settextforLiteraeHumanioresstu- dentssittingModerationsin2009is Hodges’sLogic. Content 1 Sets,Relations,andArguments 5 1.1 Sets 5 1.2 BinaryRelations 7 1.3 Functions 13 1.4 Non-BinaryRelations 15 1.5 Arguments,ValidityandContradiction 16 1.6 Syntax,SemanticsandPragmatics 24 2 SyntaxandSemanticsofPropositionalLogic 26 2.1 Quotation 26 2.2 TheSyntaxoftheLanguageofPropositionalLogic 28 2.3 RulesforDroppingBrackets 30 2.4 TheSemanticsofPropositionalLogic 33 3 FormalisationinPropositionalLogic 50 3.1 Truth-Functionality 51 3.2 LogicalForm 55 3.3 FromLogicalFormtoFormalLanguage 60 3.4 Ambiguity 62 3.5 TheStandardConnectives 64 3.6 NaturalLanguageandPropositionalLogic 66 4 TheSyntaxofPredicateLogic 73 4.1 PredicatesandQuantification 73 4.2 TheSentencesofL 81 2 4.3 FreeandBoundOccurrencesofVariables 84 ©VolkerHalbach 2008/2009 4.4 NotationalConventions 86 4.5 Formalisation 87 5 TheSemanticsofPredicateLogic 93 5.1 Structures 94 5.2 Truth 99 5.3 Validity,LogicalTruths,andContradictions 107 5.4 Counterexamples 108 6 NaturalDeduction 114 6.1 PropositionalLogic 116 6.2 PredicateLogic 128 7 FormalisationinPredicateLogic 141 7.1 Adequacy 141 7.2 Ambiguity 145 7.3 Extensionality 150 7.4 PredicateLogicandArgumentsinEnglish 156 8 IdentityandDefiniteDescriptions 165 8.1 QualitativeandNumericalIdentity 165 8.2 TheSyntaxofL 166 = 8.3 Semantics 167 8.4 ProofRulesforIdentity 170 8.5 Usesofidentity 173 8.6 IdentityasaLogicalConstant 182 NaturalDeductionRules 185 preface TheLogicManualisarelativelybriefintroductiontologic. Ihavetriedto focusonthecoretopicsandhaveneglectedsomeissuesthatarecovered inmorecomprehensivebookssuchasForbes(1994),Guttenplan(1997), Hodges(2001),Smith(2003),andTennant(1990). Inparticular,Ihave triednottoincludematerialthatisinessentialtoPreliminaryExamina- tionsandModerationsinOxford. Forvarioustopics,Icouldnotresist addingfootnotesofferingextrainformationtothecuriousreader. Logicisusuallytaughtinoneterm. Consequently,Ihavedividedthe textintoeightchapters: 1. Sets,Relations,andArguments 2. SyntaxandSemanticsofPropositionalLogic 3. FormalisationinPropositionalLogic 4. TheSyntaxofPredicateLogic 5. TheSemanticsofPredicateLogic 6. NaturalDeduction 7. FormalisationinPredicateLogic 8. IdentityandDefiniteDescriptions Ifthereaderwishestoreadselectively,chapters1–3constituteaself-con- tainedpart,towhichSection6.1(NaturalDeductionforpropositional logic)canbeadded;andchapters1–7yieldanintroductiontopredicate logicwithoutidentity. Ihavesetthecoredefinitions,explanations,andresultsinitalicslike this. Thismightbeusefulforrevisionandforfindingimportantpassages morequickly. Insomecases,theendofanexampleoraproofismarkedbyasquare ◻. Theword‘iff’isshortfor‘ifandonlyif’. IhavewrittenanExercisesBookletthatcanbeusedinconjunction withthisLogicManual. ItisavailablefromWebLearn. Therealsosome additionalteachingmaterialsmaybefoundsuchasfurtherexamplesof proofsinthesystemofNaturalDeduction. Iamindebtedtocolleaguesfordiscussionsandcommentsonprevious versionsofthetext. Inparticular,IwouldliketothankStephenBlamey, PaoloCrivelli, GeoffreyFerrari, LindsayJudson, OfraMagidor, David McCarty,PeterMillican,AlexanderPaseau,AnnamariaSchiaparelli,Se- bastianSequoiah-Grayson,MarkThakkar,GabrielUzquiano,andDavid Wiggins. IamespeciallygratefultoJaneFriedmanandChristophervon BülowfortheirhelpinpreparingthefinalversionoftheManual. 1 Sets, Relations, and Arguments 1.1 sets Settheoryisemployedinmanydisciplines. Assuch,someacquaintance withthemostbasicnotionsofsettheorywillbeusefulnotonlyinlogic, butalsoinotherareasthatrelyonformalmethods. Settheoryisavast areaofmathematicalresearchandofsignificantphilosophicalinterest. Forthepurposesofthisbook,thereaderonlyneedstoknowafragment ofthefundamentalsofsettheory.1 Asetisacollectionofobjects. Theseobjectsmaybeconcreteobjects suchaspersons,carsandplanetsormathematicalobjectssuchasnumbers orothersets. Setsareidenticalifandonlyiftheyhavethesamemembers. Therefore, thesetofallanimalswithkidneysandthesetofallanimalswithaheart areidentical,becauseexactlythoseanimalsthathavekidneysalsohave a heart and vice versa.2 In contrast, the property of having a heart is usuallydistinguishedfromthepropertyofhavingkidneys,althoughboth propertiesapplytothesameobjects. That a is an element of the set M can be expressed symbolically by 1There are various mathematical introductions to set theory such as Devlin (1993), Moschovakis(1994)orthemoreelementaryHalmos(1960). Incontrasttorigorous expositionsofsettheory,Iwillnotproceedaxiomaticallyhere. 2I have added this footnote because there are regularly protests with respect to this example.Forthisexample,onlycompleteandhealthyanimalsarebeingconsidered.I havebeentoldthatplanarians(atypeofflatworms)areanexceptiontotheheart–kidney rule,so,forthesakeoftheexample,Ishouldexcludethemaswell. ©VolkerHalbach 2008/2009 1 Sets,Relations,andArguments 6 writing ‘a ∈ M’. If a is an element of M, one also says that a is in M or that M contains a. There is exactly one set that contains no elements, namely, the empty set∅. Obviously,thereisonlyoneemptyset,becauseallsetscontaining noelementscontainthesameelements,namelynone. Therearevariouswaystodenotesets. One can write down names of the elements, or other designations of theelements,andenclosethislistincurlybrackets. Theset{London,Munich},forinstance,hasexactlytwocitiesasits elements. Theset{Munich,London}hasthesameelements. Therefore, thesetsareidentical,thatis: {London,Munich}={Munich,London}. Thus, if a set is specified by including names for the elements in curly brackets,theorderofthenamesbetweenthebracketsdoesnotmatter. The set {the capital of England, Munich} is again the same set be- cause‘thecapitalofEngland’isjustanotherwayofdesignatingLondon. {London,Munich,thecapitalofEngland}isstillthesameset: adding anothernameforLondon,namely,‘thecapitalofEngland’,doesnotadd afurtherelementto{London,Munich}. Thismethodofdesignatingsetshasitslimitations: sometimesone lacks names for the elements. The method will also fail for sets with infinitelymanyorevenjustimpracticallymanyelements. Above I have designated a set by the phrase ‘the set of all animals withaheart’. Onecanalsousethefollowingsemi-formalexpressionto designatethisset: {x ∶ x isananimalwithaheart} Thisisreadas‘thesetofallanimalswithaheart’. Similarly,{x ∶ x isa naturalnumberbiggerthan3}isthesetofnaturalnumbersbiggerthan3, and{x ∶ x isbluealloverorx isredallover}isthesetofallobjectsthat ©VolkerHalbach 2008/2009 1 Sets,Relations,andArguments 7 arebluealloverandallobjectsthatareredallover.3 1.2 binary relations Theexpression‘isatiger’appliestosomeobjects,butnottoothers. There isasetofallobjectstowhichitapplies,namelytheset{x ∶ x isatiger} containingalltigersandnootherobjects. Theexpression‘isabiggercity than’, incontrast, doesnotapplyto singleobjects; ratherit relatestwo objects. It applies to London and Munich (in this order), for instance, becauseLondonisabiggercitythanMunich. Onecanalsosaythatthe expression‘isabiggercitythan’appliestopairsofobjects. Thesetofall pairstowhichtheexpression‘isabiggercitythan’appliesiscalled‘the binaryrelationofbeingabiggercitythan’orsimply‘therelationofbeing abiggercitythan’.4 Thisrelationcontainsallpairswithobjectsd and e suchthatd isabiggercitythan e.5 However,thesepairscannotbeunderstoodsimplyasthesets{d,e}, suchthatdisabiggercitythane,becauseelementsofasetarenotordered bytheset: aspointedoutabove,theset{London,Munich}isthesame set as {Munich, London}. So a set with two elements does not have a first or second element. Since London is bigger than Munich, but not viceversa,onlythepairwithLondonasfirstcomponentandMunichas 3Theassumptionthatanydescriptionofthiskindactuallydescribesasetisproblematic. Theso-calledRussellparadoximposessomelimitationsonwhatsetsonecanpostulate. SeeExercise7.6. 4Bythequalification‘binary’onedistinguishesrelationsapplyingtopairsfromrelations applyingtotriplesandstringsofmoreobjects.Iwillreturntonon-binaryrelationsin Section1.4. 5Oftenphilosophersdonotidentifyrelationswithsetsofpairs.Ontheirterminology relationsneedtobedistinguishedfromsetsoforderedpairsinthesamewayproperties needtobedistinguishedfromsets(seefootnote2).Insettheory,however,itiscommon torefertosetsoforderedpairsasbinaryrelationsandIshallfollowthisusagehere. ©VolkerHalbach 2008/2009 1 Sets,Relations,andArguments 8 secondcomponentshouldbeintherelationofbeingabiggercitythan, butnotthepairwithMunichasfirstcomponentandLondonassecond component. Therefore, so-called ordered-pairs are used in set theory. They are differentfromsetswithtwoelements. Orderedpairs,incontrasttosets withtwoelements,haveafirstandasecondcomponent(andnofurther components). Theorderedpair⟨London,Munich⟩hasLondonasitsfirst componentandMunichasitssecond. ⟨Munich,London⟩isadifferent orderedpair,becausethetwoorderedpairsdifferinboththeirfirstand secondcomponents.6 Moreformally,anorderedpair⟨d,e⟩isidentical with⟨f,g⟩ifandonlyifd = f and e = g. Theorderedpair⟨thelargest city in Bavaria, the largest city in the UK⟩ is the same ordered pair as ⟨Munich,London⟩,becausetheycoincideintheirfirstandintheirsecond component. Anorderedpaircanhavethesameobjectasfirstandsecond component: ⟨London,London⟩,forinstance,hasLondonasitsfirstand secondcomponent. ⟨Munich,London⟩and⟨London,London⟩aretwo differentorderedpairs,becausetheydifferintheirfirstcomponents.Since Iwillnotbedealingwithotherpairs,Iwilloftendropthequalification ‘ordered’from‘orderedpair’. definition 1.1. A set is a binary relation if and only if it contains only orderedpairs. According to the definition, a set is a binary relation if it does not containanythingthatisnotanorderedpair. Sincetheemptyset∅does notcontainanything,itdoesnotcontainanythingthatisnotanordered pair. Therefore,theemptysetisabinaryrelation. The binary relation of being a bigger city than, that is, the relation thatissatisfiedbyobjectsd and e ifandonlyifd isabiggercitythan e is thefollowingset: 6Usinganicetrick,onecandispensewithorderedpairsbydefiningtheorderedpair ⟨d,e⟩as{{d},{d,e}}.Thetrickwillnotbeusedhere. ©VolkerHalbach 2008/2009 1 Sets,Relations,andArguments 9 {⟨London,Munich⟩,⟨London,Oxford⟩,⟨Munich,Oxford⟩, ⟨Paris,Munich⟩,...} InthefollowingdefinitionIwillclassifybinaryrelations. Later,Ishall illustratethedefinitionsbyexamples. Here,andinthefollowing,Ishall use‘iff’asanabbreviationfor‘ifandonlyif’. definition1.2. AbinaryrelationR is (i) reflexiveonasetSiffforalld inSthepair⟨d,d⟩isanelementofR; (ii) symmetriciffforalld,e: if⟨d,e⟩∈ R then⟨e,d⟩∈ R; (iii) asymmetricifffornod,e: ⟨d,e⟩∈ R and⟨e,d⟩∈ R; (iv) antisymmetricifffornotwodistinctd,e: ⟨d,e⟩∈ R and⟨e,d⟩∈ R; (v) transitive iff for all d,e, f: if ⟨d,e⟩ ∈ R and ⟨e, f ⟩ ∈ R, then also ⟨d, f ⟩∈ R; (vi) an equivalence relation on S iff R is reflexive on S, symmetric and transitive. InthefollowingIshalloccasionallydropthequalification‘binary’. Aslongastheyarenottoocomplicated,relationsandtheirproperties –suchasreflexivityandsymmetry–canbevisualisedbydiagrams. For everycomponentofanorderedpairintherelation,onewritesexactly onename(orotherdesignation)inthediagram. Theorderedpairsinthe relationarethenrepresentedbyarrows. Forinstance,therelation {⟨France,Italy⟩,⟨Italy,Austria⟩,⟨France,France⟩, ⟨Italy,Italy⟩,⟨Austria,Austria⟩} hasthefollowingdiagram: (cid:6)(cid:6) (cid:6)(cid:6) France Austria (cid:73)(cid:73)(cid:73)(cid:73)(cid:73)(cid:73)(cid:73)(cid:73)(cid:73)(cid:36)(cid:36) (cid:117)(cid:117)(cid:117)(cid:117)(cid:117)(cid:117)(cid:117)(cid:117)(cid:117)(cid:58)(cid:58) Italy (cid:86)(cid:86) The arrow from ‘France’ to ‘Italy’ corresponds to the pair ⟨France, Italy⟩,andthearrowfrom‘Italy’to‘Austria’correspondstothepair⟨Italy, ©VolkerHalbach 2008/2009

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.