School of Technology and Design, TD The load carrying unit of articulated haulers - Analysis of the welded connections Växjö June 2009 Thesis no: TD 068/2009 Nermin Dzanic Martin Lindholm Metin Uçar School of Technology and Design Organisation/ Organization Författare/Author(s) School of Technology and Design Nermin Dzanic, Martin Lindholm and Metin Uçar Dokumenttyp/Type of document Handledare/tutor Examinator/examiner Master Thesis Torbjörn Ekevid Anders Karlsson Titel och undertitel/Title and subtitle The load carrying unit of articulated haulers - Analysis of the welded connections Sammanfattning (på svenska) Detta examensarbete handlar om finita element analys av svetsade förband i korgen på Volvo dumpern A40E. Det genomfördes i samarbete med Volvo CE i Braås. Uppgiften var att ge företaget en lämplig lösning för att minska mängden svetsskarvar på den främre delen av lastenheten. För att uppnå detta har en rad analyser genomförts med hjälp av CATIA och ANSYS på både de befintliga och de justerade (potentiella ersättare) svetsade förbanden. Analyserna visar att utmatningshållfastheten av svetsade förband huvudsakligen beror på inbränningsdjupet. Med andra ord, förstärka svetsförband genom större inbränning är mer fördelaktigt än att använda mer svets på utsidan. Slutsatsen blev att både produktionstid och kostnad kan minskas genom justering av de svetsade förbanden. Eftersom svetsförband på lastenheten är sammankopplade bör mer omfattande studier som inkluderar alla svetsar genomföras för att uppskatta effekterna av liknande justeringar. Nyckelord Svetsade förband, svets, notch metoden, dumper, utmattning, Catia, Ansys, Volvo CE, Finita element metoden, FEM, huvudspänning, 3-D modell, sub-model, mesh, simulering, analys, A40E Abstract (in English) The work presented in this master thesis is about the finite element analysis of the welded connections in load carrying unit of the articulated hauler, Volvo A40E. It was performed in cooperation with Volvo CE in Braås. The task was to provide the company with an appropriate solution to reduce the amount of weld used on the front part of the load carrying unit. To accomplish this, a series of analyses utilising CATIA and ANSYS was performed on both existing and adjusted (potential replacement) welded connections. The analyses brought to light the fact that the fatigue resistance of welded connections significantly depends on the penetration depth. In other words, reinforcing the welded connections by deeper penetration is more beneficial than providing support from outside through thicker weld. It was concluded that applying adjusted welds lessens both the production time and cost. Nevertheless, since the welds on the load carrying unit are correlated; more extensive studies covering all welds should be carried out to estimate the impacts of similar replacements. Key Words Welded connections, weld, notch method, articulated hauler, fatigue, Catia, Ansys, Volvo CE, Finite element method, FEM, principal stress, 3-D model, sub-model, mesh, simulation, analysis, A40E Utgivningsår/Year of issue Språk/Language Antal sidor/Number of pages 2009 English 75 Internet/WWW II Abstract The work presented in this master thesis is about the finite element analysis of the welded connections in load carrying unit of the articulated hauler, Volvo A40E. It was performed in cooperation with Volvo CE in Braås. The task was to provide the company with an appropriate solution to reduce the amount of weld used on the front part of the load carrying unit. To accomplish this, a series of analyses utilising CATIA and ANSYS was performed on both existing and adjusted welded connections The analyses indicate the fact that the fatigue resistance of welded connections significantly depends on the penetration depth. In other words, reinforcing the welded connections by deeper penetration is more beneficial than providing support from outside through thicker weld. It was concluded that applying adjusted welds lessens both the production time and cost. Nevertheless, since the welds on the load carrying unit influence each other; more extensive studies covering all welds should be carried out to estimate the impacts of similar replacements. III Preface The work presented in this master thesis concerns finite element analyses of the welded connections in load carrying unit of the articulated hauler, Volvo A40E. It was performed in cooperation with Volvo CE, at the Department of Mechanical Engineering at The School of Technology and Design, Växjö University, between April and June 2009. We would like to express our sincere thanks to our supervisor Prof. Torbjörn Ekevid, Volvo CE and Växjö University, for initiating and excellently supervising the work. We would also like to thank the engineers and managers at Volvo CE for assisting us throughout the work. Finally, thanks to Volvo CE for making possible to perform such an extensive work. Växjö, June 2009 IV Table of contents Abstract ............................................................................................................................ III Preface .............................................................................................................................. IV Table of contents ............................................................................................................... V List of figures ................................................................................................................ VIII List of tables..................................................................................................................... IX 1. Introduction ............................................................................................................ 1 1.1. Background .......................................................................................................................... 1 1.2. Problem formulation ........................................................................................................... 1 1.3. Purpose and aim .................................................................................................................. 2 1.4. The outlines of the thesis ..................................................................................................... 2 1.5. Hypothesis ............................................................................................................................ 3 1.6. Limitations ........................................................................................................................... 3 1.7. Company presentation ........................................................................................................ 3 1.7.1. Volvo group ................................................................................................................. 3 1.7.2. Volvo CE Braås ............................................................................................................ 4 1.7.3. Volvo CE Braås history ................................................................................................ 4 1.8. Articulated haulers A40E ................................................................................................... 5 2. The welding process ............................................................................................... 6 2.1. Welding ................................................................................................................................ 6 2.2. Robot welding ...................................................................................................................... 7 2.3. Robot arc welding ................................................................................................................ 8 2.4. Weld dimensioning ............................................................................................................ 10 3. Fatigue calculations ............................................................................................. 12 3.1. Stress components ............................................................................................................. 12 V 3.2. Principal stress - eigenvalue approach ............................................................................ 13 3.3. Fatigue ................................................................................................................................ 14 3.4. Fatigue damage .................................................................................................................. 17 3.5. Effective notch stress ......................................................................................................... 18 4. Finite element method ......................................................................................... 20 4.1. One-dimensional analysis ................................................................................................. 21 4.2. Three-dimensional stress analysis .................................................................................... 24 5. Software ................................................................................................................ 27 5.1. ANSYS ................................................................................................................................ 27 5.2. CATIA ................................................................................................................................ 28 6. Method .................................................................................................................. 29 6.1. Preparing the 3-D models ................................................................................................. 30 6.2. Setting up the model for analysis in ANSYS ................................................................... 33 7. Results ................................................................................................................... 38 7.1. Existing welds .................................................................................................................... 41 7.2. Adjusted welds ................................................................................................................... 44 8. Analysis of the results .......................................................................................... 47 9. Discussion and conclusions ................................................................................. 50 10. Further studies ..................................................................................................... 51 11. References ............................................................................................................. 52 11.1. Books ......................................................................................................................... 52 11.2. Articles and theses .................................................................................................... 53 11.3. Electronic sources ..................................................................................................... 53 11.4. Company related sources ......................................................................................... 54 11.5. Pictures ...................................................................................................................... 55 VI 12. Bibliography ......................................................................................................... 56 Appendices Number of pages Appendix A ..................................................................................................................................... 1 Appendix B ..................................................................................................................................... 1 Appendix C ..................................................................................................................................... 2 Appendix D ..................................................................................................................................... 3 Appendix E ..................................................................................................................................... 4 Appendix F ...................................................................................................................................... 1 Appendix G ..................................................................................................................................... 1 Appendix H ..................................................................................................................................... 6 VII List of figures Figure 1: Articulated Hauler A40 ........................................................................................ 5 Figure 2: Fully automate mechanized programmable tools ................................................. 8 Figure 3: Welding torch ....................................................................................................... 9 Figure 4: Wire feeder ........................................................................................................... 9 Figure 5: Weld, a- and s-measure ...................................................................................... 10 Figure 6: Weld, a- and i-measure ....................................................................................... 10 Figure 7: Weld affected area .............................................................................................. 11 Figure 8: Stress element for three-dimensional and two-dimensional (planar) case, ........ 12 Figure 9: Normal stress and shear stress ............................................................... 13 Figure 10: Example of S-N curve ...................................................................................... 15 𝜎𝜎𝜎𝜎 𝜏𝜏𝜎𝜎 Figure 11: Stress notations ................................................................................................. 16 Figure 12: Applying the radius of 1 mm on the weld root and weld toe ........................... 19 Figure 13: Continuous domain (left) and group of sub-domains (right) ........................... 21 Figure 14: An axially loaded member ............................................................................... 22 Figure 15: A portion of the member with the length of dx and its axial forces ................. 22 Figure 16 : A tetrahedral element in space defined by x, y, and z coordinates. ................ 24 Figure 17: Flowchart of the structural analysis by ANSYS .............................................. 28 Figure 18: Existing (left) and adjusted (right) welds ......................................................... 29 Figure 19: The gaps between the plates ............................................................................. 30 Figure 20: Closing the gaps by extending the plates ......................................................... 31 Figure 21: Connected plates, welds, notches, and radii ..................................................... 32 Figure 22: Weld specifications .......................................................................................... 32 Figure 23: Sliced basket for z direction ............................................................................. 33 Figure 24: Sliced load for z direction ................................................................................ 34 Figure 25: Sliced load and basket for z direction .............................................................. 35 Figure 26: Boundary conditions: flexible and cylindrical supports ................................... 36 Figure 27: The sub-model for z direction .......................................................................... 37 Figure 28: The highest maximum principal stress concentration areas ............................. 38 VIII Figure 29: The hotspot for acceleration in z ...................................................................... 41 Figure 30: The hotspot for acceleration in y ...................................................................... 42 Figure 31: The hotspot for acceleration in x ...................................................................... 43 Figure 32: The hotspot for acceleration in z ...................................................................... 44 Figure 33: The hotspot for acceleration in y ...................................................................... 45 Figure 34: The hotspot for acceleration in x ...................................................................... 46 Figure 35: An example of existing welds indicating the penetration depth ...................... 48 Figure 36: An example of adjusted welds indicating the penetration depth ...................... 48 List of tables Table 1: The absolute values of maximum and minimum principal stress ....................... 41 Table 2: The damages ........................................................................................................ 48 Table 3: The comparison of existing and adjusted welds .................................................. 50 IX 1. Introduction This early section of the thesis work intends to provide a sound base for readers. The rationale behind this study, the formulation of the problem, purpose and aim, and a brief description of the company where the study was performed are presented. 1.1. Background The heavy vehicle industry has been a rapidly growing industry for decades. This growth has been achieved by continuous improvements in terms of products and services provided by companies. Volvo Construction Equipment (CE) is one of the major companies in this field and has made extensive contributions to this growth. Regardless of being the market leader, Volvo CE continually makes investment in development activities in order to assure that its products have the edge over its rivals. In addition to this, it aims to make sure of contentment of its customers in all aspects, and reduce the expenditures of development, production, maintenance etc. This thesis work is a part of these development activities. It comprehensively covers production and related phases suchlike development. The major effort will be put on a number of particular welded connections, which are located on the front part of the load carrying unit. 1.2. Problem formulation Volvo CE in Braås develops and manufactures heavy off road vehicles used to transport large volumes of material in terrain difficult to enter. One of their main products is Volvo articulated hauler A40E. Since the products constantly need to be improved due to both high competitions in the market and customer contentment, the company requests help for conducting analyses on the both existing and adjusted (potential replacement) welded connections of the load carrying unit, i.e. basket. The outcomes of these analyses aim at guiding the company to choose the best type of welded connections. The task is to provide the company with an appropriate solution to reduce the amount of weld used to connect the metal sheets that form the basket. Authors: Nermin Dzanic, Martin Lindholm and Metin Uçar Page 1 of 56
Description: