ebook img

The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science PDF

435 Pages·2017·11.526 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science

(cid:2) TheFractionalTrigonometry (cid:2) (cid:2) (cid:2) (cid:2) The Fractional Trigonometry WithApplicationstoFractional DifferentialEquationsandScience CarlF.Lorenzo NationalAeronauticsandSpaceAdministration GlennResearchCenter Cleveland,Ohio TomT.Hartley (cid:2) (cid:2) TheUniversityofAkron Akron,Ohio (cid:2) (cid:2) Copyright©2017byJohnWiley&Sons,Inc.Allrightsreserved PublishedsimultaneouslyinCanada PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection 107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,or authorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222 RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com. RequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons, Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsof thisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.No warrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategies containedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate. Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbut notlimitedtospecial,incidental,consequential,orotherdamages. (cid:2) Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomer (cid:2) CareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317) 572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: Names:Lorenzo,CarlF.|Hartley,T.T.(TomT.),1964- Title:Thefractionaltrigonometry:withapplicationstofractional differentialequationsandscience/CarlF.Lorenzo,NationalAeronautics andSpaceAdministration,GlennResearchCenter,Cleveland,Ohio,TomT. Hartley,TheUniversityofAkron,Akron,Ohio. Description:Hoboken,NewJersey:JohnWiley&Sons,Inc.,[2017]|Includes bibliographicalreferencesandindex. Identifiers:LCCN2016027837(print)|LCCN2016028337(ebook)|ISBN 9781119139409(cloth)|ISBN9781119139423(pdf)|ISBN9781119139430 (epub) Subjects:LCSH:Fractionalcalculus.|Trigonometry. Classification:LCCQA314.L672017(print)|LCCQA314(ebook)|DDC 516.24–dc23 LCrecordavailableathttps://lccn.loc.gov/2016027837 Setin10/12ptWarnockbySPiGlobal,Chennai,India PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 (cid:2) (cid:2) v Contents Preface xv Acknowledgments xix AbouttheCompanionWebsite xxi 1 Introduction 1 1.1 Background 2 1.2 TheFractionalIntegralandDerivative 3 1.2.1 GrŭnwaldDefinition 3 1.2.2 Riemann–LiouvilleDefinition 4 1.2.3 TheNatureoftheFractional-OrderOperator 5 1.3 TheTraditionalTrigonometry 6 (cid:2) 1.4 PreviousEfforts 8 (cid:2) 1.5 ExpectationsofaGeneralizedTrigonometryandHyperboletry 8 2 TheFractionalExponentialFunctionviatheFundamentalFractional DifferentialEquation 9 2.1 TheFundamentalFractionalDifferentialEquation 9 2.2 TheGeneralizedImpulseResponseFunction 10 2.3 RelationshipoftheF-functiontotheMittag-LefflerFunction 11 2.4 PropertiesoftheF-Function 12 2.5 BehavioroftheF-FunctionastheParameteraVaries 13 2.6 Example 16 3 TheGeneralizedFractionalExponentialFunction:TheR-FunctionandOther FunctionsfortheFractionalCalculus 19 3.1 Introduction 19 3.2 FunctionsfortheFractionalCalculus 19 3.2.1 Mittag-Leffler’sFunction 20 3.2.2 Agarwal’sFunction 20 3.2.3 Erdelyi’sFunction 20 3.2.4 OldhamandSpanier’s,Hartley’s,andMatignon’sFunction 20 3.2.5 Robotnov’sFunction 21 3.2.6 MillerandRoss’sFunction 21 3.2.7 GorenfloandMainardi’s,andPodlubny’sFunction 21 (cid:2) (cid:2) vi Contents 3.3 TheR-Function:AGeneralizedFunction 22 3.4 PropertiesoftheR (a,t)-Function 23 q,v 3.4.1 DifferintegrationoftheR-Function 23 3.4.2 RelationshipBetweenR andR 25 q,mq q,0 3.4.3 Fractional-OrderImpulseFunction 27 3.5 RelationshipoftheR-FunctiontotheElementaryFunctions 27 3.5.1 ExponentialFunction 27 3.5.2 SineFunction 27 3.5.3 CosineFunction 28 3.5.4 HyperbolicSineandCosine 28 3.6 R-FunctionIdentities 29 3.6.1 Trigonometric-BasedIdentities 29 3.6.2 FurtherIdentities 30 3.7 RelationshipoftheR-FunctiontotheFractionalCalculusFunctions 31 3.7.1 Mittag-Leffler’sFunction 31 3.7.2 Agarwal’sFunction 31 3.7.3 Erdelyi’sFunction 31 3.7.4 OldhamandSpanier’s,andHartley’sFunction 31 3.7.5 MillerandRoss’sFunction 32 3.7.6 Robotnov’sFunction 32 3.7.7 GorenfloandMainardi’s,andPodlubny’sFunction 32 3.8 Example:CoolingManifold 32 3.9 FurtherGeneralizedFunctions:TheG-FunctionandtheH-Function 34 (cid:2) 3.9.1 TheG-Function 34 (cid:2) 3.9.2 TheH-Function 36 3.10 PreliminariestotheFractionalTrigonometryDevelopment 38 3.11 EigenCharacteroftheR-Function 38 3.12 FractionalDifferintegraloftheTimeScaledR-Function 39 3.13 R-FunctionRelationships 39 3.14 RootsofComplexNumbers 40 3.15 IndexedFormsoftheR-Function 41 3.15.1 R-FunctionwithComplexArgument 41 3.15.2 IndexedFormsoftheR-Function 42 3.15.2.1 ComplexityForm 42 3.15.2.2 ParityForm 43 3.16 Term-by-TermOperations 44 3.17 Discussion 46 4 R-FunctionRelationships 47 4.1 R-FunctionBasics 47 4.2 RelationshipsforR inTermsofR 48 m,0 1,0 4.3 RelationshipsforR inTermsofR 50 1∕m,0 1,0 4.4 RelationshipsfortheRationalFormR inTermsofR 51 m∕p,0 1∕p,0 4.5 RelationshipsforR inTermsofR 53 1∕p,0 m∕p,0 4.6 RelatingR totheExponentialFunctionR (b, t)=ebt 54 m∕p,0 1,0 4.7 InverseRelationships–RelationshipsforR inTermsofR 56 1,0 m,k 4.8 InverseRelationships–RelationshipsforR inTermsofR 57 1,0 1∕m,0 4.9 InverseRelationships–Relationshipsforeat =R (a,t)inTermsofR 59 1,0 m∕p,0 4.10 Discussion 61 (cid:2) (cid:2) Contents vii 5 TheFractionalHyperboletry 63 5.1 TheFractionalR -HyperbolicFunctions 63 1 5.2 R -HyperbolicFunctionRelationship 72 1 5.3 FractionalCalculusOperationsontheR -HyperbolicFunctions 72 1 5.4 LaplaceTransformsoftheR -HyperbolicFunctions 73 1 5.5 Complexity-BasedHyperbolicFunctions 73 5.6 FractionalHyperbolicDifferentialEquations 74 5.7 Example 76 5.8 Discussions 77 6 TheR -FractionalTrigonometry 79 1 6.1 R -TrigonometricFunctions 79 1 6.1.1 R -TrigonometricProperties 81 1 6.2 R -TrigonometricFunctionInterrelationship 88 1 6.3 RelationshipstoR -HyperbolicFunctions 89 1 6.4 FractionalCalculusOperationsontheR -TrigonometricFunctions 89 1 6.5 LaplaceTransformsoftheR -TrigonometricFunctions 90 1 6.5.1 LaplaceTransformofR Cos (a, k, t) 90 1 q.v 6.5.2 LaplaceTransformofR Sin (a, k, t) 91 1 q.v 6.6 Complexity-BasedR -TrigonometricFunctions 92 1 6.7 FractionalDifferentialEquations 94 7 TheR -FractionalTrigonometry 97 2 7.1 R -TrigonometricFunctions:BasedonRealandImaginaryParts 97 2 (cid:2) (cid:2) 7.2 R -TrigonometricFunctions:BasedonParity 102 2 7.3 LaplaceTransformsoftheR -TrigonometricFunctions 111 2 7.3.1 R Cos (a, k, t) 111 2 q,v 7.3.2 R Sin (a, k, t) 112 2 q,v 7.3.3 L{R Cofl (a, k, t)} 113 2 q,v 7.3.4 L{R Flut (a, k, t)} 113 2 q,v 7.3.5 L{R Covib (a, k, t)} 113 2 q,v 7.3.6 L{R Vib (a, k, t)} 113 2 q,v 7.4 R -TrigonometricFunctionRelationships 113 2 7.4.1 R Cos (a, k, t)andR Sin (a, k, t)RelationshipsandFractionalEuler 2 q,v 2 q,v Equation 114 7.4.2 R Rot (a, t)andR Cor (a, t)Relationships 116 2 q,v 2 q,v 7.4.3 R Cofl (a, t)andR Flut (a, t)Relationships 116 2 q,v 2 q,v 7.4.4 R Covib (a, t)andR Vib (a, t)Relationships 118 2 q,v 2 q,v 7.5 FractionalCalculusOperationsontheR -TrigonometricFunctions 119 2 7.5.1 R Cos (a, k, t) 119 2 q,v 7.5.2 R Sin (a, k, t) 121 2 q,v 7.5.3 R Cor (a, t) 122 2 q,v 7.5.4 R Rot (a, t) 122 2 q,v 7.5.5 R Coflut (a, t) 122 2 q,v 7.5.6 R Flut (a, k, t) 123 2 q,v 7.5.7 R Covib (a, k, t) 123 2 q,v 7.5.8 R Vib (a, k, t) 124 2 q,v 7.5.9 SummaryofFractionalCalculusOperationsontheR -Trigonometric 2 Functions 124 7.6 InferredFractionalDifferentialEquations 127 (cid:2) (cid:2) viii Contents 8 TheR -TrigonometricFunctions 129 3 8.1 TheR -TrigonometricFunctions:BasedonComplexity 129 3 8.2 TheR -TrigonometricFunctions:BasedonParity 134 3 8.3 LaplaceTransformsoftheR -TrigonometricFunctions 140 3 8.4 R -TrigonometricFunctionRelationships 141 3 8.4.1 R Cos (a,t)andR Sin (a,t)RelationshipsandFractionalEulerEquation 142 3 q,v 3 q,v 8.4.2 R Rot (a,t)andR Cor (a,t)Relationships 143 3 q,v 3 q,v 8.4.3 R Cofl (a,t)andR Flut (a,t)Relationships 144 3 q,v 3 q,v 8.4.4 R Covib (a,t)andR Vib (a,t)Relationships 145 3 q,v 3 q,v 8.5 FractionalCalculusOperationsontheR -TrigonometricFunctions 146 3 8.5.1 R Cos (a,k,t) 146 3 q,v 8.5.2 R Sin (a,k,t) 148 3 q,v 8.5.3 R Cor (a,t) 149 3 q,v 8.5.4 R Rot (a,t) 150 3 q,v 8.5.5 R Coflut (a,k,t) 150 3 q,v 8.5.6 R Flut (a,k,t) 152 3 q,v 8.5.7 R Covib (a,k,t) 153 3 q,v 8.5.8 R Vib (a,k,t) 154 3 q,v 8.5.9 SummaryofFractionalCalculusOperationsontheR -Trigonometric 3 Functions 157 9 TheFractionalMeta-Trigonometry 159 9.1 TheFractionalMeta-TrigonometricFunctions:BasedonComplexity 160 (cid:2) 9.1.1 AlternateForms 161 (cid:2) 9.1.2 GraphicalPresentation–ComplexityFunctions 161 9.2 TheMeta-FractionalTrigonometricFunctions:BasedonParity 166 9.3 CommutativePropertiesoftheComplexityandParityOperations 179 9.3.1 GraphicalPresentation–ParityFunctions 181 9.4 LaplaceTransformsoftheFractionalMeta-TrigonometricFunctions 188 9.5 R-FunctionRepresentationoftheFractionalMeta-TrigonometricFunctions 192 9.6 FractionalCalculusOperationsontheFractionalMeta-Trigonometric Functions 195 9.6.1 Cos (a,𝛼,𝛽,k,t) 195 q,v 9.6.2 Sin (a,𝛼,𝛽,k,t) 197 q,v 9.6.3 Cor (a,𝛼,𝛽,t) 198 q,v 9.6.4 Rot (a,𝛼,𝛽,t) 198 q,v 9.6.5 Coflut (a,𝛼,𝛽,k,t) 199 q,v 9.6.6 Flut (a,𝛼,𝛽,k,t) 200 q,v 9.6.7 Covib (a,𝛼,𝛽,k,t) 202 q,v 9.6.8 Vib (a,𝛼,𝛽,k,t) 203 q,v 9.6.9 SummaryofFractionalCalculusOperationsontheMeta-Trigonometric Functions 204 9.7 SpecialTopicsinFractionalDifferintegration 206 9.8 Meta-TrigonometricFunctionRelationships 206 9.8.1 Cos (a,𝛼,𝛽,t)andSin (a,𝛼,𝛽,t)Relationships 206 q,v q,v 9.8.2 Cor (a,𝛼,𝛽,t)andRot (a,𝛼,𝛽,t)Relationships 207 q,v q,v 9.8.3 Covib (a,𝛼,𝛽,t)andVib (a,𝛼,𝛽,t)Relationships 208 q,v q,v 9.8.4 Cofl (a,𝛼,𝛽,t)andFlut (a,𝛼,𝛽,t)Relationships 208 q,v q,v 9.8.5 Cofl (a,𝛼,𝛽,t)andVib (a,𝛼,𝛽,t)Relationships 209 q,v q,v (cid:2) (cid:2) Contents ix 9.8.6 Cos (a,𝛼,𝛽,t)andSin (a,𝛼,𝛽,t)RelationshipstoOtherFunctions 211 q,v q,v 9.8.7 Meta-IdentitiesBasedontheInteger-orderTrigonometricIdentities 211 9.8.7.1 Thecos(−x)=cos(x)-BasedIdentityforCos (a,𝛼,𝛽,t) 211 q,v 9.8.7.2 Thesin(−x)=−sin(x)-BasedIdentityfor Sin (a,𝛼,𝛽,t) 212 q,v 9.8.7.3 TheCos (a,𝛼,𝛽,t)⇔Sin (a,𝛼,𝛽,t)Identity 212 q,v q,v 9.8.7.4 Thesin(x)=sin(x±m𝜋/2)-BasedIdentityforSin (a,𝛼,𝛽,t) 213 q,v 9.9 FractionalPoles:StructureoftheLaplaceTransforms 214 9.10 CommentsandIssuesRelativetotheMeta-TrigonometricFunctions 214 9.11 BackwardCompatibilitytoEarlierFractionalTrigonometries 215 9.12 Discussion 215 10 TheRatioandReciprocalFunctions 217 10.1 FractionalComplexityFunctions 217 10.2 TheParityReciprocalFunctions 219 10.3 TheParityRatioFunctions 221 10.4 R-FunctionRepresentationoftheFractionalRatioandReciprocalFunctions 225 10.5 Relationships 226 10.6 Discussion 227 11 FurtherGeneralizedFractionalTrigonometries 229 11.1 TheG-Function-BasedTrigonometry 229 11.2 LaplaceTransformsfortheG-TrigonometricFunctions 230 11.3 TheH-Function-BasedTrigonometry 234 11.4 LaplaceTransformsfortheH-TrigonometricFunctions 235 (cid:2) (cid:2) IntroductiontoApplications 241 12 TheSolutionofLinearFractionalDifferentialEquationsBasedon theFractionalTrigonometry 243 12.1 FractionalDifferentialEquations 243 12.2 FundamentalFractionalDifferentialEquationsoftheFirstKind 245 12.3 FundamentalFractionalDifferentialEquationsoftheSecondKind 246 12.4 Preliminaries–LaplaceTransforms 246 12.4.1 FractionalCosineFunction 246 12.4.2 FractionalSineFunction 248 12.4.3 Higher-OrderNumeratorDynamics 248 12.4.3.1 FractionalCosineFunction 248 12.4.3.2 FractionalSineFunction 248 12.4.4 ParityFunctions–TheFlutterFunction 249 12.4.5 AdditionalTransformPairs 250 12.5 FractionalDifferentialEquationsofHigherOrder:UnrepeatedRoots 250 12.6 FractionalDifferentialEquationsofHigherOrder:ContainingRepeatedRoots 252 12.6.1 RepeatedRealFractionalRoots 252 12.6.2 RepeatedComplexFractionalRoots 253 12.7 FractionalDifferentialEquationsContainingRepeatedRoots 253 12.8 FractionalDifferentialEquationsofNon-CommensurateOrder 254 12.9 IndexedFractionalDifferentialEquations:MultipleSolutions 255 12.10 Discussion 256 (cid:2) (cid:2) x Contents 13 FractionalTrigonometricSystems 259 13.1 TheR-FunctionasaLinearSystem 259 13.2 R-SystemTimeResponses 260 13.3 R-Function-BasedFrequencyResponses 260 13.4 Meta-TrigonometricFunction-BasedFrequencyResponses 261 13.5 FractionalMeta-Trigonometry 264 13.6 ElementaryFractionalTransferFunctions 266 13.7 StabilityTheorem 266 13.8 StabilityofElementaryFractionalTransferFunctions 267 13.9 InsightsintotheBehavioroftheFractionalMeta-TrigonometricFunctions 268 13.9.1 ComplexityFunctionStability 268 13.9.2 ParityFunctionStability 269 13.10 Discussion 270 14 NumericalIssuesandApproximationsintheFractionalTrigonometry 271 14.1 R-FunctionConvergence 271 14.2 TheMeta-TrigonometricFunctionConvergence 272 14.3 UniformConvergence 273 14.4 NumericalIssuesintheFractionalTrigonometry 274 14.5 TheR Cos-andR Sin-FunctionAsymptoticBehavior 275 2 2 14.6 R-FunctionApproximations 276 14.7 TheNear-OrderEffect 279 14.8 High-PrecisionSoftware 281 (cid:2) (cid:2) 15 TheFractionalSpiralFunctions:FurtherCharacterizationoftheFractional Trigonometry 283 15.1 TheFractionalSpiralFunctions 283 15.2 AnalysisofSpirals 288 15.2.1 DescriptionsofSpirals 288 15.2.1.1 PolarDescription 289 15.2.1.2 ParametricDescription 290 15.2.1.3 Definitions 293 15.2.1.4 AlternateDefinitions 294 15.2.1.5 Examples 294 15.2.2 SpiralLengthandGrowth/DecayRates 294 15.2.2.1 SpiralLength 294 15.2.2.2 SpiralGrowthRatesforccwSpirals 295 15.2.2.3 ComponentGrowthRates 296 15.2.3 ScalingofSpirals 296 15.2.3.1 UniformRectangularScaling 297 15.2.3.2 NonuniformRectangularScaling 297 15.2.3.3 PolarScaling 298 15.2.3.4 RadialScaling 298 15.2.3.5 AngularScaling 298 15.2.4 SpiralVelocities 299 15.2.5 ReferencedSpirals:Retardation 301 15.3 RelationtotheClassicalSpirals 303 15.3.1 ClassicalSpirals 303 15.4 Discussion 307 (cid:2) (cid:2) Contents xi 16 FractionalOscillators 309 16.1 TheSpaceofLinearFractionalOscillators 309 16.1.1 ComplexityFunction-BasedOscillators 310 16.1.2 ParityFunction-BasedOscillators 311 16.1.3 IntrinsicOscillatorDamping 312 16.2 CoupledFractionalOscillators 314 17 ShellMorphologyandGrowth 317 17.1 Nautiluspompilius 317 17.1.1 Introduction 317 17.1.2 NautilusMorphology 318 17.1.2.1 FractionalDifferentialEquations 323 17.1.3 SpiralLength 325 17.1.4 MorphologyoftheSiphuncleSpiral 325 17.1.5 FractionalGrowthRate 325 17.1.6 NautilusStudySummary 328 17.2 Shell5 329 17.3 Shell6 330 17.4 Shell7 332 17.5 Shell8 332 17.6 Shell9 336 17.7 Shell10 336 17.8 Ammonite 339 17.9 Discussion 340 (cid:2) (cid:2) 18 MathematicalClassificationoftheSpiralandRingGalaxyMorphologies 341 18.1 Introduction 341 18.2 Background–FractionalSpiralsforGalacticClassification 342 18.3 ClassificationProcess 347 18.3.1 SymmetryAssumption 347 18.3.2 GalaxyImagetoSpiralorSpiraltoGalaxyImage 347 18.3.3 Inclination 347 18.3.4 DataPresentation 348 18.4 MathematicalClassificationofSelectedGalaxies 350 18.4.1 NGC4314SB(rs)a 350 18.4.2 NGC1365SBb/SBc/SB(s)b/SBb(s) 350 18.4.3 M95SB(r)b/SBb(r)/SBa/SBb 350 18.4.4 NGC2997Sc/SAB(rs)c/Sc(s) 353 18.4.5 NGC4622(R′)SA(r)apec/Sb 353 18.4.6 M66orNGC3627SAB(s)b/Sb(s)/Sb 353 18.4.7 NGC4535SAB(s)c/SB(s)c/Sc/SBc 355 18.4.8 NGC1300SBc/SBb(s)/SB(rs)bc 355 18.4.9 Hoag’sObject 358 18.4.10 M51Sa+Sc 358 18.4.11 AM0644-741Sc/Stronglypeculiar/ 359 18.4.12 ESO269-G57(R′)SAB(r)ab/Sa(r) 360 18.4.13 NGC1313SBc/SB(s)d/SB(s)d 362 18.4.14 CarbonStar3068 362 18.5 Analysis 362 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.