ebook img

The extended ROSAT-ESO Flux-Limited X-ray Galaxy Cluster Survey (REFLEX II) VI. Effect of massive neutrinos on the cosmological constraints from clusters PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The extended ROSAT-ESO Flux-Limited X-ray Galaxy Cluster Survey (REFLEX II) VI. Effect of massive neutrinos on the cosmological constraints from clusters

Astronomy&Astrophysicsmanuscriptno.Boehringer˙15 (cid:13)c ESO2015 January21,2015 LettertotheEditor The extended ROSAT-ESO Flux-Limited X-ray Galaxy Cluster Survey (REFLEX II) VI. Effect of massive neutrinos on the cosmological constraints from clusters HansBo¨hringer1,GayoungChon1 5 1 1Max-Planck-Institutfu¨rextraterrestrischePhysik,D-85748Garching,Germany. 0 Submitted29/11/14 2 n ABSTRACT a J Clustersofgalaxiesareimportantprobesforthelarge-scalestructurethatallowustotestcosmologicalmodels.WiththeREFLEX 0 IIgalaxyclustersurveywepreviouslyderivedtightconstraintsonthecosmological parametersforthematterdensity,Ωm,andthe 2 amplitude parameter of the matter density fluctuations, σ8. Whereas in these previous studies no effect of massive neutrinos was takenintoaccount,weexploretheseeffectsinthepresentpublication.Wederivecosmologicalconstraintsforthesumoftheneutrino ] massesoftheconventionalthreeneutrinofamiliesintherange Mν = Pimνi = 0to0.6eV.TheinfluenceontheconstraintsofΩm O andσ fortheexpectedmassrangeisweak.Interestingconstraintsontheneutrinopropertiescanbederivedbycomparingthecluster 8 C datawiththosefromthePlanckcosmicmicrowavebackground(CMB)observations.ThecurrenttensionbetweenthePlanckresults andclusterscanformallyberesolvedwithneutrinomassesofaboutM =0.45(±0.28,1σ)eV.Whilewecautionnottoconsiderthis . ν h afirmmeasurementbecauseitmightalsobetheresultofunresolvedsystematics,itisinterestingthatothermeasurementsofthelocal p large-scalestructurefluctuationamplitude,likethatofcosmiclensingshear,yieldsimilarresultsandadditionallyconfirmtheeffectof - massiveneutrinos.Amongtheindicatorsformassiveneutrinos,galaxyclustersandinparticularourlargeandwell-controlledcluster o surveycurrentlyprovidethebestpotentialforconstraintsofthetotalneutrinomass. r t Keywords.galaxies:clusters,cosmology:observations,cosmology:large-scalestructureoftheUniverse,X-rays:galaxies:clusters s a [ 1 1. Introduction approximately fixed, the strength of the effect depends on the v massoftheneutrinos.Thismassisunevenlydistributedbetween Clustersofgalaxiesformfromweakdensityfluctuationsinthe 3 the three differentneutrinospecies, but how exactly they share early Universe on comoving scales of several Mpc in a well- 5 the massis currentlyunknown.For ourpurposesthe important 9 defined way. They can thus be used to statistically assess the parameteristhetotalmassofallneutrinofamilies,M = m , 4 large-scalestructure.Byapplyingthisasadiagnostics,onecan andthedistributionoftheindividualmassescausesoνnlyPhiighνeir 0 constrain cosmological models that describe our Universe. We order effects that are of no concernfor our calculations. In ad- . havebeenusing galaxyclustersfromourstatistically complete 1 dition,theeffectsofpossiblesterileneutrinosonthelarge-scale survey of galaxy clusters, the REFLEX (ROSAT-ESO Flux- 0 structurehavebeenconsidered(e.g.Lesgourges&Pastor2006, 5 Limited X-ray) Cluster Survey (Bo¨hringer et al. 2001, 2004, 2014).Inthispaperwefocusontheeffectofthreeconventional 1 2013) to obtain constraints on cosmological model parameters neutrinos. : (Bo¨hringer et al. 2014a). We derived in particular tight con- v straintsonthe matterdensityparameter,Ω , andonthe ampli- Thereis anexperimentallowerlimiton M witha valueof i m ν X tude parameter of the matter density fluctuations, σ from the about0.06eV(e.g.Foglietal.2012;Foreroetal.2012).Several 8 X-rayluminosityfunctionmeasuredinthenearbyUniverse. upperlimits have beenderivedfromastronomicalobservations r a In these calculations we assumed that neutrinos, filling the with Mν ≤ 0.93 eV from Planck alone (Planck Collaboration Universe in large abundance, have zero mass. Modern exper- XVI2913a),Mν ≤0.9eVfromtheSDSSpowerspectrumalone imental results from solar, atmospheric, and reactor neutrinos (Viel et al. 2010), a value of Mν = 0.36±0.14 (1σ) eV from (e.g. Fogli et al. 2012; Forero et al. 2012; Lesgourgues et al. theSDSSIIIpowerspectrumcombinedwithWMAP(Beutleret 2013) show neutrino oscillations that imply that neutrinos are al. 2014), Mν ≤ 0.34 eV from SDSS III combined with CMB not massless; they therefore have an effect on the large-scale and supernova data (Zhao et al. 2014), Mν ≤ 0.18 eV from structureoftheUniverse(e.g.Lesgourges&Pastor2006,2014). thematterpowerspectrumoftheWiggleZDarkEnergySurvey Theprocessbywhichneutrinosinfluencethe large-scalestruc- combined with data from Planck and other BAO observations turegrowthisapartialdampingofthedensityfluctuationpower (Riemer-Sørensen 2014), and Mν ≤ 0.33 eV from a combina- spectrumonsmallandintermediatescalesuptoaboutk≥0.02h tion of the cluster mass function, CMB, supernova, and BAO Mpc−1(≤160h−1Mpc)incomovingunits(Lesgourges&Pastor data (Mantz et al. 2010).One of the tightest constraintscomes 2006).SincethenumberofneutrinosinthepresentUniverseis fromthelarge-scalestructureanalysisoftheLyαforesttogether with galaxyclustering,CMB, andsupernovaobservationswith Sendoffprintrequeststo:H.Bo¨hringer,[email protected] Mν ≤ 0.17eV (Seljak et al. 2006).In a recentpaper, Costanzi 1 Bo¨hringeretal.:REFLEXIIcosmologyconstraintswithmassiveneutrinos etal.(2014)obtainedconstraintsonanon-zeroneutrinomassof applied an additional cut on the minimum number of detected Mν =0.29−+00..2118(cid:16)0.22−+00..1187(cid:17)eVusingWMAP9(Planck)CMBas source photonsof 20 counts. Thishas the effect that the nomi- nal flux cut quoted above is only reached in about 80% of the wellasBAO,large-scalestructurelensingshearandclusterdata. survey. In regions with lower exposure and higher interstellar Hamann and Hasenkamp (2013) and Battye and Moss (2014) absorption, the flux limit is accordingly higher (see Fig. 11 in alsoconcludedonapositivesignalforneutrinomassfromCMB Bo¨hringer et al. 2013). This effect is modelled and taken into andlensingshearorclusterdata. accountinthesurveyselectionfunction. Thereforemassiveneutrinosshouldbeincludedinthemod- ellingoftheX-rayluminosityfunctiontocomplywiththemost The flux limit imposed on the survey is for a nominal flux recent results, which imply that neutrinos have mass. With a thathasbeencalculatedfromthedetectedphotoncountratefor givenneutrinonumberdensitywecancalculatethecontribution a cluster X-ray spectrum characterized by a temperature of 5 ofneutrinostothematterdensityintermsofthecriticaldensity keV, a metallicity of 0.3 solar, a redshift of zero, and an inter- andwefind(e.g.Lesgourges&Pastor2014) stellarabsorptioncolumndensitygivenbythe21cmskysurvey described by Dickey and Lockmann (1990). The result of this m conversionof count rate to flux is an appropriateflux estimate Ω = P ν h2 . (1) ν 93.14eV beforeanyredshiftinformationandisanalogoustoanobserved objectmagnitudecorrectedforGalacticextinctionintheoptical. The aim of this paper is to explore how the constraints of After the redshifts were measured, a new flux was calcu- cosmological parameters based on the REFLEX II survey data latedtakingtheredshiftedspectrumandanestimateforthespec- changebyincludingmassiveneutrinos.Whiletheeffectofmas- traltemperatureintoaccount.Thetemperaturewasestimatedby sive neutrinos on the cluster mass function and on the derived meansoftheX-rayluminosity-temperaturerelationfromPratt cosmologicalconstraintshasbeenexploredbefore(e.g.Marulli et al. (2009) determined from the REXCESS cluster sample. etal.2011,Costanzietal.2013,Burenin2013),theapplication This is a sample of clusters drawn from REFLEX I for deeper of the REFLEX II cluster sample adds a new dimension to the follow-upobservationswithXMM-Newton,whichis represen- discussion for us. The REFLEX II galaxy cluster sample cur- tative of the entire flux-limited survey (Bo¨hringer et al. 2007). rentlyprovidesthemostprecisedescriptionoftheshapeofthe The luminositywas determinedfirst fromthe observedflux by X-rayluminosityfunction.Thebettertheshapeofthefunction meansoftheluminositydistanceforagivenredshift.Usingthe isconstrained,thebetterthedegeneracyoftheconstraintsonthe X-ray luminosity mass relation given in Pratt et al. (2009), we parameters,Ω ,σ ,and M canbebroken.Itisamaingoalof m 8 ν thenusedthemassestimatetodetermineafiducialradiusofthe thispapertoexplorewhatthisimpliesforourdata.Inaddition, cluster,whichistakentober 1.Weappliedabetamodelfor 500 wealso wishtostudythepossibleimplicationsontheneutrino theclustersurfacebrightnessdistributiontocorrectforthepos- mass that can be gained by a comparison of the cosmological siblymissingfluxintheregionbetweenthedetectionapertureof constraintsderivedfromourclustersamplewiththeresultsfrom the sourcephotonsandthe radiusr . The procedureto deter- 500 thePlanckobservationsoftheCMB. minetheflux,theluminosity,thetemperatureestimate,andr 500 The paper is structured as follows: In Sect. 2 we describe wasperformediterativelyandisdescribedindetailinBo¨hringer theREFLEXIIgalaxyclustersampleandinSect.3thecosmo- etal.(2013).Inthispaperwe deduceda meanfluxuncertainty logical modelling of these data. In Sect. 4 we then discuss the fortheREFLEXIIclustersof20.6%,whichismostlyduetothe effects of massive neutrinos on the X-ray luminosity function, Poisson statistics of the source counts, but also contains some and in Sect. 5 we compare the cosmological constraints from systematicerrors. clustersincludingmassiveneutrinoswiththosefromthePlanck The X-ray source detection and selection was based on the CMBobservationsanddrawourconclusions.Section6provides official ROSAT All-Sky Survey source catalogue by Voges et asummary.Todetermineallparametersthatdependondistance, al.(1999).Weusedthepubliclyavailablefinalsourcecatalogue we use a flatΛCDM cosmologywith a matterdensityparame- 2 as well as a preliminary source list that was created while terΩ asrequiredbythemodel.Literaturevaluesquotedabove m producing the public catalogue. To improve the quality of the havea scalingby h = H /100kms−1 Mpc−1, whereasthefol- 0 source parameters for the mostly extended cluster sources, we lowing results are scaled with h = h/0.7, if not stated other- 70 reanalysedalltheX-raysourceswiththegrowthcurveanalysis wise. ForthecomparisonwithPlanck weuse a flatcosmology method(Bo¨hringeretal.2000).Thefluxcutwasimposedonthe withΩ =0.315andh=0.673. m reanalysed data set. The process of the source identification is describedindetailinBo¨hringeretal.(2013). 2. REFLEXIIgalaxyclustersurvey The REFLEX II galaxy cluster survey is based on the X-ray 3. CosmologicalmodellingoftheREFLEXsurvey detection of galaxy clusters in the ROSAT All-Sky Survey Cosmological constraints were obtained by comparing cosmo- (Tru¨mper1993,Vogesetal. 1999).The regionof the surveyis logicalmodelpredictionsforthegalaxyclusterX-rayluminosity thesouthernskybelowequatoriallatitude+2.5oandatGalactic functionwiththeobservationsfromtheREFLEXIIproject.The latitude|b | ≥ 20o.TheregionsoftheMagellanicCloudshave II comparison was performed by means of a likelihood method. beenexcised.Thesurveyregionselection,thesourcedetection, The details of this procedure are described in Bo¨hringer et al. the galaxy cluster sample definition and compilation, and the constructionofthe surveyselection functionaswell astests of 1 r istheradiuswheretheaveragemassdensityinsidereachesa thecompletenessofthesurveyaredescribedinBo¨hringeretal. 500 valueof500timesthecriticaldensityoftheUniverseattheepochof (2013).Insummary,thesurveyareais∼4.24ster.Thenominal observation. fluxlimitdowntowhichgalaxyclustershavebeenidentifiedin 2 The RASS source catalogues can be found at theROSATAll-SkySurveyinthisregionis1.8×10−12 ergs−1 http://www.xray.mpe.mpg.de/rosat/survey/rass-bsc/ for the bright cm−2 in the 0.1 - 2.4 keV energyband,yieldinga catalogueof sources and at http://www.xray.mpe.mpg.de/rosat/survey/rass-fsc/ for 911clusters.Toassessthelarge-scalestructureinthispaper,we thefaintsources. 2 Bo¨hringeretal.:REFLEXIIcosmologyconstraintswithmassiveneutrinos (2014a), and we here provide only a brief outline. In a first step, the power spectrum of the matter density fluctuations for thepresentepochiscalculatedwiththeprogramCAMB(Lewis et al. 2000) 3. This is different to the previous calculations in Bo¨hringer et al. (2014a), where we used the program for the transferfunctionbyEisensteinandHu(1998).Bychangingthe calculationsfromthelatterprogramtoCAMB,wedidnotnote any differences larger than one percent. Based on this power spectrum,we calculatedthe cluster massfunctionwith the for- mulasgivenbyTinkeretal. (2008).To derivethepredictedX- ray luminosity function from the theoretically calculated clus- ter mass function, we used empirical scaling relations of X- rayluminosityandmassinaccordancewiththeobservationsof Reiprich& Bo¨hringer(2002),Prattetal.(2009),andVikhlinin etal.(2009),withintheirconfidencelimits. Inthemarginalisa- tions of the constraintswe allowed for a 7% uncertaintyin the slopeofthescalingrelationandanuncertaintyof14%initsnor- malisation(equivalenttothemasscalibration)as1σconstraints Fig.1. Constraints on the cosmological parameters Ω and σ oftheseparameters.Formoredetailsonthemarginalisationsee m 8 from a model fit to the observed REFLEX II X-ray luminosity Bo¨hringer et al. (2014a). In the final likelihood fit we do not distribution. The curves give 1 and 2σ constraints for models compare the luminosity functions directly, but the comparison with M =0,M =0.4,andM =0.6eVforthesetofcontours is made between the predicted and observed X-ray luminosity ν ν ν fromupperlefttolowerright(black,red,blue),respectively. distribution.TotheoreticallypredicttheX-rayluminositydistri- bution,the X-rayluminosityfunctionhasto befoldedwith the surveyselectionfunction,whichisalsodescribedindetailinour a fixed A normalisation.Theratiobetweenthese twoparame- S previouspaper. tersalsodependsonthematterdensity,Ω ,sincethemaximum m RecentliteratureforexamplebyCostanzietal.(2014)sug- ofthepowerspectrumshiftswiththisparameter. gestedthatthegalaxyclustermassfunctionshouldbemodelled The parameter σ8 was originally designed to describe the in a particular way in the presence of massive neutrinos. The power spectrum amplitude at cluster scale. Thus to first order, suggestedmodificationconsistsofonlyusingthematterdensity ignoringsubtlechangesintheshapeoftherenormalisedpower withoutneutrinos,ρm −ρν,intherelationofmassandfilterra- spectrum,thevalueofσ8fixestheclusterabundance.Therefore dius to calculate the amplitudevariance, σ(M)2, of the density looking for the best-fitting σ8 for a given cluster abundance fluctuations.Wetestedincludingthismodificationinourcalcu- meansinthemodellingthatpowerspectrafordifferentneutrino lations and found that the results never changed by more than masses will be rescaled such that they all give a very similar onepercent.Sincethisisanorderofmagnitudesmallerthanthe valueofσ8.Thisisreflectedintheconstraintsweobtainforthe systematicuncertainties,wedidnotincludethemodificationat parametercombinationof Ωm and σ8 adoptingdifferentvalues thisstage. of Mν , as shown in Fig. 1. The subtle changesin the shape of thepowerspectrumcausesmallmovesintheΩ andσ param- m 8 eter plane, but the changes are much smaller than the changes 4. EffectofneutrinosontheclusterX-ray of σ8 with neutrino mass for fixed AS. While the shift in σ8 from M = 0 to M = 0.6 eV in Fig. 1 is ∆σ = 0.04, it is luminosityfunction ν ν 8 about∆σ =0.14forfixedA .FortheresultsinFig.1wehave 8 S Beforewedescribethederivedcosmologicalconstraints,weex- consideredextremecases.Ifthepossiblerangeoftotalneutrino ploretheeffectofneutrinosontheclusterabundanceandtheX- massesisinsteadabout0.06to0.2eV,weexpectdifferencesin ray luminosity function of clusters. Neutrinos damp out large- themarginalisationresultssmallerthanthepresentmarginalisa- scale structure during the evolution of the Universe inside the tion uncertainties,if we use the σ8-normalisationof the power horizon scale as long as they are relativistic. Thus the greatest spectrum. length scale for which we expect damping effects is approxi- Thereisalsohardlyanydistinctioninthegoodnessoffitbe- matelythehorizonscaleattheepochwhentheneutrinosbecome tween the fits for different Mν. The likelihood changes by less non-relativistic.Theycanonlydampafractionoftheamplitude than∆L = 1,whichiswellwithintheone-sigmaerrors.Taking thatcorrespondstotheirfractionofthetotalmatterdensity. the cluster results alonethereforedoesnotyield a clear prefer- If we fix the normalisation of the power spectrum at the ence fora neutrinomass in the mass rangeshown.A discrimi- epoch of recombination with the parameter, A , the curvature nationcanbeobtainedbycomparingthiswiththeobservations S power spectrum normalisation at a scale of k = 0.05 Mpc−1, oftheCMB,whichwillbediscussedinthenextsection. 0 asdoneforthePlanckpowerspectrum,weseethatthepresent epochpowerspectrumisdepressedatsmallscalesbelowawave 5. ComparisonwiththePlanckCMBresults vectorofabout0.014h Mpc−1 andthedepressionisstronger 70 thelargerM .Theregimethatisrelevantforclusterformationis To compare the present constraints with the Planck results, ν inthedepressionregion.Thisisalsotheregioninwhichthepa- we chose a power spectrum normalisation that is applicable in rameterσ isdetermined.Thereforeweexpectthatthepresent- the same way to both surveys. For this reason, we used the 8 dayvalueforσ willchangewithchangingneutrinomassesfor parameter, A , the normalisation of the dimensionless curva- 8 S ture power spectrum, to normalise the power spectrum for the 3 CAMB is publicly available from clusterabundancecalculation,sincethisparameterisalso used http://www.camb.info/CAMBsubmit.html to normalise the power spectrum for the Planck data analysis 3 Bo¨hringeretal.:REFLEXIIcosmologyconstraintswithmassiveneutrinos Fig.2.Constraintson A andσ fromtheREFLEXIIX-raylu- Fig.3.Marginalisedconstraintsfortherescaledparameterσeff s 8 8 minosityfunctionforvaluesofM =0,0.17,0.4,and0.6eVfor and Ω for values of M = 0, 0.06, 0.17, 0.4, and 0.6 eV for ν m ν thecontoursfrombottomtotop,respectively.Thecontoursgive thecontoursfrombottomtotop,respectively.Thecontoursgive the1and2σconfidenceintervals.Wealsoshowtheconstraints the1and2σconfidenceintervals.Wealsoshowtheresultofthe derivedfromthePlanckCMBobservations(datapointwith1σ PlanckCMBobservationsasdatapointwith1σerrorbars. errorbars). with a neutrino mass of about M = 0.58(±0.2). We caution, ν however, not to interpret this result too quickly as a constraint (Planck Collaboration 2013a). With this parameter we calcu- ontheneutrinomassesbecauseitmightinprinciplealsobethe lated the matter power spectrum for the present epoch, folded resultofsystematicuncertaintiesandcalibrationproblems.But it throughthe structureformationmodellingandfitted it to the the results definitely illustrate the power of combiningthe two observed REFLEX X-ray luminosity function. In this way, we cosmologicalprobestodeterminetheneutrinomasses. derivedconstraintsoncosmologicalparametersin the Ω - A m S Most illustrations in the literature show constraints for the plane as displayed in Fig. 2. The plot shows the marginali- σ −Ω diagram. This was also made for the cluster analysis sation results for four different total neutrino masses, M = 8 m ν of the clusters detected through the Sunyaev-Zeldovich effect 0,0.17,0.4,and0.6eV. As forthe Ω - σ constraints, the two m 8 withPlanckincomparisonwiththePlanckCMBresults(Planck parametersaresomewhatdegenerate.SimilartothedatainFig. Collaboration2013b).Thereforewetriedtofindawaytotrans- 1,thelikelihoodsoftheminimaforthedifferentcontoursetsfea- latethedatashowninFig.2intoaplotofσ −Ω constraints. tureadifferencelowerthan∆L≤1.Thuswithin1σuncertainty 8 m This can be achieved by translating the Ω - A results into a limits,wecannotdistinguishthegoodnessoffitbetweenthedif- m S σ −Ω constraintinarepresentationthatkeepsthevalueofM ferent models. Taking the cluster data alone, all these neutrino 8 m ν fixedto0.06eV.Thisisanalogousto ananalysisofcosmolog- massesarepossible. icaldata asa functionofthe Hubbleparameter,butchoosinga In Fig. 2 we compare the cluster constraints with the con- representationinwhichtheresultsaretranslatedintoacosmol- straints from the analysis of the power spectrum of CMB ogywithafixedvalueforH .Weachievedthisbyusingforσ anisotropiesseenbyPlanck(PlanckCollaboration2013a).The 0 8 notthevaluewewouldmeasureatpresentforthegivencosmol- Planckdata pointthatrepresentstheresultsforPlanck+WP in ogy and M value, but instead we used a new parameter,σeff, Table2ofPlanckCollaboration(2013a)isshownwith1σerror ν 8 theσ valuethatwouldbepredictedonthebasesoftheA nor- bars.ThePlanckresultshavebeenderivedforacosmologywith 8 s M = 0.06eV,whilethevaluefor M wasvariedforthecluster malisation and the cosmological model used for the best fit of ν ν thePlanckresultswithh = 0.673,Ω = 0.315and M = 0.06 constraints.WecheckedthattheCMBpowerspectrumdoesnot m ν eV.Thenewparameterisgivenby vary in any significant way with a variation of M in the con- ν sideredrangeforfixed A . Thereforethe clusterconstraintsfor s σref differentvaluesof Mν canbecomparedwithonerepresentation σeff =σtrue× 8 , (2) ofthePlanckdatainthisplot.Thetiltofthecrossoferrorbars 8 8 σmod 8 forPlanckfollowstheshapeoftheerrorellipse.Itsorientation is taken from the errorellipse shown in Fig. 11 of the publica- where σref is the value from the Planck cosmology refer- 8 tionbythePlanckCollaboration(2013b)andconvertedfromthe encemodelforfixed A andσmod thevalueforasimilarmodel Ωm−σ8 totheΩm -AS representation. withthecorrectvaluefosrMνan8dthesameAs.Theresultingplot Formally,thetwodatasetscanbereconciledforatotalneu- is shown in Fig. 3. The position of the Planck data point with trino mass in the range Mν = 0.45(±0.28) eV including the respecttotheclusterconstraintcontoursisequivalenttothesit- combined 1σ uncertainties of both data sets (in a conservative uationinFig.2,andtheorientationoftheerrorellipsehasbeen way with a direct addition of the errors instead of a Gaussian takenintoaccount.Theplotshowsthatthesamerelativelocation addition). 4 A similar conclusion was reached by the Planck oftheerrorcontoursandthustheconclusionsontheconstraints Collaboration(2013b):clusterandCMBdatacanbereconciled onM arethesameasgainedfromFig.2. ν 4 The numerical values were obtained from the relative location of inFig.2.Forthisevaluation theexactorientationof thePlanck error theerrorellipsesdeterminedonafinergridofM values,thanasshown ellipseiscrucial. ν 4 Bo¨hringeretal.:REFLEXIIcosmologyconstraintswithmassiveneutrinos 6. Summaryandconclusion Acknowledgements. H.B. and G.C. acknowledge support from the DFG Transregio Program TR33andthe Munich Excellence Cluster ”Structure and Based on the REFLEX II galaxy cluster survey and its well- EvolutionoftheUniverse”.G.C.acknowledgessupportbytheDLRundergrant definedX-rayluminosityfunction,we derivedtightconstraints no.50OR1405. on the cosmologicalparametersσ and Ω and studied the in- 8 m fluenceof massive neutrinoson these results. Within the limits References oftheexpectedrangeofthetotalmassoftheconventionalthree neutrinofamilies of about M = 0.06−0.2 eV, we foundonly Battye,R.A.&Moss,A.,2014,PRL,112,051303 ν weakchangesofσ andΩ withneutrinomass.Thechangesare Beutler,F.,Saito,S.,Brownstein,J.R.,etal.,2014,MNRAS,444,3501 8 m Bo¨hringer,H.,Schuecker,P.,Guzzo,L.,etal.,2001,A&A,369,826 withinthelimitsofthecurrentuncertainties,andthereisnopref- Bo¨hringer,H.,Schuecker,P.,Guzzo,L.,etal.,2004,A&A,425,367 erenceforacertaintotalneutrinomassfromthegalaxyclusters Bo¨hringer,H.,Schuecker,P.,Pratt,G.W.,etal.,2007,A&A,469,363 alone. Bo¨hringer,H.,Chon,G.,Collins,C.A.,etal.,2013,A&A,555,A30 The constraints become more interesting when the cluster Bo¨hringer,H.,Chon,G.,Collins,C.A.,etal.,2014a,A&A,570,A31 Bo¨hringer,H.,Chon,G.,Bristow,M.,etal.,2014b,A&A,574,26 data are combined with observations of the CMB anisotropies Burenin,R.A.,2013,AstL,39,357 byPlanck.Forthiscomparisonweperformedthecosmological Costanzi,M.,Villaescusa-Navarro,F.,Viel,M.,etal.,2013,JCAP,12,12 parameterconstraintsfortheparametercombinationA andΩ . Costanzi,M.,Sartoris,B.,Viel,M.,etal.,2014,JCAP,14,81 s m Without massive neutrinos there is a discrepancy between the Eisenstein,D.J.&Hu,W.,1998,ApJ,496,605 Fogli,G.L.,Lisi,E.,Marrone,A.,etal.,2012,PhysRevD,86,013012 results from the two data sets, as discussed previously (Planck Forero,D.V.,Tortola,M.&Valle,J.W.F.,2012,PhysRevD,86,073012 Collaboration 2013b;Bo¨hringer 2014a). When massive neutri- Hamann,J.&Hasenkamp,J.,2013,JCAP,10,44 nos are included, the discrepancy can formally be reconciled Lesgourgues,J.,&Pastor,S.,2006,Phys.Rep.,429,307 for a total neutrino mass of M = 0.45(±0.28) eV. It is inter- Lesgourgues,J.,Mangano,G.,Miele,G.,Pastor,S.,2013,NeutrinoCosmology, ν esting that a discrepancy between the CMB results and other CambridgeUniversityPress Lesgourgues,J.,&Pastor,S.,2014,NJPh,16f,5002 measurementsofthepresent-daylarge-scalestructureamplitude Mantz,A.,Allen,S.W.,Rapetti,D.,2010,MNRAS,406,1805 havebeenfoundwithintheΛCDMmodelwithoutmassiveneu- Marulli,F.,Carbone,C,Viel,M.,etal.,2011,MNRAS,418,346 trinos. For example,Battye and Moss (2014)foundconstraints PlanckCollaboration2013resultsXVI,2013a,arXiv1303.5076 on the total neutrino mass of M = 0.320(±0.081)eV for the PlanckCollaboration2013bresultsXXIII,2013b,arXiv1303.5083 ν Pratt,G.W.,Croston,J.H.,Arnaud,M.,etal.,2009,A&A,498,361 combination of Planck CMB data and lensing shear from the ReiprichT.H.&Bo¨hringer,H.,2002,ApJ,567,716 CFHTLens survey that agree well with our findings. Hamann Riemer-Sørensen,S.,Parkinson,D.&Davis,T.M.,2014,PhRvD,89,103505 and Hasenkamp (2013) found a similar tension in a massless Seljak,U.,Slosar,A.&McDonald,P.,2006,JCAP,10,14 neutrino cosmology for the combination of CMB and clusters Tinker,J.,Kravtsov,A.V.,Klypin,a.,etal.,2008,ApJ,688,709 as well as CMB and cosmic shear. In their analysis, they only Tru¨mper,J.,1993,Science,260,1769 Viel,M.,Haehnelt,M.G.,Springel,V.,2010,JCAP,6,15 investigated sterile neutrinos because these simultaneously de- Vikhlinin,A.,Kravtsov,A.V.,Burenin,R.A.,etal.,2009,ApJ,692,1060 creasethetensionintheresultsfortheHubbleconstant,andthus Voges,W.,Aschenbach,B.,Boller,T.,etal.1999,A&A,349,389 their resultis notdirectly comparablewith ours.Both Hamann Zhao,G.-B.,Saito,S.,Percival,W.J.,etal.,2013,MNRAS,436,2038 and Hasenkampand Costanziet al. (2014)pointedoutthatthe strongestdriverforapositiveneutrinomasscomesfromclusters. Since ourresults on the cluster abundanceare amongthe most precise results, they will contribute to the strongest constraints forthetotalneutrinomass. Wehereonlyconsideredclassicalneutrinos.Themaindriver to includesterile neutrinosin recentpublications(e.g.Hamann andHasenkamp2013)isthedifferenceontheHubbleparameter measured by Planck and locally with calibrated distance indi- catorssuchastheCepheides.We haveshownina recentpaper using our cluster data that there are indications that we live in a locally underdense region of the Universe in which one ex- pects the Hubble parameter to be locally higher (Bo¨hringer et al. 2014b). It is worth noting that this can resolve some of the tension between the local and global measurementof H . This 0 also makes the results with massive non-sterile neutrinosmore attractive. The present marginalised constraints from the galaxy clus- ter data take the uncertaintiesin the scaling relations, the most serious bottle-neck preventing us from deriving tighter con- straints,intoaccountinafairlyconservativeway(Bo¨hringeret al.2014a).Mucheffortiscurrentlymadetobetterconstrainthe X-ray scaling relationsof galaxyclusters with deeper observa- tions of well-selected cluster samples with XMM-Newton and Chandraandtoimprovetheclustermasscalibrationwithweak- lensing studies. For the Planck data intense calibration efforts areongoingaswell.Wethereforeexpectasignificantimprove- mentoftheunderstandingofthesystematicsinthenearfuture, whichwill allow usto exploitthefullpotentialof the observa- tionaldata. 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.