Mon.Not.R.Astron.Soc.000,1–??(2008) Printed25January2009 (MNLATEXstylefilev2.2) The evolution of the red sequence slope in massive galaxy clusters J.P. Stott1,2⋆, K.A. Pimbblet3, A.C. Edge2, G.P. Smith4,5, J. L. Wardlow2 9 1AstrophysicsResearchInstitute,LiverpoolJohnMooresUniversity,TwelveQuaysHouse,EgertonWharf,Birkenhead,CH411LD,UK 0 2InstituteforComputationalCosmology,DepartmentofPhysics,UniversityofDurham,SouthRoad,DurhamDH13LE,UK 0 3DepartmentofPhysics,UniversityofQueensland,Brisbane,QLD4072,Australia 2 4CaliforniaInstituteofTechnology,MailCode105-24,Pasadena,CA91125,USA n 5SchoolofPhysics&Astronomy,UniversityofBirmingham,Edgbaston,Birmingham,B152TT,UK a J 9 ] O ABSTRACT C . h Weinvestigatetheevolutionoftheopticalandnear-infraredcolour-magnituderelationinan p homogeneoussampleofmassiveclustersfromz =1tothepresentepoch.Bycomparingdeep - HubbleSpaceTelescopeACSimagingofX-rayselectedMACSsurveyclustersatz ∼0.5to o thesimilarly selectedLARCS sampleatz ∼ 0.1 wefind thatthe rest-frameδ(U −V)/δV r t slopeofthecolour-magnituderelationevolveswithredshiftwhichweattributetothebuildup s ofthe redsequenceovertime. Thisrest frameslope evolutionis notadequatelyreproduced a [ by that predicted from semi-analytic modelsbased on the Millennium Simulation despite a prescriptionforthebuildupoftheredsequencebyin-fallinggalaxies,‘strangulation’.Weob- 1 servenostrongcorrelationbetweenthisslopeandtheclusterenvironmentatagivenredshift v demonstrating that the observed evolution is not due to a secondary correlation. Also pre- 7 sentedarenear-infraredUKIRTWFCAMobservationsoftheLARCSclusterswhichconfirm 2 2 and improveonthe the resultfromStottetal. (2007) findingthat therehas beena two-fold 1 increaseinfaintMV > −20galaxiesontheredsequencesincez = 0.5toasignificanceof . 5σ. 1 0 Key words: galaxies: clusters: general – galaxies: elliptical and lenticular, cD – galaxies: 9 evolution 0 : v i X 1 INTRODUCTION alongtheredsequenceasthisdegeneracywasbrokenbycompar- r ing colour-magnitude simulations to observations of distant clus- a Galaxyclustersareimportantlaboratoriesforthestudyofgalaxy ters(Kodama&Arimoto1997).Theoriginofthemass-metallicity formationandevolutionastheycontainaconcentratedpopulation relation is thought to be the heating of the interstellar medium ofdiversegalaxiesinarelativelysmallvolume.Earlyworkersin (ISM) by supernovae which triggers the formation of a galactic the field found that if a colour-magnitude diagram is plotted for windwhenthethermalenergyofthegasexceedsthebindingen- membersoflocalclusterssuchasVirgoandComa,theElliptical/S0 ergy.Thiswindejectsgasmoreefficientlyinsmallergalaxiesdue galaxieswerefoundtobeconfinedtoaprominentlinearfeaturein totheirshallowerpotentialwells,resultinginthetrendofincreased colourspace(Visvanathan&Sandage1977).Thisfeatureisknown metallicitywithmasswhichmanifestsitselfasthemassivemetal- astheredsequenceandhasaverysmallintrinsicscatter(typically richgalaxiesappearingprogressivelyredderthantheirlessmassive <0.1mag)whichhasbeeninterpretedasevidencethatthepassive counterparts(Carlberg1984;Arimoto&Yoshii1987).Withinthe galaxiesinclustersformedcoevally athigh redshift(Boweretal. hierarchicalpictureofgalaxyevolution,redsequencegalaxiesform 1992). fromthemergersofstarformingdiscgalaxieswiththelargestel- The red sequence is observed to have a slope such that the lipticalsbeingtheproductofthemergerofthelargestdiscsystems faintgalaxiesarebluerthanthebrightclustermembers.Theorigin andarethusthemostmetalrich(Kauffmann&Charlot1998). oftheslopehasbeencontroversialduetotheagemetallicitydegen- eracyforstellarpopulations.Wortheyetal.(1995)showedthatthe The observed frame colour-magnitude relations for clusters sequenceofcoloursthatcomprisetheslopecanbeequallywellex- at similar redshifts are found to have comparable slopes which plainedbyaprogressivedecreaseineithermetallicityorstellarage. have been shown to change with redshift (Lopez-Cruz 1997; Theslopeisnowthought tobeduetoamass-metallicityrelation Gladdersetal.1998;Lopez-Cruzetal.2004).Oneexplanationfor this change in the observed slope is that it is a result of K cor- rectionandanevolutioninthemassmetallicityrelationincluster ⋆ E-mail:[email protected] ellipticals (Kodama&Arimoto 1997). The change of slope with 2 J.P.Stottet al. redshifthasbeenusedasamethodtoconstrainclustergalaxyevo- tothevarioussub-samplesnamedbelow.Suchmassiveclustersare lution,withcomparisonsoftheobservedslopeevolutiontomodels idealforthisstudyastheircolour-magnituderelationsarewellpop- suggestingthattheellipticalgalaxiesinclustercoreshavebeenin ulated. The motivation for studying an X-ray selected sample of place since at least z = 2 (Gladdersetal. 1998). However other clustersistoensure thatweareobservingobjectsinsimilarhigh studies of the rest frame slope have found little or no evolution mass,highdensityenvironments. Thishomogeneity iskeytoour suggestingthatKcorrectionisthedominantfactor(Stanfordetal. studyaswewishtocompareclustersoverarangeofredshifts. 1998; Blakesleeetal. 2003; Meietal. 2006). This non-evolution The main cluster samples studied in this paper, the MAs- hasbeenusedasevidencetofavourmonolithiccollapseoverhier- sive Cluster Survey (MACS, Ebelingetal. 2001; Ebelingetal. archicalmethodsofgalaxyformation. 2007)andtheLasCampanas/AATRichClusterSurvey(LARCS, Currentresearchonthebuildupoftheredsequencesuggests Pimbbletetal. 2001, 2006), are sufficiently X-ray luminous that theremayindeedbeanagecontributiontotheredsequenceslope theyshouldcorrespondtothemostextremeenvironmentsattheir anditsevolutionasfaint,sub-L∗ galaxies,thoughttohaveunder- respectiveepochs.ThemedianX-rayluminositiesofthehighand gonerecent starformation, arefoundtobetransformingontothe lowredshiftsamplesare16.1and7.4×1044 ergs−1,respectively, sequenceovertimeastheyfallintothedenseclusterenvironment correspondingtoadifferenceoflessthanafactorof2inthetyp- (DeLuciaetal.2007;Stottetal.2007;Smithetal.2008).Thisis ical total mass (Popessoetal. 2005). However, an important is- thought to be connected to the observation that there is a greater sue to address is that the mass of the z∼0.5 progenitors of the abundanceofS0galaxiesinlocalclusterscompared totheirhigh LARCS clusters may be even lower than the MACS clusters. If redshiftcounterparts,whoseprogenitorsmaybethequenchedstar weincludethegrowthinhalomassthroughN-bodymergersfrom forming galaxies in higher redshift systems (Dressleretal. 1997; Boweretal.(2006),weseethattheprogenitorsoftheLARCSclus- Smailetal. 1998). If this transformation scenario is correct then tersatz ∼0.5couldbeupto3timeslessmassivethantheMACS weexpecttoseeevidenceforitintheevolutionoftherestframe sample(withcorrespondingX-rayluminositiesof2×1044ergs−1, colour-magnituderelation. Popessoetal.2005).Thereisnoevidenceforstrongvariationsin Regardless of its origin, empirical observations and models the galaxy luminosity function between clusters spanning such a ofthecolourandslopeoftheobservedredsequence canbeused relativelymodestdifferenceintypicalmass(deProprisetal.1999). in combination as a template to predict the redshift of a cluster. Wethereforeexpectthatanydifferencesbetweenthegalaxypop- This is found to be in good agreement with spectroscopic red- ulations in these two samples will primarily reflect evolutionary shiftsandcanthereforebeusedasaneffectivetwowavebandpho- differencesbetweenz∼0.5andz∼0.1. tometric redshift. This technique is important for current and fu- The25clustersobservedinV andIorBandRbandsbelong ture large area photometric surveys which hope to study cluster tothefollowingsurveys:MACS(VF555W andVF814W,Cycle12 abundance(e.g.RCS,Gladders&Yee2000;Pan-STARSS;SDSS, GOproject9722);LARCS(B andR)andarchivalHubbleSpace Adelman-McCarthyetal. 2006; UKIDSS, Lawrenceetal. 2007, Telescope (HST) data (VF555W/F606W and VF814W). The obser- Swinbanketal.2007). vations were taken with the instruments: the Advanced Camera Inthisworkwewillinvestigatetheredsequenceslopeevolu- forSurveys(ACS)andtheWideFieldPlanetaryCamera(WFPC) tioninobservedoptical(δ(V −I)/δI)andnearinfrared(δ(J − on HST and the 1m Swope telescope at Las Campanas Observa- K)/δK) bands and rest frameoptical (δ(U −V)/δV) for aho- tory.Foramoredetaileddescriptionofthedataandreductionsee mogeneous sampleof X-rayselectedgalaxyclustersintherange Stottetal.(2007)(MACS)andPimbbletetal.(2001)(LARCS). z∼0–1.Thisisthemostcomprehensivestudyoftheredsequence The35 clustersstudiedinthenear-infrared(J and K band) slopeundertakenthusfar.Wecompareourfindingswithlatestsyn- belong to: The MACS survey (Ebelingetal. 2001), the LARCS theticslopescalculatedfromanalysisofthesemi-analyticalmodel survey (Pimbbletetal. 2001), the ROSAT Brightest Cluster Sur- ofBoweretal.(2006)basedontheMillenniumN-bodysimulation vey (BCS) and extended BCS (Ebelingetal. 2000) and the X- (Springeletal. 2005). This model includes feedback from active rayBrightestAbellClustersSurvey(XBACS,Ebelingetal.1996). galactic nuclei (AGN) which quenches star formation in massive Theobservations weretaken with: the WidefieldInfraRedCam- halostomatchtheobservedbreakintheluminosityfunctionseen era (WIRC) instrument on the Palomar 200” Hale telescope the at bright magnitudes. Another important process in this model is Infrared Spectrometer And Array Camera (ISAAC) on the Very ‘strangulation’whichdescribesthestrippingofagalaxy’shotgas Large Telescope (VLT) and the Wide Field CAMera (WFCAM) haloasitfallsintoaclusterleadingtoacessationinstarformation on United Kingdom Infrared Telescope (UKIRT). An additional inlowermassgalaxiesthusprovidingamechanismforthebuildup lowredshiftdatapointisincludedfortheComaClusterwhichwe ofpassiveredgalaxiesinthecluster(Larsonetal.1980). sourced from a combination of the Two Micron All Sky Survey Lambda Cold Dark Matter (ΛCDM) cosmology (Ω =0.3, (2MASS) extended and point source catalogues (Skrutskieetal. M ΩVac =0.7,H0=70kms−1Mpc−1)isusedthroughoutthiswork. 2006).WereferthereadertoStottetal.(2008)foramoredetailed descriptionofthedataandtheirreduction. We include a high redshift cluster (ClJ1226.9+3332, z ∼ 0.9) from the Wide Angle ROSAT Pointed Surveys (WARPS, 2 OBSERVATIONSANDREDUCTION Scharfetal. 1997; Jonesetal. 1998). This X-ray selected cluster was observed in the J and K bands using the UKIRT Fast-Track 2.1 Clustersample Imager(UFTI)cameraonUKIRT(Ellis&Jones2004). Toobserve the evolution of the red sequence we study X-rayse- lectedclustersintherangez=0–1inbothnear-infraredandoptical 2.2 Photometry bands.ThisisalargesampleofthemostX-rayluminousclusters known(L >1044ergs−1,0.1–2.4keV)which,withtheexcep- The colour (V − I, B − R and J − K) photometry extracted X tionofahandfulofadditionalarchivalclusters,areallsourcedfrom for the cluster members employs 9kpc diameter apertures for theROentgenSATellite(ROSAT)AllSkySurvey,althoughbelong coloursandthemagnitudeusedisSEXTRACTOR’s‘Best’magni- Redsequenceslopeevolution 3 tude (Bertin&Arnouts 1996). Thischoice of aperture issignifi- awholenumber ofpixelsanda1/2pixelina2×2gridpattern. cantlygreaterthantheseeingconditionsinwhichthelowredshift Theseimagesarethencoaddedtogetherwiththefractionaloffsets ground-based optical and near-infrareddata weretaken, typically takenintoaccountsothattheresultingimagehasdoublethespatial ∼1.0–1.2arcsec,givingLARCSsamplephotometricaperturesof sampling.Therefore,adetectorimagewithanoriginalresolutionof ∼4” whereas the higher redshift MACS sample isextracted with 0.4′′/pixelandsize2048×2048pixelsareconvertedtoahigher ∼1.4”apertures,considerablylargerthantheHST ACSPSF.We resolution0.2′′/pixel4096×4096image. arethereforeconfidentthatwearecollectingacomparablefraction Theobservationstookplaceduringservicemodeonthenights oflightforgalaxiesatdifferentredshifts.Weobservenotrendbe- of5thDecember2006and19thofApril2007in1.0”and1.2”see- tweencolourandseeingforourLARCSlowredshiftopticaldata, ing conditions respectively. The total integration times for the J although theseeing isconsistent, andasthehigh redshift sample andK bandimagesare200seach,composedof10sexposuresin isobservedwithHSTthisisnotaconcern.Wealsoinvestigatethis a5pointditherpatternwith2×2microstepping.Tocreateacon- forthez ∼0.1−0.3clustersobservedinthenear-infraredwave- tiguousMosaicofWFCAMimagesweruntheTERAPIXSWARP bandsforwhichcolourisagainindependentofseeing,eventhough software on the data which gives an image with a world coordi- theconditionsaremorevariableforouradditionalROSATclusters natesystemconsistenttowithin0.1”ofthe2MASSandtheUnited sample(0.9”–1.5”). StatesNavalObservatory(USNO)starcatalogueacrossthewhole TheSEXTRACTORcolourphotometrywasrunindualmode, fieldofview.ToextracttheJandKbandcataloguesfromthemo- onPSFmatchedimagesusingtheIRAFPSFMATCHpackage,with saicedimagesweusetheSEXTRACTORsoftwareindualmodeso the 9kpc ‘red’-band (R, I, K) apertures used to extract the cor- thattheKbandcataloguedetectionsareusedtoextracttheJband responding ‘blue’-band (B, V, J) photometry. This is to ensure photometryinanidenticalprocesstoabove.Thephotometryiscal- thesamesizeapertureforbothbandswhichisimportantforgood ibratedusingthe2MASSpointsourcecatalogueandwefindtheJ colourdetermination.StarandGalaxyseparationisperformedus- andK band5sigmavegalimitsofthesedataare19.50and17.75 ingSEXTRACTORwheredetectedobjectswithCLASS STAR<0.1 magnitudesrespectively. and/orJ −K >0.95(forthenear-infraredsample)areclassified asgalaxieswiththestarsremovedfromtheanalysis.Weonlycon- 2.3.1 QuantifyingthedwarftogiantratiooftheLARCSclusters sider galaxies within600kpc radius of the cluster centre, tolimit contaminationfromfieldgalaxies.Allofourobservationsreacha The WFCAM instrument allows us to create contiguous images depthwhichallowsustoseetoatleast4magnitudesfainterthan thatare∼0.9degreesonthesidewhichcorrespondsto5.6Mpcat theBCGandthusperformareliablefittotheslopeandprobethe z=0.1.Withimagesofthissizewecanstudyboththeclusterand sub-L⋆galaxypopulationwheretheredsequencebuildupistaking thesurroundingfieldgalaxypopulation.Anumberofrecentpapers place. have studied the form of the colour-magnitude relation in galaxy A potential problem withall aperture photometry is that the clusterswithsomereportingadearthoffaintredsequencegalax- galaxiesthemselvesmayhavesignificantinternalcolourgradients iesathighredshift(e.g.Kodamaetal.2004;DeLuciaetal.2004; thought to be associated with a metallicity gradient between the DeLuciaetal.2007).Stottetal.(2007)demonstratethatfaintred outerandinnerpartsofthesystem.Asstatedaboveweareobserv- galaxypopulationinclustersisbuiltupovertimebyanalysingthe ingthesamefractionoflightfromgalaxiesatallredshiftswhich ratiooffainttoluminousgalaxiesalongtheredsequenceinaho- shouldlimitthiseffectunlessthereisasignificantevolutioninthe mogenoussampleofclustersatz ∼ 0.1andz ∼ 0.5.Oneofthe colourgradientofgalaxieswithredshift,althoughthiswouldbean limitingfactorsinthatstudywastheuncertaintyinthefaintendsta- interestingeffectinitself.Studiesoftheinternalcolourgradientsof tisticalfieldcorrectionfortheLARCSz ∼ 0.1colour-magnitude moderateredshiftclustergalaxiesusinghighqualityHSTdatahave relations.Howevertheuncertaintyinthefieldcorrectionisreduced foundnosuchevolutioninmeancolourgradientandredshift,with ifnearinfraredobservationsareemployedasitiseasiertoisolate the individual cluster galaxies appearing to have random colour theclusterredsequence.AcomparisonofFig.1withtheequiva- gradients Tamura&Ohta (2000). Wetherefore conclude that any lentopticalcolourmagnitudediagram,Fig.1(bottomrightpanel), variationsininternalcolourgradientwouldactrandomlytomake ofStottetal.(2007)illustratesthispoint. galaxiesappeareitherredderorbluerresultinginincreasedscatter By analysing the WFCAM data in an identical way to that oftheredsequencebutnotanevolutioninitsslope. describedinStottetal.(2007)inconcertwiththeUKIDSSDeep eXtragalacticSurvey(DXS,SurveyHead:AlastairEdge)fieldob- servations wecan successfully quantifyboth thecluster andfield 2.3 WFCAMdata galaxy population. The field correction is performed by dividing Weobtainednear-infraredJ andKbanddatafor8oftheLARCS thecolour-magnitudespaceoftheclusterandfieldsamplesintoa z ∼0.1clusterswithWFCAMonUKIRT.WFCAMconsistsof4 two-dimensionalhistogramandsubtractingthefieldnumbercounts detectorsinasquare,eachseparatedbyagapcomparableinsize fromtheclusterpopulation (Stottetal.2007).ThePoissonerrors to a single detector, with a central autoguider. Each detector is a from this field correction are folded through into the final result. RockwellHawaiiII2048×2048PACEHgCdTearray,withpixel To determine the relative numbers of faint and luminous galax- size0.4arcsec.WFCAMsinglepointingsor‘footprints’donotob- ies on the red sequence we define the red sequence dwarf to gi- serveacontiguousareaofskysotocreateamosaicedimagefourof antratio(RDGR).Thisquantityisdefinedasthenumberofdwarf theseWFCAMfootprintsaretiledtomakea4detector×4detec- (faint)galaxiesdivided bythenumber of giant (luminous) galax- torimage.InadditiontothistilingtheWFCAMimagesincorporate ies on the cluster red sequence after the statistical subtraction of ‘microstepping’whichisasmallditherpatternintheobservation. thefieldgalaxypopulation.Thedividinglinebetweendwarfsand Thepurposeofthisprocessistoimprovethepointspreadfunction giants, for consistency with the Stottetal. (2007) result, is given samplingoftheobservationsasthe0.4′′ pixelsizeofWFCAMis inabsoluteV bandmagnitude,M = −19.9andalimitingmag- V comparable to the best atmospheric seeing. The microstepping is nitudeof M = −17.75 for thefaintest dwarfs, acorrectionfor V performed byobserving 4imageseach offset fromeachother by passiveevolutionisappliedwhenstudyinghighredshiftsamples. 4 J.P.Stottet al. Table1.Detailsoftheclustersampleusedinouranalysiswhich,withtheexceptionofahandfulofadditionalclusters,belongtoROSATAllSkySurvey.The LARCSandMACSredshiftsarefromPimbbletetal.(2006)andEbelingetal.(2007)respectively.κopt.andκJKaretheobservedopticalandnear-infrared slopes. Cluster R.A. Dec. z LX κopt. κJK (J2000) (1044ergs−1) LARCSz∼0.1Sample Abell22 002038.64 −254319 0.142 5.3 -0.072±0.014 -0.023±0.010 Abell550 055251.84 −210354 0.099 7.1 -0.055±0.013 -0.024±0.011 Abell1084 104430.72 −070502 0.132 7.4 -0.058±0.013 -0.033±0.007 Abell1285 113020.64 −143430 0.106 5.45 -0.036±0.020 ... Abell1437 120025.44 +032104 0.134 7.7 -0.037±0.017 -0.010±0.009 Abell1650 125841.76 −014522 0.084 7.8 -0.047±0.011 -0.019±0.009 Abell1651 125924.00 −041120 0.085 8.3 -0.048±0.009 -0.002±0.007 Abell1664 130344.16 −241522 0.128 5.34 -0.054±0.011 -0.021±0.010 Abell2055 151841.28 +061240 0.102 4.8 -0.066±0.011 -0.021±0.009 Abell3888 223432.88 −374359 0.153 14.5 -0.047±0.022 ... MACSz=0.4–0.7Sample MACSJ0018.5+1626 00:18:33.68 +16:26:15 0.541 18.74 ... -0.048±0.009 MACSJ0025.4−1222 002515.84 −121944 0.478 12.4 -0.106±0.021 -0.047±0.010 MACSJ0257.6−2209 025707.96 −232608 0.504 15.4 -0.105±0.014 -0.065±0.012 MACSJ0454.1−0300 04:54:11.13 −03:00:53.8 0.550 16.86 ... -0.040±0.013 MACSJ0647.7+7015 064751.45 +701504 0.584 21.7 -0.090±0.024 ... MACSJ0712.3+5931 071220.45 +593220 0.328 6.8 -0.044±0.006 ... MACSJ0717.5+3745 071731.83 +374505 0.548 27.4 -0.068±0.012 ... MACSJ0744.8+3927 074451.98 +392735 0.686 25.9 -0.081±0.023 ... MACSJ0911.2+1746 091110.23 +174638 0.506 13.2 -0.087±0.011 ... MACSJ1149.5+2223 114934.81 +222413 0.544 17.3 -0.101±0.011 ... MACSJ1354.6+7715 135419.71 +771526 0.397 8.2 -0.057±0.018 ... MACSJ1359.8+6231 13:59:54.32 +62:30:36.3 0.330 8.83 ... -0.039±0.007 MACSJ1423.8+2404 142347.95 +240459 0.544 15.0 -0.078±0.013 ... MACSJ2129.4−0741 212925.38 −074126 0.570 16.4 -0.115±0.017 -0.068±0.009 MACSJ2214.9−1359 221456.51 −140017 0.495 17.0 -0.100±0.012 -0.035±0.014 AdditionalROSATAllSkySurveyclusters Abell115 00:56:00.24 +26:20:31.7 0.197 14.59 ... -0.031±0.006 Abell209 01:31:52.51 −13:36:41.0 0.209 13.75 ... -0.022±0.009 Abell291 02:01:46.80 −02:11:56.9 0.196 4.24 ... -0.024±0.009 Abell665 08:30:57.34 +65:50:31.4 0.182 16.33 ... -0.020±0.008 Abell773 09:17:53.57 +51:44:02.5 0.217 13.08 ... -0.033±0.006 Abell1201 11:12:54.50 +13:26:08.9 0.169 6.28 ... -0.013±0.007 Abell1246 11:23:58.75 +21:28:47.3 0.190 7.62 ... -0.031±0.008 Abell1703 131500.70 +514910 0.258 8.7 -0.057±0.012 ... Abell1758 13:32:38.59 +50:33:38.7 0.279 11.68 ... -0.027±0.011 Abell1763 13:35:20.14 +41:00:03.8 0.223 14.93 ... -0.029±0.010 Abell1914 14:25:56.64 +37:48:59.4 0.171 18.39 ... -0.021±0.006 Abell2111 15:39:41.81 +34:24:43.3 0.229 10.94 ... -0.033±0.012 Abell2163 16:15:33.57 −06:09:16.8 0.203 37.50 ... -0.022±0.006 Abell2218 16:35:49.39 +66:12:45.1 0.176 9.30 ... -0.025±0.007 Abell2445 22:26:55.80 +25:50:09.4 0.165 4.00 ... -0.027±0.009 RXJ1720.1+2638 17:20:10.08 +26:37:33.5 0.164 6.66 ... -0.023±0.007 Zw1432 07:51:25.15 +17:30:51.8 0.186 5.27 ... -0.022±0.010 Additionalarchivalclusters ClJ0152−1357 015243.91 −135721 0.831 5.0 -0.084±0.026 ... ClJ1226.9+3332 122658.13 +333249 0.890 20.0 -0.088±0.016 -0.088±0.010 ComaCluster 12:59:48.70 +27:58:50.0 0.0231 7.26 -0.075±0.015 -0.017±0.009 MS1054−0321 10:57:00.20 −03:37:27.4 0.830 23.30 ... -0.073±0.011 RCS0224−0002 02:24:00.00 −0:02:00.0 0.770 0.70 ... -0.055±0.020 Redsequenceslopeevolution 5 3 ANALYSISANDRESULTS 3.1 Fittingredsequencetheslope Figures3and4areexamples oftheprominent redsequences we seeintherichclustersofoursample.Tofittheslopeoftheredse- quenceweneedtousearobustandconsistentmethod.Wetherefore employthesametechniqueasdescribedinGladdersetal.(1998), aniterated3σclippedfit.Thefitisperformedasfollows:firstwe set a limitingmagnitude for the red sequence which corresponds tothe mean of the next 2 brightest galaxiesdown fromthe BCG magnitude+3. The reason for this isthat in some cases there can bealargeluminositygap(∼1mag)betweentheBCGandthestart oftheredsequencesothisensureswemeasuretheslopewithout thisgap.Thefitisperformedover3magnitudestoincorporatethe sub-L⋆ galaxy population which show the strongest evidence for Figure1.The(J −K)vs K colour-magnitude diagram forthecluster red sequence build up (Stottetal. 2007). We select the region of Abell1084whichdemonstratestheeaseatwhichnear-infraredcolourssep- colourmagnitudespacecontainingtheredsequenceandestimate aratetheredsequencefromstellarandfieldgalaxycontamination aninitial fitfrom visual inspection. The residualsabout this esti- matearecalculatedandaGaussianisfittedtotheresultingcolour distributionwiththesloperemoved.ThepeakofthisGaussiancor- respondstotheredsequence.Wethenperformafittopointsthat arewithin3sigmaofthisfit.Thisisatwoparameterlinearfitof the form y = κx+c where κ is the slope of the red sequence. Theprocessisiterateduntilitconvergestoasolution.Weconfirm theworkofGladdersetal.(1998)thatthisisarobustmethodfor reasonablechoicesoflimitingmagnitudeandinitialfit. Itshouldbenotedthatourcolour-magnitudediagramsarenot field corrected as the rich clusters in our sample have well pop- ulated red sequences in contrast to the field. At the colours and magnitudes we consider this a very small contribution to the red sequence, typically5%contaminationfortheMACSclustersand 10%fortheLARCSclusters.Weperformastatisticalfieldcorrec- tiontesttoasub-sampleofourlowzclustersandfindthattheslope ofthesequencevariesrandomlybylessthan1σthanthatobtained fortheuncorrectedsequence.Wethereforefeeljustifiedinnotap- plyingthiscorrection.Fordetailsofthestatisticalfieldcorrection techniqueusedseeStottetal.(2007). Figure2.Theevolutionoftheoftheredsequencegiantdwarfratio(RDGR) withredshiftcomparingtheMACSsamplefromStottetal.(2007)withthe 3.2 Modelslopeevolution LARCSWFCAMsample.Afitoftheform(1+z)−βtotheLARCSand We form a prediction of how the red sequence slope evolves, by MACSsamplesisplottedwhichyieldsβ=−2.1±0.3. analysing thesemi-analytical model of Boweretal. (2006) based on the Millennium N-body simulation (Springeletal. 2005). We accessthesedataonlinethroughVirgoMillenniumDatabase.The WeconverttheselimitstoapparentKbandmagnitudes,K ∼14.7 Boweretal.(2006)modelaccountsfortherecentobservationsthat andK ∼16.8respectively(dependingonthepreciseredshift),us- thestellarmassinbrightgalaxieswasinplaceathighredshiftby ingaBruzual&Charlot(2003)simplestellarpopulationwithsolar including feedback from active galactic nuclei. It also includes a metallicityandaformationredshift,z =5. prescription for the buildof the red sequence via ‘strangulation’. f TheweightedmeanoftheRDGRsofthe8LARCSclusters Thisdescribesaprocesswherebygalaxiesfallingintoaclusterare fromthissampleis2.59±0.24comparedtotheStottetal.(2007) strippedoftheirhot gasreservoiruponinteractionwiththeintra- result of2.93±0.45. Wecannow saythat whencompared toour clustermediumquenchingstarformation(Larsonetal.1980). z ∼0.5 MACS sample, where the DGR=1.33±0.06, the ratio of Wedefinemodelclustersasdarkmatterhaloesaboveathresh- dwarf togiant galaxies on thecluster red sequence hasincreased old mass which contain bound sub-haloes (galaxies) with obser- byafactorof1.95±0.20inthepast5Gyrwhichconfirmsandim- vational properties assigned to them by semi-analytic modelling. provesthesignificanceoftheresultofStottetal.(2007)from3σto To allow comparison between models and observation we as- 5σ.Thisisstrongevidenceforasignificantbuildupoftheredse- sumethatthemodelclustermembersareanalogoustotheredse- quenceinmassiveclusters.Fig.2istheequivalentofFig.2(right) quencesofourobservedclusters.Weneedtoselectclustersfrom ofStottetal.(2007)anddisplaystheevolutionintheRDGRwith Boweretal.(2006)whicharecomparableinmasstothoseweob- redshiftforrichgalaxyclusters.Toparameterisethisevolutionwe serve.ByusingtherelationbetweenclustermassandX-raylumi- fita(1+z)−βpowerlawtotheLARCSandMACSsampleswhere nosity(Popessoetal.2005)weincludeonlythesimulatedhaloes β=−2.1±0.3withallclustersconsistentwiththefit. withM200 >3.4×1014M⊙whichcorrespondstoLX >1044erg 6 J.P.Stottet al. Figure3.TheLARCSopticalcolour-magnitudediagramswiththeredsequencefitsoverplotted.Representativeerrorbarsareshownforarangeofmagnitudes. Redsequenceslopeevolution 7 Figure4.ThemainMACSsampleopticalcolour-magnitudediagramswiththeredsequencefitsoverplotted.Representativeerrorbarsareshownforarange ofmagnitudes. 8 J.P.Stottet al. s−1.Toselectonlythemostmassivesystemsforcomparisonwith colour and the z ∼0.5 MACS clusters in (V − I) colour, both ourobservationswelimitourredsequencefittoastackofthetop correspond to the rest frame (U −V) colour at their respective fiverankedclustersbymassineachredshiftbin.Themodelslope epochs.(U −V)colourstraddlesthe4000A˚ breakandtherefore is robust to our choice of lower mass limit as we see no signifi- isagooddiscriminantbetweentheredsequenceandstarforming cantchangeinourslopevalueswhenusingallhaloeswithmasses cluster members/foreground galaxies. We confirm that the filters greaterthanmeanhalomassintherequiredredshiftinterval. arewellmatchedtorestframe(U−V)aswefindacolourtermof We model the red sequence slope evolution by creating 1.0±0.05betweentheB−Ratz =0.11andV −I atz =0.53 stacked colour magnitude diagrams from the Boweretal. (2006) usingthetechniquedescribedinBlakesleeetal.(2006). modeloutputatadistinctsetofredshiftintervalsbetweenz = 0 Theevolutionofthisintrinsicslope(κ =δ(U −V)/δV) UV andz=1.Forthecreationofthesecolour-magnitudediagramswe is plotted in Fig. 7. We include an additional low redshift data- ensureweonlystudythepassiveredsequencegalaxiesbyselecting point for theComacluster calculated fromtheSloanDigital Sky galaxieswithnocurrent starformation(L(Hα) =0).Themodels Survey(SDSS,Adelman-McCarthyetal.2006)uandgfilterpho- provide no spatial information but we assume that the synthetic tometry. In this figure we can see that the intrinsic optical slope, colours we calculate from the total magnitudes can be compared κ ,doesevolvewithredshiftastheintermediatez MACSclus- UV withtheobservedaperturemagnitudesallowingforanormalisation tershaveasteeperredsequencethantheirlowzLARCScounter- betweenthemodelandobservedslopeevolutionatlowredshift. parts.TheweightedmeanvaluesfortheLARCSandMACSκ UV Wecalculatethemodelfortheobservedframeslopeevolution are-0.053±0.004(s.e.m)and-0.092±0.004(s.e.m)respectively,a anditserrorsbyfittingtothestackedsyntheticredsequenceslopes differenceof6.5σ.Wecanthereforesaythatthereisarealcon- ateachredshiftintervalwiththemethoddescribedin§3.1.Aswith tributiontotheslopeevolutionfromfactorsotherthanK correc- theobservations,themodelslopeisshowntosteepenwithredshift. tion. The fit to the data in Fig. 7 is of the form (1+z)β where β = 1.77±0.25. We note that the Coma Cluster has a steeper slopethantherestofourlowredshiftsample,althoughonlya∼2σ 3.3 Observedslopeevolution discrepancy from the fit, which we may expect as it is found to havelowerthanaveragedwarf-to-giantratioalongitsredsequence Fig.5displaystheobservedredsequenceslopeevolutionforour suggestingitisstillundergoingfaintendandthereforeslopeevo- nearinfraredsample.Theslope(κ =δ(J−K)/δK)isshown JK lution(Stottetal.2007).IncludingtheComaClusterdoesnothave to steepen with redshift. This steepening will have contributions asignificantaffectonthefit,β=1.67±0.26. frombothKcorrectionandperhapsanageorametallicityevolu- The dashed line plotted on Fig. 7 is the rest frame κ = tion.ThecontributionfromK correctionisduetotheobservedJ UV δ(U −V)/δV slope calculated from the semi-analytic model of andKbandssamplingincreasinglybluerrestwavebandsathigher Boweretal.(2006),normalisedtothemeanvalueoftheLARCS redshiftwhichaffectsgalaxiesdifferentiallyalongtheredsequence sampleslope,whichshowsonlyamildevolutionwithredshiftand depending on their spectral energy distributions (Gladdersetal. is therefore unable to replicate the rest frame slope change ob- 1998;Pimbbletetal.2001). served. Fromthiswecan conclude that themajor contribution to When the model described in §3.2 is plotted with our com- the agreement between the observed slope evolution in §3.3 and pletenear-infrareddatasetinFig.5wefindgoodquantitativeagree- thatderivedfromthesemi-analyticmodellingshowninFigs5&6 mentbetweenthetwowiththedatahavinganrmsscatteraboutthe wastheKcorrectiondifferentialbetweenhighandlowmassgalax- modelof0.009whichiscomparabletothecalculatederroronthe iesalongthesyntheticredsequenceandthatasignificant,intrinsic, model(mean1σerroris0.006). slopeevolutionisnotpredictedbythemodels. We now investigate the slope (κ = δ(V − I)/δI) evo- VI lutionforour opticalobservations. Asabove, thesimulatedslope evolution plotted is calculated from semi-analytical model of 3.4 Evolutionwithotherobservables Boweretal.(2006).Thereisanadditionalcomplicationasourop- Wenowinvestigatewhethertherearefurthertrendsinredsequence tical dataaresourced fromtwodifferent filtersetsso wehaveto slopewithotherobservableclusterpropertiestoensurethatthere- accountfortheobserveddifferenceinredsequenceslopebetween sultseenin§3.3.1isnotduetoasecondarycorrelation.Themost them. To achieve this we normalise all data to the δ(V −I)/δI obviousofthesebeingtheX-rayluminosity,whichisaproxyfor filtersby correcting for the difference between the δ(V −I)/δI massinarelaxedsystem.InFigs8and9weplottheresidualval- modelandthemodelfortheδ(B−R)/δRfiltercombination(as ues of the slope about the model line in Fig. 5 and fit in Fig. 7 in Gladdersetal. 1998). The resultant data-points and model are againstL .Fromthisweseenosignificanttrendbetweenscatter plotted in Fig. 6. The slope isshown to increase withredshift as X aboutthemodelandL asthePearsoncorrelationcoefficients,r above.Thermsscatteraboutthemodelis0.017(comparedtothe X , for the near-infrared and optical data are 0.17 and 0.24 respec- mean1σerrorinthemodelof0.008)soaswiththenear-infrared tivelywhichisactuallyaweakanti-correlationbetweensteepening observations wefind good agreement between themodel and the negativeredsequenceslopeandL .However,becauseofthemag- data. X nitudeoftheerrorsonboththeindividualslopemeasurementsand themodels,weneedtoquantifywhatleveloftrendtheerrorscould accommodate before becoming observable. For the near-infrared 3.3.1 Restframeslopeevolution samplewefindthatasteepeninggreaterthan0.010intheslopein Toinvestigatetheintrinsicevolutionoftheredsequenceslopewe L = 26.6×1044ergs−1 canberuledout witha3sigmacon- X needtostudyclustersobservedwithmatchedrestframephotom- fidence whereas for the rest frame (U −V) sample we find this etry. This isto quantify the proposed contribution from thebuild magnitudeofchangecanoccurinL =12.3×1044ergs−1.The X upoftheredsequence withouttheadditional effectof K correc- difference in mean L between the LARCSand MACS samples X tion.Wecanobservethisintrinsicslopeevolutionasourtwomain is 8.5×1044erg s−1 for which we can rule out, with a 3 sigma setsopticalobservations,thez ∼0.1LARCSclustersin(B−R) confidence, increases in slope greater than 0.007, if we use the Redsequenceslopeevolution 9 Figure5.Theevolutionoftheredsequenceslope(κ )forournear-infraredsample.AmodelcalculatedfromBoweretal.(2006)isincludedforcomparison JK withtheory Figure6.Theevolutionoftheredsequenceslope(κ )forouropticalsample.ThemodelagaincomesfromanalysisofBoweretal.(2006) VI (U −V)result,or0.003ifweusetheJ −K result.Fortherest InadditiontotheX-rayluminosityandσ,wecanlooktothe frameδ(U −V)/δV slopeevolutioninFig.7weseethattheob- degreeofBCGdominanceasanindicatorofthelocalenvironment servedchangeinrestframeslopeof∼ 0.04cannotbeaccounted withintheclustercore.Thisparameterisestheluminositygapbe- for by the difference in L alone and is, we believe, a definite tweentheBCGandthenextbrightestgalaxiesontheredsequence X trend with redshift. In Fig. 10 we also show that there is no sig- andisdefinedas∆m1−2,3 = (m2+m3)/2−m1 wherem1 is nificanttrendbetweenredsequenceslopeandanothermassproxy, themagnitudeoftheBCGandm2 andm3 arethemagnitudesof theclustervelocitydispersion,σ(r=0.27),whichisagainaweak the2ndand3rdbrightestmembersrespectively (Kimetal.2002; anti-correlation.Asabovewecanruleoutincreasesinslopegreater Stottetal. 2008). The BCG may be the dominant elliptical in a than0.010with3sigmaconfidence betweentheaveragevelocity cluster centrecontaining muchsmaller galaxiesor itmaybeina dispersionsoftheMACSandLARCSsamples. systemwereitisonlymarginally brighter thanthenext brightest 10 J.P.Stottetal. Figure7.Theevolutionoftherestframeredsequenceslope(κ )forouropticalsample.ThetriangleisthedatapointfortheComaCluster.Thesolidline UV isafittotheMACSandLARCSdataoftheform(1+z)β whereβ = 1.77±0.25.Thedashedlineistherestframeslopeevolutioncalculatedfromthe semi-analyticmodelofBoweretal.(2006). Figure8.TheresidualsaboutthemodelsinFig.5plottedagainstX-raylu- minosity.Filledcirclesandsquaresrepresentgalaxyclusterswithredshifts, z < 0.2 and z > 0.2 respectively, to demonstrate there is no redshift dependence.Thecorrelationcoefficient,r,forthisplotis0.17. Figure9.TheresidualsaboutthemodelsinFig.7plottedagainstX-raylu- minosity.Filledcirclesandsquaresrepresentgalaxyclusterswithredshifts, z < 0.2 and z > 0.2 respectively, to demonstrate there is no redshift dependence.Thecorrelationcoefficient,r,forthisplotis0.24. members. InFig.11wedemonstratethatthereisnostrongtrend 4 DISCUSSION between red sequence slope and the degree of BCG dominance (r= −0.09) andcanruleout increasesof slope greaterthan 0.01 Inthisworkwehavefoundasignificantevolutionintherestframe in0.61magnitudesofdominancewitha3sigmaconfidence. slopeoftheredsequenceinrichgalaxyclustersbetweenz ∼ 0.5 Theaboveresultssuggestthatdifferentclusterenvironments and z ∼ 0.1. We propose that this intrinsic evolution is due to donot haveastrong effectonthenear-infraredor optical redse- galaxiesfallingintotheclustercoreandtransformingontothered quence slope at a given redshift, demonstrating that the result in sequence(DeLuciaetal.2007;Stottetal.2007).Ifthesegalaxies §3.3 is robust. Previous studies within a similar L range have haveundergonerecentstarformationinfilaments(e.g.Porteretal. X also seen homogeneity in other related cluster properties such as 2008), which has been quenched by interactions as they fall into theshape of theluminosityfunction andthe bluegalaxy fraction thecluster,theywillappearbluerthanotherpassivegalaxiesinthe (deProprisetal.1999;Wakeetal.2005). cluster due to their young age. These galaxies will redden more