ebook img

The Effects of Environment on radio-loud AGN Activity in Stripe 82 PDF

126 Pages·2016·11.69 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Effects of Environment on radio-loud AGN Activity in Stripe 82

University of the Western Cape     Magister Scientiae     The Effects of Environment on radio-loud AGN Activity in Stripe 82 Supervisors: Author: Prof. Matt Jarvis Sthabile Kolwa Dr Kim McAlpine A thesis submitted in fulfilment of the requirements for the degree of Magister Scientiae in the UWC Astrophysics Group Department of Physics June 2016 ii Keywords     Catalogues - galaxies   Radio continuum - galaxies   Accretion-disk physics Black-hole physics Evolution - galaxies Environment - galaxies Surveys - galaxies Active - galaxies Photometry - infrared Statistics - galaxies Declaration of Authorship I, Sthabile Kolwa, declare that The Effects of Environment on radio-loud AGN Activity in Stripe 82 is my own work, that it hasnot been submitted forany degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references. Full name: Sthabile Kolwa Signed: Date: iii “Sanity is not statistical.” George Orwell in his novel, Nineteen Eighty-Four UNIVERSITY OF THE WESTERN CAPE   Abstract Natural Sciences Department of Physics Magister Scientiae The Effects of Environment on radio-loud AGN Activity in Stripe 82 by Sthabile Kolwa We investigate the link between environment and radiative accretion efficiency using a sample of 8946 radio-loud AGN detected at 1 2 GHz in the SDSS Stripe 82 region. − We quantify their environments using the surface-density parameter, Σ , which measures N galaxy density based on distances to Nth nearest neighbours. Comparing Σ and Σ 2 5 between AGN and control galaxies, we obtain relative densities that quantify the degree of galaxy clustering around each AGN. Using this, we examine the relation between density and the HERG-LERG dichotomy (accretion-modes) classified using a 1.4 GHz luminosity (L ) threshold. Our results indicate that, in the low-redshift interval 1.4GHz (0.1 < z < 0.2), LERGs occupy environments denser than the field. At intermediate redshifts (0.2 < z < 1.2), both LERGs and HERGs occupy regions denser than the field. Spearman’s rank tests show that correlationsbetween density andL in bothredshift 1.4GHz intervals are weak. We conclude that the absence of a strong correlation is confirmation of the idea that galaxy density plays a more secondary role on AGN activity and also, accretion-mode classification (both measured using L ). It is likely that the rate of 1.4GHz gas accretion or properties of galactic-scale magnetic fields correlate more strongly with L , hence being primarily influential. 1.4GHz Acknowledgements   Thank you to the SKA Division of the National Research Foundation for funding my studies continuously for five years and counti ng. Dr McAlpine, your attention to detail is superb, you’re a champion. Prof Jarvis, thanks for the trip to Oxford and all the wisdom   that you have shared. Mother and family, thank you for your continual support.   vi Contents     Declaration of Authorship iii Abstract v Acknowledgements vi Contents vi List of Figures ix List of Tables xi Abbreviations xiii 1 Introduction 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Brief History of AGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 AGN Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Unified AGN Model . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Radio-Loudness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Accretion-Mode Dichotomy . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 AGN Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.1 Galaxy Interactions and AGN . . . . . . . . . . . . . . . . . . . . 19 1.5.2 Secular Processes and AGN . . . . . . . . . . . . . . . . . . . . . 22 1.6 AGN Environment and Accretion-Mode . . . . . . . . . . . . . . . . . . 24 1.7 Thermal Dust Re-emission in WISE . . . . . . . . . . . . . . . . . . . . . 26 1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Methodology 31 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.1 JVLA Radio Data . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.2 SDSS Optical Data . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.3 WISE Mid-Infrared Data . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.4 UKIDSS Near-Infrared Data . . . . . . . . . . . . . . . . . . . . . 40 2.3 Multiwavelength Cross-match . . . . . . . . . . . . . . . . . . . . . . . . 42 vii Contents viii 2.3.1 JVLA and SDSS Cross-match . . . . . . . . . . . . . . . . . . . . 42 2.3.2 WISE Cross-match . . . . . . . . . . . . . . . . . . . . . . . . . . 45   2.3.3 UKIDSS Cross-match . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4 Environment Quantifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 49   2.5 AGN Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.6 Control Sample . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . 54 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60   3 WISE Results 61 3.1 WISE Photometry of a radio-loud AGN Sample . . . . . . . . . . . . . . 62 3.2 WISE Mid-IR Two-colour Diagrams . . . . . . . . . . . . . . . . . . . . . 66 4 Environment Results 73 4.1 1.4 GHz Radio Luminosity and Surface-Density Measure . . . . . . . . . 75 4.1.1 Low Redshift Interval . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1.2 Intermediate Redshift Interval . . . . . . . . . . . . . . . . . . . . 83 4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 Conclusions 93 5.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 A Measured Quantities 95 A.1 Cosmological Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 A.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 B Neighbour Search and Cross-match Tools 99 C Computing the Surface-density Parameter 101 Bibliography 103 List of Figures     1.1 Schematic diagram of the Unified AGN Model . . . . . . . . . . . . . . . 10 1.2 Cross-sectional schematic of the Unified AGN Model . . . . . . . . . . . 11 1.3 Schematic of accretion-modes in Heckman and Best (Fig. 3) . . . . . . . 13 1.4 M and M as functions of L in Best and Heckman (Fig. 7) . . . . 15 ∗ BH NVSS 1.5 HERG-LERG radio-luminosity function in Heckman and Best (Fig. 11) . 15 1.6 EW as a function of EI in Best and Heckman (Fig. 1) . . . . . . . . 17 [OIII] 1.7 AGN fraction as function of environment in Silverman et al. (Fig. 5) . . 20 1.8 Galaxy fraction as a function of density in Miller et al. (Fig. 8) . . . . . 22 1.9 AGN activity as a function of environment in Sabater et al. (Fig. 5) . . . 23 1.10 SFR of radio-loud LERGs and HERGs in Janssen et al. (Fig. 6) . . . . . 25 1.11 WISE two-colour diagram in Wright et al. (Fig. 12) . . . . . . . . . . . . 27 1.12 WISE two-colour diagram in Gu¨rkan et al. (Fig. 3) . . . . . . . . . . . . 28 2.1 JVLA survey coverage of Stripe 82 in Heywood et al. (Fig. 1) . . . . . . 35 2.2 Scanning procedure for SDSS telescope . . . . . . . . . . . . . . . . . . . 37 2.3 SDSS DR7 coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4 Percentage of WISE full-sky coverage over time . . . . . . . . . . . . . . 40 2.5 UKIDSS DR10 coverage map . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 Cross-match radius determination for JVLA-SDSS catalogue . . . . . . . 45 2.7 Photometric redshifts of all JVLA-SDSS sources . . . . . . . . . . . . . . 46 2.8 L as function of photo-z for JVLA-SDSS sources . . . . . . . . . . . 47 1.4GHz 2.9 Cross-match radius determination for JVLA-SDSS-WISE catalogue . . . 47 2.10 Cross-match radius determination for JVLA-SDSS-UKIDSS catalogue . . 48 2.11 Petrosian K as a function of redshift . . . . . . . . . . . . . . . . . . . . 48 s 2.12 JVLA-SDSS and SDSS DR7 survey coverage . . . . . . . . . . . . . . . . 51 2.13 Distribution for K K 0.05 . . . . . . . . . . . . . . . . . . . . 57 s,agn s,cont − ≤ 2.14 Distribution for K K 0.1 . . . . . . . . . . . . . . . . . . . . 57 s,agn s,cont − ≤ 2.15 Distribution for z z 0.05 . . . . . . . . . . . . . . . . . . . . . . 58 agn cont − ≤ 2.16 Distribution for z z 0.1 . . . . . . . . . . . . . . . . . . . . . . 58 agn cont − ≤ 3.1 Spectral line method on W12 vs W23 for Best and Heckman sample . . . 63 3.2 W4-luminosity method on W12 vs W23 for Best and Heckman sample . . 63 3.3 Spectral line method on W12 vs W24 for Best and Heckman sample . . . 64 3.4 W4-luminosity classification on W12 vs W24 Best and Heckman sample . 64 3.5 W12 vs W23 for JVLA-SDSS-WISE radio sources . . . . . . . . . . . . . 68 3.6 W12 vs W24 for JVLA-SDSS-WISE radio sources . . . . . . . . . . . . . 69 3.7 W1 (3.4 µm magnitude) luminosity as a function of redshift . . . . . . . 69 3.8 W2 (4.6 µm magnitude) luminosity as a function of redshift . . . . . . . 70 ix List of Figures x 3.9 W3 (12 µm magnitude) luminosity as a function of redshift . . . . . . . . 70 3.10 W4 (22 µm magnitude) luminosity as a function of redshift . . . . . . . . 71   4.1 Low redshift: Σ as a function of L . . . . . . . . . . . . . . . . . 79 2,R 1.4GHz   4.2 Low redshift: magnified rendition of Fig. 4.1 . . . . . . . . . . . . . . . . 79 4.3 Low redshift: Σ as a function of L . . . . . . . . . . . . . . . . . 80 2,D   1.4GHz 4.4 Low redshift: magnified rendition of Fig. 4.3 . . . . . . . . . . . . . . . . 80 4.5 Low redshift: Σ5,R as a function of  L1.4GHz . . . . . . . . . . . . . . . . . 81 4.6 Low redshift: magnified rendition of Fig. 4.5 . . . . . . . . . . . . . . . . 81 4.7 Low redshift: Σ as a function of L . . . . . . . . . . . . . . . . . 82 5,D 1.4GHz 4.8 Low redshift: magnified rendition of Fig. 4.7 . . . . . . . . . . . . . . . . 82 4.9 Intermediate redshift: Σ as a function of L . . . . . . . . . . . . 85 2,R 1.4GHz 4.10 Intermediate redshift: magnified rendition of Fig. 4.9 . . . . . . . . . . . 85 4.11 Intermediate redshift: Σ as a function of L . . . . . . . . . . . . 86 2,D 1.4GHz 4.12 Intermediate redshift: magnified rendition of Fig. 4.11 . . . . . . . . . . 86 4.13 Intermediate redshift: Σ as a function of L . . . . . . . . . . . . 87 5,R 1.4GHz 4.14 Intermediate redshift: magnified rendition of Fig. 4.13 . . . . . . . . . . 87 4.15 Intermediate redshift: Σ as a function of L . . . . . . . . . . . . 88 5,D 1.4GHz 4.16 Intermediate redshift: magnified rendition of Fig. 4.15 . . . . . . . . . . 88

Description:
for the degree of Magister Scientiae in the .. In addition to this, galaxy density and stellar mass are strongly correlated (Park and Choi,. 2009).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.