ebook img

the effect of jump distance on biomechanical risk factors for acl injury during landing and their PDF

257 Pages·2015·4.27 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview the effect of jump distance on biomechanical risk factors for acl injury during landing and their

THE EFFECT OF JUMP DISTANCE ON BIOMECHANICAL RISK FACTORS FOR ACL INJURY DURING LANDING AND THEIR RELATIONSHIP WITH SENSORIMOTOR CHARACTERISTICS AT THE KNEE by Nicholas Robert Heebner B.S. Kinesiology, The Pennsylvania State University, 2009 M.S. Sports Medicine, University of Pittsburgh, 2012 Submitted to the Graduate Faculty of Health and Rehabilitation Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH SCHOOL OF HEALTH AND REHABILITATION SCIENCE This dissertation was presented by Nicholas Robert Heebner It was defended on November 2, 2015 and approved by Scott M. Lephart, PhD, Dean, College of Health Sciences, University of Kentucky John P. Abt, PhD, ATC, Associate Professor, Athletic Training, University of Kentucky Mita Lovalekar, MBBS, PhD, MPH, Assistant Professor, Sports Medicine and Nutrition David Stone, MD, Assistant Professor, School of Medicine Dissertation Advisor/Committee Chair: Timothy C. Sell, PhD, PT, Associate Professor, Sports Medicine and Nutrition ii Copyright © by Nicholas Robert Heebner 2015 iii THE EFFECT OF JUMP DISTANCE ON BIOMECHANICAL RISK FACTORS FOR ACL INJURY DURING LANDING AND THEIR RELATIONSHIP WITH SENSORIMOTOR CHARACTERISTICS AT THE KNEE Nicholas R. Heebner, PhD University of Pittsburgh, 2015 There has been an abundance of research investigating risk factors for anterior cruciate ligament (ACL) injury and demonstrating the importance of biomechanical characteristics, particularly in females. However, there have been many different landing tasks used with varying demands. Previous research has demonstrated that different landing tasks significantly alter demand and biomechanical characteristics. However it is unknown how changes in landing demand using the same task may alter landing biomechanics related to ACL injury. Therefore, the purpose of this study was to examine the effects of jump distance during a double-leg stop-jump on biomechanical risk factors of ACL injury and muscle activation and examine the contribution of sensorimotor characteristics on these biomechanical characteristics. Fifty-three recreationally active healthy females were recruited to participate in this study. Each participant underwent a single test session that included demographic and anthropometric assessment, dominant knee threshold to detect passive motion, landing biomechanics and muscle activation measurement, and dominant knee time to peak torque and peak torque testing. Biomechanical and muscle activation parameters relative to ACL injury were compared between jump distances using repeated measures ANOVA. Multiple linear regression was used to assess the relationship between the biomechanical characteristics and sensorimotor characteristics (threshold to detect passive motion, time to peak torque, and peak torque). iv The results of this study demonstrated that increases in jump distance significantly increased landing demand and significantly impacted risk factors for ACL injury and muscle activation strategies. These findings illustrated that studies utilizing tasks with different demands cannot directly compare results or make inference to injury risk based previous findings. This study suggested that a jump distance of 40% to 60% body height is used during a double-leg stop-jump task to assess landing biomechanics related to ACL injury. Additionally, sensorimotor characteristics had significant relationships with knee flexion angle at initial contact, peak knee flexion, and peak knee abduction moment. Further research is needed to identify sensorimotor characteristics that contribute to frontal plane knee motion during landing. v TABLE OF CONTENTS PREFACE ................................................................................................................................. XVI 1.0 INTRODUCTION ........................................................................................................ 1 1.1 ANTERIOR CRUCIATE LIGAMENT INJURY ............................................ 3 1.1.1 Epidemiology of Anterior Cruciate Ligament Injuries ............................. 3 1.1.2 Mechanisms for Non-Contact Anterior Cruciate Ligament Injury ......... 4 1.2 SENSORIMOTOR SYSTEM ............................................................................. 5 1.2.1 Proprioception ............................................................................................... 5 1.2.2 Neuromuscular Control................................................................................ 6 1.2.3 Sensorimotor System and Non-Contact Anterior Cruciate Ligament Injury ......................................................................................................................... 7 1.3 EVALUATING RISK OF ANTERIOR CRUCIATE LIGAMENT INJURY8 1.3.1 Modifiable Characteristics Predictive of Anterior Cruciate Ligament Injury ......................................................................................................................... 8 1.3.2 Modifiable Risk Factors for Anterior Cruciate Ligament Injuries ......... 9 1.4 CURRENT ANTERIOR CRUCIATE LIGAMENT INJURY PREVENTION ................................................................................................................... 10 1.5 EVALUATION OF LANDING BIOMECHANICS FOR ACL INJURY.... 11 1.6 DEFINITION OF THE PROBLEM ................................................................ 12 vi 1.7 PURPOSE ........................................................................................................... 12 1.8 SPECIFIC AIMS AND HYPOTHESES ......................................................... 13 1.9 STUDY SIGNIFICANCE ................................................................................. 14 2.0 LITERATURE REVIEW .......................................................................................... 16 2.1 EPIDEMIOLOGY OF ACL INJURIES ......................................................... 16 2.2 CONSEQUENCES OF ACL INJURY ............................................................ 18 2.3 MECHANISMS OF NON-CONTACT ACL INJURIES .............................. 20 2.3.1 Mechanisms of ACL Strain ........................................................................ 20 2.3.2 Knee Kinematics of Non-Contact ACL Injury ........................................ 21 2.3.3 Summary ...................................................................................................... 23 2.4 SENSORIMOTOR SYSTEM AND NON-CONTACT ACL INJURY ........ 24 2.4.1 Sensorimotor System Defined .................................................................... 24 2.4.2 Joint Stability .............................................................................................. 24 2.4.3 Proprioception ............................................................................................. 26 2.4.4 Neuromuscular Control.............................................................................. 28 2.4.4.1 Neuromuscular control in ACL deficient patients ........................... 28 2.4.4.2 Neuromuscular control differences between males and females .... 30 2.4.4.3 Neuromuscular control and landing characteristics ........................ 31 2.4.5 Summary ...................................................................................................... 32 2.5 RISK FACTORS FOR NON-CONTACT ACL INJURY ............................. 32 2.5.1 Predictors of Non-Contact ACL Injury .................................................... 33 2.5.2 Other Potential Risk for Non-Contact ACL Injury................................. 36 2.5.3 Summary ...................................................................................................... 38 vii 2.6 INTERVENTION STRATEGIES AND LANDING BIOMECHANICS ..... 39 2.7 METHODOLOGICAL CONSIDERATIONS ................................................ 41 2.7.1 Threshold to Detect Passive Motion .......................................................... 41 2.7.2 Knee Isokinetic Strength ............................................................................ 43 2.7.3 Hamstring and Quadriceps Surface Electromyography ......................... 44 2.7.4 Two-Leg Stop-Jump Biomechanics ........................................................... 46 3.0 METHODOLOGY ..................................................................................................... 48 3.1 DEPENDENT AND INDEPENDENT VARIABLES .................................... 48 3.1.1 Specific Aim 1: Effect of Jump Distance ................................................... 48 3.1.2 Specific Aim 2: Effect of Jump Distance on the Relationship Between Sensorimotor System and Biomechanical Risk Factors for ACL Injury ............. 49 3.2 SUBJECT RECRUITMENT ............................................................................ 50 3.3 SUBJECT CHARACTERISTICS ................................................................... 50 3.3.1 Inclusion Criteria ........................................................................................ 51 3.3.2 Exclusion Criteria ....................................................................................... 51 3.3.3 Sample Size Calculation ............................................................................. 52 3.4 INSTRUMENTATION ..................................................................................... 53 3.4.1 Three-Dimensional Motion Analysis System ........................................... 53 3.4.2 Force Platform System ............................................................................... 54 3.4.3 Surface Electromyography System ........................................................... 55 3.4.4 Isokinetic Dynamometer ............................................................................ 55 3.4.5 Vertical Jump Target ................................................................................. 56 3.5 TESTING PROCEDURES ............................................................................... 56 viii 3.5.1 Threshold to Detect Passive Motion and Direction ................................. 58 3.5.2 Dynamic Warm-up ..................................................................................... 60 3.5.3 Maximum Vertical Jump Height ............................................................... 60 3.5.4 Biomechanical Assessment of Landing Characteristics .......................... 61 3.5.4.1 Subject Preparation ............................................................................ 61 3.5.4.2 Stop-Jump Task .................................................................................. 64 3.5.5 Knee Flexion and Extension Isokinetic Strength and Time to Peak Torque ....................................................................................................................... 66 3.6 DATA REDUCTION......................................................................................... 67 3.6.1 Threshold to Detect Passive Motion and Direction ................................. 67 3.6.2 Landing Kinematics, Kinetics, and Muscle Activation ........................... 68 3.6.3 Knee Flexion and Extension Strength and Time to Peak Torque .......... 69 3.7 STATISTICAL ANALYSIS ............................................................................. 70 4.0 RESULTS ................................................................................................................... 71 4.1 SUBJECTS ......................................................................................................... 71 4.2 WITHIN SUBJECT DIFFERENCES IN LANDING BIOMECHANICS AND MUSCLE ACITIVTY BETWEEN JUMP DISTANCES ..................................... 72 4.2.1 Potential Outliers ........................................................................................ 73 4.2.2 Normality Test Results ............................................................................... 74 4.2.3 Repeated Measures Between Jump Distances .......................................... 76 4.3 RELATIONSHIP BETWEEN SENSORIMOTOR CHARACTERISTICS AND BIOMECHANICAL RISK FACTORS FOR ACL INJURY ............................... 87 4.3.1 Univariate Analysis ..................................................................................... 87 ix 4.3.2 Bivariate Analysis ....................................................................................... 91 4.3.3 Multiple Linear Regression Models .......................................................... 94 4.3.3.1 Peak Vertical Ground Reaction Force .............................................. 94 4.3.3.2 Peak Anterior-Posterior Ground Reaction Force ............................ 96 4.3.3.3 Knee Flexion at Initial Contact .......................................................... 97 4.3.3.4 Knee Abduction at Initial Contact .................................................. 100 4.3.3.5 Peak Knee Flexion ............................................................................. 100 4.3.3.6 Peak Knee Abduction ....................................................................... 102 4.3.3.7 Peak Knee Abduction Moment ........................................................ 102 4.3.3.8 Peak Proximal Anterior Tibial Shear Force ................................... 106 5.0 DISCUSSION ........................................................................................................... 109 5.1 SUBJECT CHARACTERISTICS ................................................................. 110 5.2 LANDING BIOMECHANICS DURING LANDING .................................. 111 5.2.1 Peak Vertical and Anterior-Posterior Ground Reaction Forces .......... 111 5.2.2 Knee Flexion at Initial Contact ................................................................ 112 5.2.3 Knee Abduction at Initial Contact .......................................................... 112 5.2.4 Peak Knee Flexion..................................................................................... 113 5.2.5 Peak Knee Abduction ............................................................................... 114 5.2.6 Peak Knee Abduction Moment ................................................................ 115 5.2.7 Peak Proximal Anterior Tibial Shear Force .......................................... 116 5.3 MUSCLE ACTIVATION DURING LANDING .......................................... 116 5.3.1 Quadriceps Activation .............................................................................. 116 5.3.2 Hamstrings Activation .............................................................................. 117 x

Description:
University of Pittsburgh, 2015. There has been an abundance of research investigating risk factors for anterior cruciate ligament. (ACL) injury and demonstrating the importance of biomechanical characteristics, particularly in females. However, there have been many different landing tasks used with
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.