ebook img

The Effect of Hydrogen Bonding on Radical Semi-Batch Copolymerization of Butyl Acrylate and 2 ... PDF

15 Pages·2017·1.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Effect of Hydrogen Bonding on Radical Semi-Batch Copolymerization of Butyl Acrylate and 2 ...

polymers Article The Effect of Hydrogen Bonding on Radical Semi-Batch Copolymerization of Butyl Acrylate and 2-Hydroxyethyl Acrylate JanE.S.Schier,DavidCohen-Sacal,OwenR.LarsenandRobinA.Hutchinson* ID DepartmentofChemicalEngineering,Queen’sUniversity,19DivisionSt,Kingston,ONK7L3N6,Canada; [email protected](J.E.S.S.);[email protected](D.C.-S.);[email protected](O.R.L.) * Correspondence:[email protected];Tel.:+1-613-533-3097 Received:24July2017;Accepted:15August2017;Published:17August2017 Abstract: Theradicalcopolymerizationofbutylacrylate(BA)and2-hydroxyethylacrylate(HEA) was investigated under batch and semi-batch operations, with a focus on the influence of hydrogen-bondingonacrylatebackbiting. TheeffectofhydrogenbondingonHEAtoBArelative incorporation rates during copolymerization, previously seen in low-conversion kinetic studies, wasalsoobservedunderhigh-conversionsemi-batchconditions. However,overallreactionrates (asindicatedbyfreemonomerconcentrations),polymermolarmasses,andbranchinglevelsdidnot varyascopolymerHEAcontentwasincreasedfrom0to40wt%inthesemi-batchsystem.Incontrast, introductionofaH-bondingsolvent,n-pentanol,ledtoanobservabledecreaseinbranchinglevels, andbranchinglevelswerealsoreducedinbatch(co)polymerizationswithHEA.Thesedifferences canbeattributedtothelowlevelsofunreactedHEAinthestarved-feedsemi-batchsystem. Keywords: radical copolymerization; hydrogen bonding; functional comonomer; branching; hydroxyethylacrylate 1. Introduction Radical Polymerization (RP) is one of the most common and significant methods to produce polymersatacommercialscale[1].Despitethedevelopmentofcontrolledradicalpolymerization[2–4], livingpolymerization[5],andothercatalyticallysupportedapproaches[6],RPisstillfavoredinindustry duetoitssimplicityandhightolerancetowardsimpuritiesineitherorganicoraqueousmedia[1],andits highproductivityatacomparablylowcosttoproduceadiverserangeofpolymericproductsfromawide rangeofmonomers,includingethylene,(meth)acrylates,orstyrenederivatives[7]. In the automotive industry, many acrylic based polymers produced by RP are used as coating materials.Foroptimumprocessingandreductionofsolventcontent,theselowmolarmasspolymersmust incorporateacertaindegreeoffunctionalitythatisintroducedviacopolymerization[8].Functionalgroups raisethevalueofthecrudeproductastheyallowpost-modifications(e.g.,crosslinking);whereas,lower molarmassesdecreasetheviscositywhenhandlingorapplyingthecoatingtoasurface. Thereactive functionality is often introduced by hydroxyl containing monomers, from which a wide range of post-modifyingchemistryisaccessible. Whileessentialforproductapplication,theadditionoffunctionalmonomerincreasesthetotal polarity and introduces hydrogen bonding to the reaction system, such that solvent choice can exertasignificanteffectonreaction(propagation)rates[9,10]andcopolymercomposition[10–12]. Recently,wehaveusedapulsed-laserpolymerization(PLP)techniquetoquantifytheinfluenceof solvent on the copolymerization of 2-hydroxyethyl acrylate (HEA) with both butyl methacrylate (BMA)[13]andbutylacrylate(BA)[14]. ItwasfoundthatHEAincorporatesintothecopolymerat anincreasedraterelativetoalkylacrylates,suchasBA,inbulk. Inaddition,unlikealkylacrylates, Polymers2017,9,368;doi:10.3390/polym9080368 www.mdpi.com/journal/polymers Polymers2017,9,368 2of15 Polymers 2017, 9, 368 2 of 15 theincorporationrateisaffectedbythechoiceofsolvent,withxylenespromotingHEAincorporation the incorporation rate is affected by the choice of solvent, with xylenes promoting HEA incorporation anddimethylformamide(DMF)disruptingitsreactivityrelativetothatinthebulksystem. and dimethylformamide (DMF) disrupting its reactivity relative to that in the bulk system. ThesespecializedPLPstudieswereconductedatalowconversion,anddidnotexaminetheinfluence These specialized PLP studies were conducted at a low conversion, and did not examine the ofH-bondingonpolymermicrostructure(branching). Itiswell-knownthatpropagationofacrylates influence of H-bonding on polymer microstructure (branching). It is well-known that propagation of canbeinterruptedbytheformationofmid-chainradicalsbyintramolecularchaintransfer,inwhich acrylates can be interrupted by the formation of mid-chain radicals by intramolecular chain transfer, thesecondarypropagatingradical(SPR)canabstractahydrogenatomfromfurtheralongthechain in which the secondary propagating radical (SPR) can abstract a hydrogen atom from further along toformamid-chainradical(MCR)structure, withafavoredconfigurationresultingina1,5H-atom the chain to form a mid-chain radical (MCR) structure, with a favored configuration resulting in a 1,5 abstraction,asillustratedinScheme1a. Animportantreactionforacrylates[15],amethacrylateunit H-atom abstraction, as illustrated in Scheme 1a. An important reaction for acrylates [15], a atthesamepositiondoesnotprovideanavailableH-atom. Therefore,MCRformationissignificantly methacrylate unit at the same position does not provide an available H-atom. Therefore, MCR reducedinhighmethacrylatecontainingsystems[16].Onceformed,theMCRcanterminateorundergo formation is significantly reduced in high methacrylate containing systems [16]. Once formed, the twomajorcontinuingreactions: propagation, whichresultsintheformationofabranchpointinthe MCR can terminate or undergo two major continuing reactions: propagation, which results in the growingpolymerchain,andβ-scission,whichbreaksthegrowingchainintotwofragments(Scheme1b), formation of a branchpoint in the growing polymer chain, and β-scission, which breaks the growing thus impacting polymer molar mass [8,17,18]. Due to its tertiary nature, the MCRs are more stable chain into two fragments (Scheme 1b), thus impacting polymer molar mass [8,17,18]. Due to its tertiary than SPRs [19,20], and hence reduce the overall rate of monomer consumption [21]. Indications for nature, the MCRs are more stable than SPRs [19,20], and hence reduce the overall rate of monomer β-scission, which becomes a noticeable side reaction at higher temperatures and lowered monomer consumption [21]. Indications for β-scission, which becomes a noticeable side reaction at higher concentrations, are lower molar mass unsaturated macromonomers, which can be detected by mass temperatures and lowered monomer concentrations, are lower molar mass unsaturated macromonomers, spectroscopictechniques[8,18]orby1HNMR[17,22]. which can be detected by mass spectroscopic techniques [8,18] or by 1H NMR [17,22]. (a) COOBu COOBu COOBu COOBu COOBu CH2 + COOBu COOBu COOBu CH CH C HC CH2 COOBu CH CH C CH H CH COOBu COOBu COOBu COOBu COOBu + H C COOBu CH CH 2 C HC CH2 (b) Scheme 1. (a) Formation of a butyl acrylate (BA) mid-chain radical by intramolecular chain transfer Scheme1.(a)Formationofabutylacrylate(BA)mid-chainradicalbyintramolecularchaintransferto to polymer (backbiting). Monomer addition to the new radical structure creates a short-chain branch polymer(backbiting).Monomeradditiontothenewradicalstructurecreatesashort-chainbranchin in the polymer; (b) Macromonomer formation via β-scission of butyl acrylate mid-chain radical. thepolymer;(b)Macromonomerformationviaβ-scissionofbutylacrylatemid-chainradical. Among this sequence of acrylate side-reactions, the rate coefficient for backbiting, kbb, is of Among this sequence of acrylate side-reactions, the rate coefficient for backbiting, k , is of particular importance as it results in the formation of MCRs, which then can further rbebact by particular importance as it results in the formation of MCRs, which then can further react by termination, propagation, or scission. The rate of polymerization is affected, since the rate of termination,propagation,orscission. Therateofpolymerizationisaffected,sincetherateofmonomer monomer addition to MCRs (kpMCR) is much slower than that to chain-end radicals (kp), leading to the additiontoMCRs(k MCR)ismuchslowerthanthattochain-endradicals(k ),leadingtothedefinition definition of an averpaged coefficient kpAV [21,23]. p ofanaveragedcoefficientk AV[21,23]. p (cid:1863)(cid:2885)(cid:2906) = (cid:3038)(cid:3174) , kAV(cid:2926)= (cid:2869)(cid:2878)(cid:3286)k(cid:3174)(cid:3145)(cid:3286)p(cid:3135)(cid:3160)(cid:3150)(cid:3160)(cid:4670)(cid:3262)(cid:4671) , (1(1) ) p 1+ kbb Under the assumption that the majority of MCRksMp CfoR[rMm] a branching point (valid due to the faster rate of monomer addition to the MCR versus scission and termination rates), a simplified expression relating kbb to branching level can be derived, as described by Equation (2). As kp has been reliably measured by pulsed-laser polymerization [24], and monomer concentration [M] is easily monitored, Polymers2017,9,368 3of15 UndertheassumptionthatthemajorityofMCRsformabranchingpoint(validduetothefaster rateofmonomeradditiontotheMCRversusscissionandterminationrates),asimplifiedexpression relatingk tobranchinglevelcanbederived,asdescribedbyEquation(2). Ask hasbeenreliably bb p measuredbypulsed-laserpolymerization[24],andmonomerconcentration[M]iseasilymonitored, k canbeestimatedprovidedthatthebranchinglevel(BL,thefractionalquantityofacrylateunits bb thathaveundergonebranching)isaccessiblethroughquantitative13CNMRmeasurements[15]. k BL = bb , (2) k [M]+k p bb This relationship has been used to estimate k from batch polymerizations of BA in xylenes bb uptohighconversion(90%), between50and70 ◦C[25], withtheresultingvaluescombinedwith k estimates from pulsed-laser techniques to yield Arrhenius parameters for the rate coefficient bb (A=7.4×107s−1andE =32.7kJ·mol−1); these values were applied by the Hutchinson group to a model semi-batch homo-, co-, and terpolymerizations with BA [26,27] up to 170 ◦C under similar conditions, as examined in this work. However, a recent batch polymerization study, covering temperaturesfrom60–140◦Cproposedthattheactivationenergyissignificantlyhigher[28],indicating thesensitivityofthek estimatestoassumptionsmadeduringinterpretationofdynamicsystems. bb ThroughthepresenceofbranchingpointsfrommonomeradditiontoMCRs(whichcreateshort-chain branches),ortheincorporationofscission-derivedmacromonomers(whichcreatelong-chainbranches), a range of random comb-like polymer structures can be formed, possibly affecting the viscoelastic propertiesofthepolymer[29].Whileshortchainbranchesdonotgreatlyaffecttheviscosity,longchain branchingpointshaveasignificantimpactonsuchphysicalandapplicationproperties[30,31]. TheabovediscussionshowsthatthereisstillsomeuncertaintyaboutbranchinglevelsinBA,anddata forotheracrylatesystemsisevenmorescarce.WiththeintroductionofHEAandtheassociatedsolvent effects,theinfluenceofH-bondingonacrylatebackbitingandrelatedreactionsisneededtobuildon earlierobservationsofreducedbackbitinginsuchsystems[32,33].Additionalconclusionsregardingthe applicabilityoflowconversionPLP-derivedreactivityratiostoindustriallyrelevantoperatingconditions willbedrawn. 2. MaterialsandMethods Butyl acrylate (BA, ≥99%, Sigma, St. Louis, MO, USA), 2-hydroxyethyl acrylate (HEA, 96%, Sigma), deuterated dimethyl sfoxide (DMSO-d , containing 99.9% D, Cambridge Isotope, Tewksbury, 6 MA,USA),deuteratedtoluene(containing99.5%D,CambridgeIsotope),2,2-azobis(2-methylbutyronitrile) (Vazo-67,>99%,DuPont,Wilmington,DE,USA),tert-butylperacetate(50wt%inmineralspirits,Sigma), dimethylformamide (DMF, 99%, Sigma), n-butanol (BuOH, ≥99.4%, Sigma, St. Louis, MO, USA), n-pentanol (PeOH, ≥99%, Sigma), toluene (≥99.5%, Sigma, St. Louis, MO, USA), xylenes (>99%, FisherScientific, Hampton, NH,USA),2-methyl-5-hexanone(methylisoamylketone, MIAK,99%, Sigma),andbutylpropionate(BPi,99%,Sigma)wereusedasreceivedwithoutanyfurtherpurification. Batch reactions were performed in a 25 mL Schlenk tube under isothermal conditions. Initialmonomertosolventratioswererestrictedto25vol%monomertoachievesuitablemolarmasses andbranchinglevels.Vazo-67wasusedasaninitiator,withaninitialconcentrationof10mmol·L−1based onthetotalliquidreactorcontentof5mL.Inpreparationofthereaction,monomer/solventmixtureswere purgedthoroughlywithnitrogenforatleast15min,withthesubsequentreactionconductedunderinert gasconditionsatatmosphericpressurefor30minat80◦Cunderconstantstirring.Thepolymerizationwas thenquenchedbycoolingthetubeinliquidnitrogenandtheadditionofafewdropsofamethoxyphenol (2g·L−1,MEHQ)solution.Aportionofthereactionmixturewasanalyzedviagaschromatography(GC) immediatelyaftertheendofreactiontodeterminemonomerconversion.Purificationandisolationofthe polymerwasdonebyprecipitationinasuitableantisolvent,withliquidnitrogenasthecoolingagent,such asMeOH/H O(3to1volratio)forBApolymers,ordiethyletherforHEApolymers.Thecrudepolymer 2 wasthenseparatedfromthesolutionthroughfiltrationbeforedryingundervacuumat60◦Covernight. Polymers2017,9,368 4of15 Theexothermicnatureofthereactiondidnotinfluencereactionconditions,asreactiontemperaturesdid notexceedvalueshigherthan82◦C.Repeatexperimentsdemonstratedthatmeasuredconversionswere reproduciblewithinarangeof3%,andthatmolarmassaverageswithintherangeof10%,asshowninthe supportinginformation(FigureS1)forthemolarmassdistributionsmeasuredforpoly(BA)synthesized inxylenes. Semi-batchreactionswereconductedina0.6LLabMaxreactorsystem,withautomaticstirring, temperaturecontrol,arefluxsystem,andmeteredreagentmassflowcontrolat138◦C,atemperature selected as it is the boiling point of xylenes. Other solvents used include ketones (MIAK), esters (BPi),DMF,andpentanol(PeOH).129gofsolventwaschargedtothereactorandheatedtoreaction temperature under nitrogen inert gas atmosphere. The feed reservoir was charged with 239 g of monomer solution (at various compositions for the case of comonomer systems) before adding 2mol%oftert-butylperacetate(TBPA)relativetothemonomercontent,asreportedelsewhere[17,27]. Thereactionmixturewasthenfedover6hintothereactorwhilemaintainingisothermaloperationto reachafinalpolymercontentof65wt%insolution,assumingfullmonomerconversion. Tensamples of2–3mLweretakenoverthecourseofthereaction. Thefinalend-of-batchsamplesusuallycontained morethan10mLsolutiontoassureproper13CNMRanalysisofthepolymerisolated.Allsampleswere immediatelyquenchedthroughtheadditionofMEHQinhibitorsandstoredinthefreezer. Afraction wastakentobeanalyzedviaGCforresidualmonomerconcentrations,withresidualsolventremoved fromtheremainderofthesolventtoisolatethepolymerthroughairstrippingandevaporationunder vacuumat60◦C. Polymers were dissolved in THF at 3–6 g·L−1 and filtered through 0.2 µm nylon filters for sizeexclusionchromatographic(SEC)analysisofmolarmassdistributions(MMD).TheSECsetup consists of a Waters 2960 separation module connected to a Waters 410 differential refractometer (DRI)(Milford,MA,USA),andaWyattInstrumentsDawnEOS690nmlaserphotometermulti-angle light-scattering(LS)detector(SantaBarbara,CA,USA).TheeluentTHFwasusedataflowrateof 0.3mL·min−1through4Styragelcoloumsmaintainedat35◦C.TheDRIdetectorwascalibratedby polystyrenestandardswithnarrowdispersitiesovertherangeof870–875,000g·mol−1. TheLSdetector wascalibratedwithasinglepolystyrene(PS)standardasareference. BasedonPS-calibration,absolute molarmassdistributionsfromDRIcanbeobtainedviaasuitabletransformationusingtheknown Mark-HouwinkparameterssummarizedinTable1. Itisassumedthatcopolymerizationvaluescan becalculatedbasedontheweight-averagedpolymercomposition,asshowntobevalidinprevious studies[27,34]. ResultswereverifiedbycomparingtheoutputfromLSdetection,whichdetermines absolutemolarmassdistributionsusingknownrefractiveindices(d /d values). n c Table1.Parametersrequiredforanalysisofpolymermolarmassaveragesanddistributions. Mark-HouwinkParametersinTHF Monomer dn/dc(mL·g−1) K(dL·g−1) a HEA[34] 0.066 0.000322 0.602 BA[24] 0.064 0.000122 0.700 Styrene[34] 0.184 0.000114 0.716 Monomer concentrations were determined using a Varian CP-3800 GC setup consisting of aCP-8410autosampler,aCP-117isothermalsplit/splitlessinjector(witha9:1split),a30Mchrompack capillarycolumn(CP-Sil8CB),anovenandaflameionizationdetector(FID)forquantitativeanalysis ofresidualcompounds. Theseparationisbasedonthedifferentboilingpointsofthecompoundsusing afine-tunedtemperatureprofile. Duetothehighboilingpointsabove200◦Cofhydroxylcontaining monomers,itisrecommendedtosettheinjectorcelltemperatureto275◦Cforquantitativeevaporation. Accordingly,theseparationwasoptimizedwithastartingtemperatureof100◦C(andafinalbake outat275◦C)forthecolumnoventoavoidlinebroadeningofhydroxylcontainingmonomersonthe stationaryphase. Hydroxylcontainingmonomerseluteearlierthantheirhydrophobiccounterparts, Polymers2017,9,368 5of15 despite their higher boiling points. To identify monomers and properly separate them (based on retentiontime),acalibrationwasdevelopedwithsamplesofknownconcentrationtoconstructaplot ofanintegratedpeakareaversusmonomerconcentration. Samplesofunknownconcentrationwere preparedbydiluting0.02–0.06ginroughly10gofacetone. NMR samples were prepared by dissolving dried polymer (free of monomer) in a suitable NMRsolventatconcentrationsaround2wt%for1HNMRandsignificantlyhigherconcentrations of 10–30 wt % for 13C NMR to allow for a quantitative detection of the naturally less abundant 13C-nuclei.NonpolarhomopolymerswerecommonlyanalyzedinCDCl ,whereashydroxylfunctional 3 copolymerswereanalyzedinDMSO-d . TwodifferentBrukerAvancespectrometerswereusedat 6 400or500MHz. 1HNMRspectrawererecordedatstandardconditionswith3.17sacquisitiontime, 1srelaxationdelay,6µsdeadtime,and48.4µsdwelltime. Thequantitative13CNMRwasacquired underinversegatedWALTZ16conditionstosuppresstheNuclearOverhauserrelatedeffects(NOE) withasufficientmaindelaytimeof10sperscan,asreportedelsewhere[15,17]. Asufficientsignalto noiseratiowasachievedafter3000scans,withruntimesgenerallyadjustedtoallowformorethan 4000scans. Supportinganalysisvia2DandDEPTNMRmethodscanbefoundelsewhere[35]. 3. ResultsandDiscussion 3.1. BatchExperiments A series of batch experiments were performed to examine the influence of H-bonding on backbitinginacrylatepolymerizationundertime-varyingmonomerconcentrationprofiles,providing apointofcomparisontothesemi-batchpolymerizationsconductedatlowandrelativelyconstant monomer concentrations. The initial monomer content (25 vol %) was kept low to eliminate any potentialinfluenceofincreasingviscosityonpolymerizationrate,andreactiontemperature(80◦C), initiator concentration (10 mmol·L−1), and reaction time (30 min) were also kept constant for the variousacrylate/solventcombinationsstudiedunderbatchconditions. AssummarizedbyTable2, themonomerconversionsreachedin30minrangedfrom76%to90%. Asfinalconversionsaresimilar, theresultingBLvaluesmeasuredprovideinsightsastohowsolventandmonomerchoiceaffectsthe relativerateofbackbitingtochain-growth(k /k ). bb p Monomer conversions of 75–80% were reached for BA polymerized in xylenes and toluene, with the polymer produced in both solvents having a very similar number average (M ) and n weight-average(M )molarmasses,aswellasfinalbranchinglevels(~3%).TheinfluenceofH-bonding w canbeseenwhencomparingtheseresultstothepolymerizationofBAinBuOH;significantlylowerBLs aremeasured(2.4%),despitetheslightlyhigherconversion(85%)attained. Furthermore,thepolymer molar masses are higher for the polymerization in BuOH when compared to toluene and xylenes. Theseresultsareconsistentwiththedifferencespreviouslyreportedforsemi-batchpolymerization of BA in BuOH when compared to xylenes [32], as well as kinetic studies that have shown that theuseofalcoholasasolventsignificantlyincreasesk foralkyl(meth)acrylates[13,36],whilealso p decreasingacrylatek [32,33]. ItishypothesizedthatH-bondingbetweenthealcoholsolventand bb polymerized-BA units sterically hinders chain-end movement, such that the occurrence of the 1,5 backbiting mechanism is reduced relative to chain growth. Supporting this suggestion, infrared spectroscopyhasconfirmedH-bondingbetweencarbonylgroupsonapoly(BA)chainandBuOH[37], similartothatobservedbetweenunreacted(meth)acrylatemonomersandhydroxylgroups[13,38]. Theresultinghigherfractionofchain-endradicalsinthesystemleadstohigherratesofpolymerization andpolymermolarmassesinthesystem;asasecondaryeffect,thelongerpolymerchainswillleadto adecreaseintheterminationratecoefficient[39,40],furtherincreasingrateandpolymermolarmasses. Polymers2017,9,368 6of15 Table2.Finalmonomerconversions,averagepolymermolarmassesandbranchinglevelsmeasuredfor poly(acrylates)producedvia30minbatchpolymerizationsconductedat80◦Cwith75vol%solvent. BranchingLevelb Monomer Solvent [M]ini(mol·L−1) Conversion(%) Mn/Mw(g·mol−1) (%perAcrylate Unit) BA Xylenes 1.65 80.7 21,100/41,100 3.1 BA Toluene 1.65 75.9 17,100/39,500 3.0 BA n-Butanol 1.65 84.2 36,800/87,700 2.4 HEA DMF 2.25 84.8 n.a. 1.8 HEA n-Butanol 2.25 90.0 n.a 1.2 BA/HEAa Xylenes 1.90 Phaseseparation/precipitationoccurred 1.2 BA/HEAa MIBK 1.90 before30min;FHEA>>fHEAatconv.≈50% 1.8 a BA/2-hydroxyethyl acrylate (HEA) copolymerizations were performed at a 50/50 vol/vol monomer ratio; b13CNMRtechniquesarereliableabovebranchinglevelsof1%peracrylateunitandareassociatedwithanabsolute errorof±0.5%. To enhance this knowledge about solvent-induced H-bonding effects, experiments were also carried out with HEA, in both butanol and DMF (which disrupts H-bonding). As poly(HEA) is sparinglyTHF-soluble,onlyconversionandbranchingdataareavailable. Monomerconversionswere foundtobesimilarorslightlyhigherthanthoseofBA,90%inBuOHand≈85%inDMF.Thebranching level was 1.2% for poly(HEA) synthesized in BuOH, half that measured for poly(BA) in BuOH, anddecreasedevenfurtherrelativetoBApolymerizedinxylenesandtoluene. Thus,thecombined influenceofH-bondinginducedbysolventandmonomerfurtherreducestheoccurrenceofbackbiting inthesystem. A previous PLP low-conversion study found that branching levels in poly(HEA) increased for polymerization in DMF relative to bulk, but the extent of the increase was not quantified [33]. The 1.8% level of branching measured in this work for batch polymerization of HEA in DMF is higher than that found in BuOH, but is still significantly lower than poly(BA) branching levels. A possible explanation is that the interaction of DMF with polymerized HEA units also stiffens polymerchainstoreducebranching. Furtherinsightsmaybegainedbyexaminingthecorrelation of branching with polymer-solvent and polymer-monomer interactions, as quantified by Hansen solubilityparameters[41],orKamlett-Taftsolvatochromicparameters[42]. The batch experiments indicate that backbiting rates are reduced for BA in the presence of a H-bonding solvent, and are always decreased for HEA as a monomer. It is of interest, then, to see the influence of HEA added as a comonomer to the extent of acrylate branching. BA/HEA batchcopolymerizationswereconductedinbothxylenesandMIBK.Despitethehighsolventcontent, bothreactionsunderwentphaseseparation(precipitationofpolymer)afterroughly15min,withthe heterogeneityoccurringinxylenesearlierthaninMIBK.ItisknownthatHEApreferentiallyincorporates intothecopolymer[14], whichlikelycontributestotheinsolubilityasthemonomerconcentrationis depleted. Thus, it is more difficult to evaluate the branching results, which are of the same level as observedforHEAhomopolymerization.However,asthemonomerconversionsareconsiderablylower at the time of precipitation, it suggests that the branching rates (relative to propagation) are higher forcopolymerizationthanforHEAhomopolymerization.Toobtainbettercontrolintheseindustrially relevantsolvents,thenextsectionpresentsresultsforsemi-batchcopolymerization,withincreasedHEA contentsandsmallertargetpolymermolarmasses. 3.2. Semi-BatchCopolymerizationofBAandHEAinVariousSolvents Thesemi-batchexperimentswereperformedunderconditionscommonlyusedinindustry[8,27], withasix-hourmonomerfeedingperiod,2.0mol%initiatorrelativetomonomer,areactiontemperature of138◦C,andafinalpolymercontentof65wt%insolution.Duetoitsmorepolarnature(incomparison to xylenes), BPi was chosen as a solvent to ensure good solubility over a wide range of HEA compositions [35]. Experiments could be performed up to HEA levels of 40 wt %, with no phase Polymers2017,9,368 7of15 Polymers 2017, 9, 368 7 of 15 separationorprecipitationobservedunderreactionconditions;experimentswithhigherHEAcontent no phase separation or precipitation observed under reaction conditions; experiments with higher werenotconductedassomeevidenceofprecipitationwasobservedwith50wt%HEA.Thechangein HEA content were not conducted as some evidence of precipitation was observed with 50 wt % HEA. totalfreemonomercontentasafunctionofreactiontimeisshowninFigure1(top). Independentof The change in total free monomer content as a function of reaction time is shown in Figure 1 (top). theHEAcontent,theconcentrationoftotalfreemonomer([BA]+[HEA])remainsroughlyconstant, Independent of the HEA content, the concentration of total free monomer ([BA] + [HEA]) remains decreasing from an initial level of ~0.2 to less than 0.1 mol·L−1 over the course of the 6 h period roughly constant, decreasing from an initial level of ~0.2 to less than 0.1 mol∙L−1 over the course of the ofmonomerfeeding,withperhapsslightlylowermonomerlevelsseenfortherunperformedwith 6 h period of monomer feeding, with perhaps slightly lower monomer levels seen for the run 40wt%HEA.Theselowmonomerlevelsarecharacteristicofstarved-feedsemibatchoperations,asthe performed with 40 wt % HEA. These low monomer levels are characteristic of starved-feed semi inbsatatcnhta onpeeoruatsiomnos,n aosm theer cinosntvanertasinoenosuas rmeohnigohmdeur ecotnovtehresifoansst paroel yhmigehr idzuaeti toon trhaet efass,ta pnodlythmeedriezcarteioanse in cornacteesn, traantdio nthoev derectrimeaesea irne scuoltnocefnthtreatmioonn oomveerr tbimeine gaf erdesautlta ofifx tehdef lmowonraotmeeinr tboeainngi nfcerde aasti nag friexaecdt ion vofllouwmreat[e8 ,i2n7t]o. an increasing reaction volume [8,27]. 0.25 ] 1 -L ∙ e ol em r al Fer [ 0.15 tm o To n o M 0.05 0.5 0.4 0.3 A E H f 0.2 0.1 0 0.6 0.5 0.4 0.3 A E H F(cid:3636) 0.2 0.1 0 0 100 200 300 400 Time [min] FiFgiugurere1 .1. TTootatall frfreeee mmoonnoommeerr ccoonncceennttrraattiioonn ((ttoopp),) ,HHEEAA mmoolalra rfrfarcatciotino nini nthteh ecocmomonoonmoemr e(rfH(EfA) ) HEA (m(mididddlel)e)a nanddc ocoppoolylymmeerr( (FFHEA)) ((bboottttoomm) )fofor rBBAA/H/HEAE Asemseimbaibtcaht cchopcooplyomlyemrizearitzioantiso inns eisnteersst e(BrsP(i)B aPti )at HEA HHEAEAle lveveleslso off1 122.5.5w wtt %% (((cid:7)♦)),, 2255 wwtt %% ((▲(cid:78))),, 4400 wwtt %% ((■(cid:4)) i)ni nthteh ecocmomonoonmoemr eferefdee. d. Figure 1 also plots the molar fraction of HEA in the monomer, fHEA, as calculated from the GC Figure1alsoplotsthemolarfractionofHEAinthemonomer,f ,ascalculatedfromtheGC data, with the corresponding values of copolymer composition, FHEA, HcaElAculated by mass balances. data,withthecorrespondingvaluesofcopolymercomposition,F ,calculatedbymassbalances. After an initial transient period, constant polymer and monomer comHEpAositions are maintained over Afteraninitialtransientperiod,constantpolymerandmonomercompositionsaremaintainedover Polymers2017,9,368 8of15 Polymers 2017, 9, 368 8 of 15 tthhee ccoouurrssee ooff ththee fefeeeddiningg ppereiroidod. A. sA esxepxepcteecdte fdorf oar satasrvtaerdv-efdee-fde eodpeorpateiroanti, otnh,e tHheEAH EfrAactfiroanct iionn thine cthopeocloypmoelyr mqueircqkulyi caktltyaiantst athines ttahregetta r(fgeeetd()f eveadlu)ev,a dlueen,odteedn obtye dthbey htohreizhoonrtiazlo dnottatleddo ltinteeds loinn etsheo npltohte. Hploowt.eHveorw, ethvee r,HthEeAH mEAonmomonero mfrearctfiroanc tipolnatpelaautse aauts avtalvuaelsu essigsnigifnicifiacnatlnyt lybebleolwow ththe emmoolalarr ffeeeedd ccoommppoossiittiioonn.. TThhee oobbsseerrvvaatitoionn ththaat tfHfEHAE <A F<HEFAH iEnA thine sthyestseyms tiesm coinssciostnesnits twenitthw thiteh lothwe cloownvceorsnivoenr PsiLoPn ePxLpPereixmpeenritms [e1n4t]s, [a1s4 t]h,earset hise aren iisnacnreianscerde arseeladtirveela rteivaectrievaitcyti ovfit HyEofAH rEelAatrivelea ttoiv BeAto. BA. UUnnddeerr tthheessee sseemmii--bbaattcchh ooppeerraattiinngg ccoonnddiittiioonnss,, tthhee ccoonncceennttrraattiioonn ooff HHEEAA iinn tthhee rreeaaccttoorr iiss aallwwaayyss lleessss tthhaann 00..0055 mmooll∙·LL−−1 1dduurirningg ththe eenentitriere cocouursrsee oof fththee rereaacctitoionn, ,aanndd ggeenneerraallllyy mmuucchh lloowweerr.. EEvveenn ffoorr tthhee eexxppeerriimmeenntt wwiitthh 4400 wwtt %% HHEEAAi innt thheef feeeedd,,a at ototatallf rfereeem moonnoommerero fo0f .01.515m molo·Ll∙−L1−1a annddf fHHEEAA ooff 00..2288,, rreessuullttss iinn [[HHEEAA]] == 00..0044 mmooll·∙LL−−1.1 .TThhesees ecoconndditiitoionns saarere vveerryy ddififffeerreenntt tthhaann tthhee hhiigghh mmoonnoommeerr ccoonncceennttrraattiioonn ccoonnddiittiioonnss uusseedd iinn tthhee PPLLPP ssttuuddyy ooff HHEEAA--BBAA ccooppoollyymmeerriizzaattiioonn cchhaaiinn--ggrroowwtthh kkiinneettiiccss [[1144]],, iinn wwhhiicchh HHEEAA wwaass ffoouunndd ttoo bbee pprreeffeerreennttiiaallllyy iinnccoorrppoorraatteedd iinnttoo tthhee ccooppoollyymmeerr.. TThhee rreellaattiioonnsshhiipp bbeettwweeeenn ccoommoonnoommeerr aanndd ccooppoollyymmeerr ccoommppoossiittiioonn ddaattaa ooff eeaacchh sseemmii--bbaattcchh rruunn ((aass ddeetteerrmmiinneedd ffrroomm tthhee ffiinnaall sseevveerraall hhoouurrss ooff ooppeerraattiioonn)) iiss ccoommppaarreeddw witihtht htheeP PLLPPd deerirvivededM Mayaoy-oL-Lewewisips lpoltofto froBr ABA/H/HEEAAin inF iFgiugurere2 . 2T.h Tehsee mseim-bia-btcahtchd adtaata(a (lablebietilti mlimiteitde)d)f aflalllb betewtweeeennt htheet eterrmmininaall mmooddeell aanndd fifittss ttoo llooww--ccoonnvveerrssiioonn ccooppoollyymmeerr ccoommppoossiittiioonn ddaattaa ffoorr BBAA//HHEEAA inin bbuulklk aanndd iinn kkeettoonneess, ,wwhhiicchh hhaavvee aa ssiimmiillaarr eeffffeecctt oonn ccoommppoossiittiioonn aass BBPPi i[1[41,43,53]5.] .ThTehreefroerfeo,r eth,et hcehecmheicmali ceanlveinrovnirmonenmt ednutrdinugr itnhge stheme is-ebmatic-hba ptcrohcpesrso csetislsl lsetaildlsl etaod sthteo tphreefperreefnetrieanl tiinacloinrpcoorrpatoiorant ioofn HofEHAE iAntion ttoheth ceocpooplyomlyemr earta at alelvevele lththaat tiiss rreeaassoonnaabbllyy ddeessccrriibbeedd bbyy rreeaaccttiivviittyy rraattiiooss oobbttaaiinneedd ffrroomm kkiinneettiicc ssttuuddiieess aatt hhiigghheerr mmoonnoommeerr ccoonncceennttrraattiioonnss aanndd lloowweerr tteemmppeerraattuurreess.. 1 0.8 0.6 A E H F 0.4 0.2 0 0 0.5 1 f HEA FFiigguurree 22.. CCoommppaarriissoonn ooff HHEEAA ccooppoollyymmeerr mmoollee ffrraaccttiioonn ((FFHEA)) aass aa fufunnccttioionn ooff HHEEAA ccoommoonnoommeerr mmoollee HEA ffrraaccttiioonn ((ffHEA) )uunnddere rsseemmi-ib-baatctchh ooppeerraatitningg ccoonnddiittiioonnss ffoorr BBAA//HHEEAA ccooppoollyymmeerrizizaattioionnss iinn BBPPii ((■(cid:4))) ttoo HEA terminal model fits to data obtained by low conversion kinetic studies in bulk (---) and methyl isobutyl terminalmodelfitstodataobtainedbylowconversionkineticstudiesinbulk(---)andmethylisobutyl kkeettoonnee ((------)) [[1144]].. The analysis of copolymer composition indicates that the presence of HEA in the recipe TheanalysisofcopolymercompositionindicatesthatthepresenceofHEAintherecipepromotes promotes its relative incorporation rate, despite the low concentration of free monomer under semi- its relative incorporation rate, despite the low concentration of free monomer under semi-batch batch operating conditions. Still to be examined is its influence on polymer properties. As shown in operatingconditions. Stilltobeexaminedisitsinfluenceonpolymerproperties. AsshowninFigure3, Figure 3, the effect of substituting HEA for BA in the acrylate recipe has only a minor effect on the effect of substituting HEA for BA in the acrylate recipe has only a minor effect on polymer polymer molar masses; the evolution of number and weight MM averages over time are similar with molarmasses;theevolutionofnumberandweightMMaveragesovertimearesimilarwith12.5,25, 12.5, 25, and 40 wt % HEA in the acrylate mixture, with the final values very similar to those measured and40wt%HEAintheacrylatemixture,withthefinalvaluesverysimilartothosemeasuredfor fBoAr BhAom hoompoolpymolyermizeartiizoantisoinns BinP iB(PMi (M=n 4=0 04000a0n adnMd M=w =8 6806000g ·gm∙molo−l−11)).. TThhee ggeenneerraall sshhaappee ooff tthheessee n w curves, with poly(acrylate) MW values increasing over time, has been explained by the incorporation curves,withpoly(acrylate)MWvaluesincreasingovertime,hasbeenexplainedbytheincorporation of macromonomers into the growing polymer chains [22]. Thus it can be generalized from this set of HEA/BA copolymerizations in BPi that, although the HEA is preferentially incorporated into the polymer, its addition to the recipe has little effect on overall reaction rates (total free monomer levels), Polymers2017,9,368 9of15 ofmacromonomersintothegrowingpolymerchains[22]. Thusitcanbegeneralizedfromthisset ofHEA/BAcopolymerizationsinBPithat,althoughtheHEAispreferentiallyincorporatedintothe polymPeolry,mietrss a20d17d, i9t,i 3o6n8 totherecipehaslittleeffectonoverallreactionrates(totalfreemonome9 rofl e15v els), andthemolarmassesofthepolymerproduct. WhenaddingHEAtotherecipe,however,thesolvent and the molar masses of the polymer product. When adding HEA to the recipe, however, the solvent must musthavesufficientpolaritytopreventpolymerprecipitation. InBPi,40wt%HEAinthecopolymer have sufficient polarity to prevent polymer precipitation. In BPi, 40 wt % HEA in the copolymer could be couldbeeasilysynthesizedat138◦C,but50wt%HEAwastoohigh[35]. easily synthesized at 138 °C, but 50 wt % HEA was too high [35]. 12000 10000 ] 1 8000 -ol m ∙ 6000 g [ M 4000 M 2000 0 0 100 200 300 400 Time [min] Figure 3. Evolution of number- (open symbols) and weight- (filled symbols) average polymer molar Figure3.Evolutionofnumber-(opensymbols)andweight-(filledsymbols)averagepolymermolar massemsafossreBs Afo/r HBAE/AHEcoAp coolpyomlyemreprr opdroudcuecdedv ivaias esemmi-i-bbaattcchh ppoollyymmeerrizizaatitoion nini nBPBiP wiiwthi t1h2.152 (.♦5),( (cid:7)25 )(,▲25) ((cid:78)) and40anwdt 4%0 w((cid:4)t %)H (■E) AHEinAt ihne thfeee fdee.d. Semi-batch BA/HEA copolymerizations with 25 wt % HEA in MIAK and xylenes were also Sceomndi-ubcatetcdh, uBsiAng/ HthEe Asamcoe preoalcytmore croinzdaittiioonnss awndit hfol2lo5wwintg% thHe sEaAmei nmoMnoIAmKer aanndd inxiytilaetnoer sfewedeirneg also conduscctheedd,uulessi nags uthseeds awmiteh rBePaic. tForreec omnodniotimoners caonndcefnotlrlaotwioinnsg atnhde csoammoenommoenro cmomerpoasnidtioinnsi twiaetorer ofef ead ing schedsuimleislaars muasgendituwdiet hasB fPori. thFer ereeamctioonn oinm BePri,c sohnocwenintgr aat isoignnsifaicnadntc pormomoontoiomne orf cHoEmAp ionsciotripoonrsatwioenr e of through H-bonding. As found in BPi, the addition of HEA to the recipe did not greatly impact the asimilarmagnitudeasforthereactioninBPi,showingasignificantpromotionofHEAincorporation polymer molar masses when compared to BA homopolymerization (Figure S2 in Supporting through H-bonding. As found in BPi, the addition of HEA to the recipe did not greatly impact Information). Small differences found in the MMDs are attributed to the differences in transfer to the polymer molar masses when compared to BA homopolymerization (Figure S2 in Supporting solvent reactions, as the polymer Mw values produced for all recipes in BPi were consistently higher Information). SmalldifferencesfoundintheMMDsareattributedtothedifferencesintransferto by 1000–2000 g∙mol−1 than for polymers produced in xylenes [35]. solventreaFcutritohnesr ,caospothlyempeorilzyamtioenrsM ofw BvAa aluneds HpErAod (wucitehd 2f5o arnadl l5r0e wcitp %es HiEnAB)P wiewree rcearcroiends oisutte innt DlyMhFig her by100a0n–d2 0P0e0OgH· msoollu−ti1otnh aton dfoerveplooply mmoerres pinrsoidghutcse dabionuxt ythleen eefsfe[c3t5s] .of H-bonding under semi-batch Fcuorntdhietriocnosp; oPleyOmHe rwizaast iuosnesd oifnBstAeada nodf HBuEOAH( wtoi tkhee2p5 abneldow50 thwet s%olvHeEntA b)owilienrge pcaorinrite dat o1u3t8 i°nCD. MF andPeMOoHnosmoleur ticoonncteondtreavtieolno panmdo creominpsoigshittiosna bdoautat tahree esfufemcmtsaorfizHed-b ionn Fdiignugreu nSd3,e rwsiethm ci-obraretcshpocnodnidnigt ions; PeOHpwolaysmuesre dMiMns taevaedraogfeBs upOloHttetdo akse eFpigbuerleo Sw4.t hFoers othlveseen tcabsoeisl,i nthgep tooitnatl amto1n3o8m◦Cer. Mcoonnceonmtrearticoonnsc wenetrrea tion also less than 0.1 mol∙L−1 throughout much of the reaction, although the levels were unexpectedly andcompositiondataaresummarizedinFigureS3,withcorrespondingpolymerMMaveragesplottedas FigurehSig4h.eFro (>r0t.h3e mseolc∙aLs−1e)s f,otrh teheto ftirasltm hoounro omf HerEcAo/nBcAe ncotrpaotiloymnsewrizearteioanls ion PleesOsHth. aTnhi0s. 1dimffeorle·Lnc−e1 inth irnoituiaglh out transient behavior was accompanied by a high fraction of HEA in the monomer mixture, and may be muchofthereaction,althoughthelevelswereunexpectedlyhigher(>0.3mol·L−1)forthefirsthourof an indication that the relative incorporation of HEA and BA in alcohol solvent is concentration HEA/BAcopolymerizationinPeOH.Thisdifferenceininitialtransientbehaviorwasaccompaniedby dependent, as observed for low conversion studies of HEMA copolymerized with styrene [38]. ahighNfroancettihoenleosfs,H thEeA friancttihoen mofo HnoEmA eirn mthiex tcuorme,oannodmmer aqyubiceklayn sienttdleicda ttioo an ctohnastttahnet rleevlaetli vvealiunec oafrtpeor r1a tion ofHEhA, wanitdh BfHAEA ivnaalulceos hsoulmsmolavreiznetdi salcoonngc ewnittrha atilol notdheerp eexnpdeernimt,eanstso ibns eTravbeled 3f.o Irnl othwe cloown vceornsvioernsisotnu dies ofHEsMtuAdiceos poof ltyhmis esryizsteedmw, iitt hwastsy froeunned[ 3th8a].t Nthoen ceotphoellyemsse,rt hceomfrpaoctsiiotinono fdHataE Awains ctlhoesec otom tohne odmiaegronqauli ckly settledfotro raeaccotniosntas nint lBeuvOelHv aalnude ianf tDerM1Fh [,1w4]i,t ihndficatinvga lvueersy ssuimmimlara rBiAze adnadl oHnEgAw rietlhataivlleo rtehaecrtievxitpieesr iimn ents HEA inTabtlhee3s.eI ntwtoh esololvwenctosn. Uvenrdseior nthsetu sdeimesi-obafttchhi scsoynsdtietmion,ist owf atshifso ustnuddyth, hatowtheevceor,p HolEyAm eisr pcoremfeproensittiiaollny data wasclionsceortpootrhaeteddi a(FgHoEnA a>l ffoHErAr)e. aTchtiuosn, sthine BprueOseHncae nodf itnheD fMunFct[i1o4n]a,liinzeddic caotipnoglyvmeeryr (s6im5 wilat r%B Ain afnindalH EA solution) promotes the HEA incorporation to a level intermediate between that predicted using relativereactivitiesinthesetwosolvents.Underthesemi-batchconditionsofthisstudy,however,HEAis reactivity ratios derived from low-conversion bulk and solution experiments. The polymer Mw values preferentiallyincorporated(F >f ).Thus,thepresenceofthefunctionalizedcopolymer(65wt% produced in PeOH and HDEMAF soHluEtAions are significantly lowered when compared to the values infinalsolution)promotestheHEAincorporationtoalevelintermediatebetweenthatpredictedusing measured in the other solvents, in agreement with other literature that indicates these solvents are Polymers2017,9,368 10of15 reactivityratiosderivedfromlow-conversionbulkandsolutionexperiments. ThepolymerM values w producedinPeOHandDMFsolutionsaresignificantlyloweredwhencomparedtothevaluesmeasuredin theothersolvents,inagreementwithotherliteraturethatindicatesthesesolventsaremorepronetoH-atom abstraction[43–45].AsimilardecreasewasseenintheanalysisofBAsemi-batchhomopolymerizationin DMFwhencomparedtoxylenesinapreviousstudy[12]. Table 3. Copolymer compositions, polymer properties, and estimated backbiting rate coefficients ratioedtopropagation(kbb/kpcop)fromBA/HEAsemi-batchcopolymerizationsconductedinvarious solventsat138◦C. (Cwotm%o)naonmdeSroFlveeendt FHEAa fHEAa Mwb(g·mol−1) BLb (cid:82)(cid:82)(cid:82)[M]c(mol·L−1) (kLb·bm/kopl−co1p) BA(100)BPi 0 0 8600 0.088 0.203 1.95×10−2 BA/HEA(87.5/12.5)BPi 0.13 0.07 8900 0.092 0.141 1.43×10−2 BA/HEA(75/25)BPi 0.27 0.17 9000 0.087 0.146 1.38×10−2 BA/HEA(60/40)BPi 0.43 0.28 10,600 0.092 0.125 1.27×10−2 BA/HEA(75/25)MIAK 0.27 0.16 7100 0.098 0.151 1.64×10−2 BA/HEA(75/25)xylenes 0.27 0.15 7600 0.072 0.193 1.49×10−2 BAPeOH 0 0 3900 0.064 0.113 0.78×10−2 BA/HEA(75/25)PeOH 0.27 0.14 4400 0.067 0.152 1.09×10−2 BA/HEA(50/50)PeOH 0.53 0.32 3400 0.071 0.110 0.84×10−2 BA/HEA(75/25)DMF 0.27 0.20 4000 0.095 0.111 1.17×10−2 BA/HEA(50/50)DMF 0.53 0.41 3800 0.093 0.099 1.01×10−2 aSteady-statevaluesofmolefractionHEAincopolymer(FHEA)andcomonomer(fHEA)attainedafterinitial1h transientperiod;bvaluesmeasuredforfinalpolymersamples;cindicatesatime-averagedvalueoftotalmonomer concentrationoverthe6hreactiontime. 3.3. AcrylateBackbitingunderSemi-BatchConditions Transfertopolymerreactionsresultineithershort-chain(SCB)orlong-chain(LCB)branchpoints, withthesubsequentslowadditiontomidchainradicals(MCR),decreasingpolymerchaingrowthrates, andthescissionofMCRsdecreasingpolymermolarmasses. AlthoughLCBsinfluencerheological performance,theirlevelinpoly(acrylate)systemsislow,withthemajorityofbranchingoccurring by backbiting to form SCBs [22,23,25]. The branching levels (BLs) reported in Table 3 have been determinedforthefinalsamplesfromthesetofsemi-batchreactionsviaquantitative13CNMRby measuringtheamountofquaternarycarbons(peakpositionat48ppm)relativetothetotalacrylate unitsinthepolymerchain,asshownbytheexamplespectruminFigureS5andasbasedonprevious literaturestudies[15,17,28]. OneimportantquestionexaminedinthisstudyishowanincreaseinHEAfractioninthefeed influencesthelevelofbranching(andhencek ),aspreviousworkhasshownthatH-bondinginduced bb byalcoholsloweredBLsduringsemi-batchhomopolymerizationofBAat110◦C[32].Figure4presents theBLsmeasuredforsemi-batchBA/HEAcopolymerizationsinBPiat138◦C,withHEAlevelsup to50wt%. Between7–11%oftheacrylateunitsinthepolymerarequaternary,muchhigherthan measuredforthesolutionbatchreactions(seeTable2),adifferenceduetothehighertemperatureand thelowerfreemonomerlevelsinsemi-batchoperation. Theselevelsaresimilartothosereportedfor investigationsofsemi-batchBAsystemsinxylene[12,17],indicatingthatBPiasasolventdoesnot greatlyinfluencetherateofbackbiting. Remarkably,thereisnosignificantdecreaseinthemeasured BLwithincreasingHEAlevelsincorporatedintothecopolymer. The finding that HEA reduces acrylate BLs in batch (Table 2) but not semi-batch (Figure 4) canbeexplainedbyconsideringthedifferencesinreactionenvironmentbetweenthetwosystems. Underbatchconditions,thelevelofunreactedHEAismuchhigherthroughoutmuchofthereaction whencomparedtothesemi-batchsystem,inwhichHEAconcentrationsarealwaysbelow0.1mol·L−1. Thus, these results suggest that a threshold concentration of the H-bonding species is required to significantly reduce the rate of backbiting. This interpretation also explains the major difference between this HEA/BA semi-batch system, and the previous reduced BLs found with poly(BA)

Description:
+1-613-533-3097. Received: 24 July 2017; Accepted: 15 August 2017; Published: 17 August 2017. Abstract: The radical copolymerization of butyl
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.