ebook img

The dust content of the most metal-poor star-forming galaxies PDF

0.52 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The dust content of the most metal-poor star-forming galaxies

Mon.Not.R.Astron.Soc.000,1–10(2015) Printed11January2016 (MNLATEXstylefilev2.2) The dust content of the most metal-poor star-forming galaxies Raffaella Schneider1(cid:63), Leslie Hunt2 and Rosa Valiante1 1INAF/OsservatorioAstronomicodiRoma,ViadiFrascati33,00040MontePorzioCatone,Italy 2INAF/OsservatorioAstrofisicodiArcetri,LargoEnricoFermi5,50125Firenze,Italy draftversion20November2015 6 ABSTRACT 1 Althoughdustcontentisusuallyassumedtodependuniquelyonmetallicity,recentobserva- 0 tions of two extremely metal-poor dwarf galaxies have suggested that this may not always 2 be true. At a similar oxygen abundance of ∼3%Z , the dust-to-gas and dust-to-stellar mass (cid:12) ratiosinSBS0335−052andIZw18differbyafactor40-70accordingtoincludingmolecular n gasorexcludingit.Hereweinvestigateapossiblereasonforthisdramaticdifferencethrough a J modelsbasedonasemi-analyticalformulationofchemicalevolutionincludingdust.Results 7 suggestthatthegreaterdustmassinSBS0335−052isduetothemoreefficientgraingrowth allowedbythehighdensityinthecoldinterstellarmedium(ISM),observationallyinferredto ] be almost 20 times higher than in IZw18. Our models are able to explain the difference in A dust masses, suggesting that efficient dust formation and dust content in galaxies, including G thosewiththehighestmeasuredredshifts,dependsensitivelyontheISMdensity,ratherthan onlyonmetallicity. . h p Keywords: ISM:abundances—ISM:evolution—galaxies:starburst—galaxies:dwarf— - galaxies:evolution—galaxies:individual:SBS0335-052—galaxies:individual:IZw18 o r t s a [ 1 INTRODUCTION (e.g.,Granatoetal.2000;Wolfireetal.2003;Gnedinetal.2009; 1 Krumholzetal.2009b).IntheISMmodels,thisassumptionisdi- Thedustcontentingalaxiesisintimatelylinkedtotheirevolution- v rectlyrelatedtothecapabilityofthegastoself-shieldfromintense ary history. Nevertheless, the mass of the dust in the interstellar 6 ultravioletradiation,andisthuscrucialfortheformationofH . medium(ISM),anditsratiowiththegasmass(dust-to-gasratio, 2 8 However, new results with Herschel and ALMA challenge DGR),arecriticalparametersforestablishingtheevolutionarystate 6 the assumption of a direct (linear) correspondence of the DGR 1 ofagalaxy.However,thecomplexinterplaybetweendustdestruc- withmetalabundance.BasedondustmassescalculatedwithHer- 0 tionanddustformationmechanisms(e.g.,Dwek1998;Bianchi& . Schneider 2007; Jones & Nuth 2011), makes it difficult to infer schel data from the Dwarf Galaxy Survey (Madden et al. 2013), 1 Re´my-Ruyeretal.(2014)foundthattheDGRislinearlypropor- evolutionarytrendsfromdustalone. 0 tional to O/H only to 12+log(O/H)∼8 (20%Z ); at lower metal- Another signature of evolutionary status is a galaxy’s metal (cid:12) 6 licitiesthedependenceofDGRissteeper,implyingrelativelyless 1 abundance,generallyquantifiedbythenebularabundanceofoxy- : gen, O/H. Although dust grains consist mainly of metals, grains dust(ormoregas)atlowerabundances.ByincludingnewALMA v data at 870µm, Hunt et al. (2014, hereafter H14) derive vastly are not the dominant contributor to the metal budget of galaxies i different DGRs even at the same metallicity, in particular for the X (Peeplesetal.2014).Nevertheless,themetalsindustandthemet- twomostmetal-poorstar-forminggalaxiesintheLocalUniverse, alsingasareexpectedtobecoupledthroughtheISMenergycycle, r SBS0335−052 and IZw18, both at ∼3%Z . As shown in Fig. 1 a andmuchworkhasbeenfocusedoncomparingdustcontentwith (cid:12) metallicity.Indeed,theDGRandO/Hseemtobefairlywellcor- (adaptedfromHuntetal.2014,seealsoSects.2.1–2.3)theDGRs ofthesetwogalaxiesdifferbyalmosttwoordersofmagnitude,de- relatedbothintheMilkyWayandinnearbystar-forminggalaxies. spitetheirsimilarmetallicity. Observations of the DGR compared with the gas-phase metallic- itysuggestapproximatelinearitybetweenthetwo(e.g.,Issaetal. In this paper, we examine possible reasons for this dramatic 1990;Schmidt&Boller1993;Draineetal.2007),atrendwhich differenceindustcontentatsimilarmetallicityinthesetwogalax- is generally true even for gradients of the DGR within galaxies, ies.WefirstdiscusstheirbasicpropertiesinSect.2.Then,inSect. whichtendtofollowtheradialchangesinmetallicity(e.g.,Mun˜oz- 3, we explore the origin of the observed dust in SBS0335−052 Mateosetal.2009;Magrinietal.2011).Sincetheseminalworkby andIZw18usingasemi-analyticchemicalevolutionmodelwith Dwek (1998), many galaxy evolution models and models of the dust.ThemodelhasbeenfirstintroducedbyValianteetal.(2009) ISM now assume that dust content is proportional to metallicity andthenappliedbyValianteetal.(2011,2012,2014)anddeBen- nassutietal.(2014)withinthecontextofahierarchicalmodelfor theevolutionofcosmicstructures,aspredictedbytheconcordance (cid:63) E-mail:raff[email protected] ΛCDMmodel.Herewedonotinvestigatethehierarchicalevolu- (cid:13)c 2015RAS 2 RaffaellaSchneider,LeslieHuntandRosaValiante tionofSBS0335−052andIZw18,butratherlimitthediscussion totheirchemicalevolutionassumingthattheyevolveinisolation withaconstantstarformationrate(SFR)1.Below,weonlybriefly describethemodel,referringinterestedreaderstotheabovepapers foramoredetaileddescription.Wediscussimplicationsofourre- sults for high-redshift dust formation in star-forming galaxies in Sect.4,andourconclusionsaregiveninSect.5. 2 OBSERVEDPROPERTIESOFIZw18AND SBS0335−052 Theobservedpropertiesofthetwometal-poordwarfgalaxiesthat wehaveadoptedforouranalysisarepresentedinTable1.Theob- servationaldataandthemethodsusedtoinferthephysicalproper- tieslistedinthetablehavebeenthoroughlydescribedinH14and references therein (see in particular Tables 1 and 3 in H14). H14 analyzeddustandgassurfacedensitiesanddidnotincludeionized gas.Herewerevisetheestimatesofgasmassesinbothgalaxiesrel- Figure 1. Dust-to-gas mass ratios (DGRs) as a function of metallicity. ativetoH14inordertotakeintoaccounttheionizedgascomponent Filled (blue) circles show DGRs inferred from the total gas mass of andthespatialextentofcooldustemission.Thevaluesobtainedfor SBS0335−052andIZw18,includingionizedgas,atomicand(putative,as theindividualISMcomponentsandthetotalgasmassesaregiven yetundetected)moleculargas;opencirclesgiveDGRsincludingonlythe ionizedandatomicgascomponents.GalaxiesfromGalametzetal.(2011) inTable1andshowngraphicallyinFig.1. areshownas(green)openstars,thosefromDraineetal.(2007)as(red) crosses,andfromLeroyetal.(2011)as(magenta)opencircles.Theshort dashedlineisthelinearpredictionbyDraineetal.(2007),andthevertical 2.1 Atomicgasmasses dottedlineillustratessolarmetallicity12+log(O/H)=8.69(Asplundetal. Both IZw18 and SBS0335−052 are embedded in vast Hi en- 2009).Thelongdashedline(startingat12+log(O/H)=8.0)istheempirical velopes which include other galaxies or galaxy components. fitgivenbyRe´my-Ruyeretal.(2014)forlowmetallicities. SBS0335−052hasawesterncomponentSBS0335−052Watadis- tance of ∼22kpc within a 64kpc Hi cloud (Pustilnik et al. 2001; Ektaetal.2009);IZw18(mainbody)liesabout2kpcawayfrom 2.2 Ionizedgasmasses the “C” component, or Zwicky’s flare, within a diffuse Hi cloud extending over ∼19kpc (van Zee et al. 1998; Lelli et al. 2012). In low-metallicity star-forming galaxies such as IZw18 and ThusitisdifficulttodetermineexactlywheretheHiofthegalaxy SBS0335−052,ionizedgasconstitutesanimportantpartoftheto- ends,andthemoreextendedHienvelopebegins.Thelargebeams tal gas mass budget. Hence, we have attempted to determine the withwhichHiistypicallyobservedexacerbatetheproblem,both massoftheionizedcomponentinthetwogalaxies. becauseofbeamdilutionwhichcausesHisurfacedensitytobeun- Radio continuum observations of the free-free emission of derestimated,butalsobecausethetinydimensionsofthegalaxies ionizedgasgiveemissionmeasures,andthusmeandensitiesand comparedwiththeirHienvelopemakeitdifficulttoassesstheHi sourcesize.TheradiospectrumforIZw18isflat,consistentwith contentofthegalaxyitself. optically thin emission (Cannon et al. 2005; Hunt et al. 2005b), Because our interest here is in dust production, and in the while that of SBS0335−052 falls at low frequency, indicative of cool gas reservoir that provides the fuel for star formation, we free-free absorption and consequently high ionized-gas density have taken Hi surface densities from the highest-resolution ob- (Hunt et al. 2004; Johnson et al. 2009). As discussed in detail in servations available (as in H14), and calculated Hi mass over the Sect. 2.6, the density of ionized gas in IZw18 is ∼5cm−3, and opticalextentofthegalaxyasdeterminedfrom(V-band)surface- ∼3200cm−3 inSBS0335−052,correspondingtoemittingregions brightnessprofiles.TheV-bandbrightnessprofileofIZw18falls of∼390pcradiusforIZw18(Huntetal.2005b)and∼7.7pcra- to 25magarcsec−2 at a radius of ∼8arcsec (700pc, Hunt et al. diusforSBS0335−052(Johnsonetal.2009). 2003), and a radius ∼3(cid:48).(cid:48)2 for SBS0335−052 (838pc, Thuan et Becauseionizedgastendstobeclumped(Kassimetal.1989; al. 1997). With mean Hi surface densities Σ =56M pc−2 for Kennicutt1984;Zaritskyetal.1994;Martin1997;Giammancoet HI (cid:12) SBS0335−052(Thuan&Izotov1997)and64M pc−2forIZw18 al. 2004; Cormier et al. 2012; Lebouteiller et al. 2012), we need (cid:12) (Lellietal.2012),wethusestimatetotalHimassesof3.1×107M to estimate a volume filling factor over the optical extent of the (cid:12) and2.5×107M forSBS0335−052andIZw18,respectively.The galaxy. We have done this by comparing the source size inferred (cid:12) HimassforSBS0335−052isabout10timeslowerthanthetotal fromtheradioemissionmeasuretotheopticalsize(seeSect.2.1), HimassbyEktaetal.(2009)ina40arcsecbeam(about6times assumingasphericalgeometryfortheHiiregion.Thiscomparison larger than the optical extent of the galaxy), and ∼4 times lower gives a volume filling factor of 0.17 for IZw18 and ∼ 10−6 for thanthetotalforIZw18givenbyLellietal.(2012).Usingtheto- SBS0335−052.AlthoughthevalueforIZw18iswithinthoseob- talHimassesfromtheliteraturewouldlowertheresultingDGRby servedforlocalHiiregions(e.g.,Kassimetal.1989),thevaluefor roughlytheseamounts(e.g.,Re´my-Ruyeretal.2014). SBS0335−052isextremelylow.Thiscouldbeaconsequence(e.g., Giammanco et al. 2004) of the optically thick gas in this galaxy asindicatedbytheradiospectrum,soforSBS0335−052wehave 1 Thisassumptionisalmostcertainlyinexact,butprovidesabenchmark used conservatively a filling factor of 3×10−4, roughly the low- forourassessmentofconsistencywithobservations. estvaluefoundbyMartin(1997).Withthesedensitiesandfilling (cid:13)c 2015RAS,MNRAS000,1–10 Thedustcontentofthemostmetal-poorgalaxies 3 factors, and the optical size of the galaxy as for Hi, we estimate is70%ofthatfoundbyH14;compensatingforthedifferencesin ionizedgasmassesof3.1×107M and5.9×107M forIZw18 dust emissivities worsens slightly the discrepancy to ∼65%. This (cid:12) (cid:12) and SBS0335−052, respectively. The mass of the ionized gas is valueisalsoafactorof2belowthelowerlimitoftherangeofdust comparabletothatoftheatomicgasinbothgalaxies. massestimatedforIZw18byFisheretal.(2014)whousemod- If, instead of the radio-determined value of 3200cm−3, we elsbyDraine&Li(2007),evenaftercompensatingforthediffer- considertheionizedgasdensityof500cm−3forSBS0335−052in- entemissivitiesadoptedbythetwogroups.Morephysicallyrealis- ferredfromtheoptical[Sii]lines(Izotovetal.1999),andalarger ticmodelswhichcontemplatedusttemperaturegradientsthrough fillingfactorof10−3,wewouldestimateanionizedgasdensityof variationsintheinterstellarradiationfieldthatheatsthedusttend 3×107M ,50%ofourformerestimate.Thiscanbeconsideredas togivelargerdustmassesthansingle-temperatureMBBfits. (cid:12) aroughmeasureoftheuncertaintyinherentinthiscalculation. ForSBS0335−052,Izotovetal.(2014)findacolddustmass ofdex3.06M ,roughlyafactorof30belowH14.However,they (cid:12) estimate a “cold” temperature of 57K, very close to the temper- 2.3 Moleculargasmasses ature of 59K discussed by H14 under the assumption of single- temperaturedust,andthusdonottakeintoaccountanycooldust. CO emission has never been detected in either galaxy; thus it Moreover, the dust in SBS0335−052 is optically thick at short is difficult to measure H masses, independently of the unknown 2 wavelengths(Thuanetal.1999;Plante&Sauvage2002;Houcket COluminosity-to-H massconversionfactorα .Thus,H14mea- 2 CO al.2004;Huntetal.2005a,2014);thustheassumptionofoptically sured the distance from the gas scaling relations in order to esti- thindustemissionimplicitinMBBfittingisincorrect. matethemissing(undetected)H2gassurfacedensity(formorede- ThedifferencesfoundindustmassesforSBS0335−052and tails,seeH14).UsingthedensitiesfromH14(ΣH2=94M(cid:12)pc−2and IZw18 of roughly a factor of 100 are consistent with the differ- Σ =342M pc−2, for IZw18 and SBS0335−052, respectively) H2 (cid:12) ences in their integrated IR luminosity: L for SBS0335−052 is andtheopticalsizeofthegalaxyasabove,weinferH2massesfor 1.6×109L ,whileforIZw18L =2×107IRL .Assumingthesame IZw18andSBS0335−052of3.6×107M and1.9×108M ,re- (cid:12) IR (cid:12) (cid:12) (cid:12) mass-to-lightratio(similaroverallmeantemperatures)forthedust, spectively.Thesemassesarehighlyuncertain,andassumethatSFR thiswouldgiveafactorof80industmass,inconsistentwiththe surfacedensityatlowmetallicityfollowsthesamescalingrelations differencefoundbyIzotovetal.(2014)ofroughlyafactorof5for asmoremetal-enrichedgalaxies. thecolddustmassesinthetwogalaxies.Thisillustratesoneofthe difficultiesoftheMBBapproachadoptedbyIzotovetal.(2014); they use two temperatures and thus apply two different mass-to- 2.4 Dustmassesandcomparisonwithpreviouswork light ratios (roughly inverse temperature) to the two IR integrals. DustmassesforSBS0335−052andIZw18weremeasuredbyH14 Asmentionedabove,ingalaxieslikeSBS0335−052andIZw18 by fitting the optical-to-mm spectral energy distributions (SEDs) most of the dust emission comes from warm dust, while most of withsphericalDUSTYmodels(Ivezic&Elitzur1997).Threedif- thedustmassiscold. ferent grain populations were included for determination of the More emissive grain mixtures, as suggested by Jones et al. best-fitmodel(formoredetailsseeH14).Theresultingdustmasses (2013), would decrease the inferred dust mass by a factor 3- forbothgalaxiesdifferfromthosemeasuredbyothergroups(e.g., 4 in both galaxies. A comparable reduction of the dust mass of Re´my-Ruyer et al. 2013; Fisher et al. 2014; Re´my-Ruyer et al. SBS0335−052 (∼ 9×103M(cid:12)) would be obtained by artificially 2014; Izotov et al. 2014). H14 discussed differences relative to imposingalow870µmdustflux(1σbelowthereportedH14flux). Re´my-Ruyer et al. (2013) for SBS0335−052 and Fisher et al. Wewilldiscusstheimplicationofthisreductionindustmass (2014) for IZw18; here we compare our measurements to more forourresultsinSect.3. recentworkalthoughweareunabletocompareourdust-massesti- Figure1showstheDGRsofIZw18andSBS0335−052,to- mateswithRe´my-Ruyeretal.(2014)becausethereisnotabulation getherwithsamplesofgalaxiestakenfromtheliterature(withdust oftheirdustmasses. massesobtainedthroughSEDfittingratherthanMBBapproxima- Izotov et al. (2014) use a multiple-temperature modified tions).Becausethedust-massestimatesforthesesamplesarebased blackbody (MBB) approach, and fix the emissivity index for all ontheDraine&Li(2007)models,thedustemissivitiesarecom- components. However, they only discuss the warm and cold dust parableamongthesamples.Figure1alsoshowsthesteeper-than- (not the hot) because, as they note, the hot dust (for λ < 10µm) linearslopefoundbyRe´my-Ruyeretal.(2014)forgalaxieswith is not in thermal equilibrium. Considering their two-component oxygenabundance12+log(O/H)(cid:46)8.0.TheDGRofSBS0335−052 fits,theSEDsshownintheirFig.6almostneverpassthroughthe is roughly consistent with a linear slope of DGR with O/H (e.g., longerwavelengthpoints.Thisisaconsequenceoftheassumption Draineetal.2007),whileIZw18followsthesteeperslopefound ofsingle-temperatureMBBs,andisexpectedtobiasdust-massesti- byRe´my-Ruyeretal.(2014). matestowardlowermasses.Althoughseeminglyasmalldeviation, the constraints offered by longer wavelengths significantly raise 2.5 Stellarmasses,stellarages,andSFR dust mass estimates, especially at low metallicity (e.g., Galametz et al. 2011).It is well known thatincluding short wavelengths in Stellar masses in star-forming dwarf galaxies such as asingle-temperatureMBBfitgivesunrealisticallylowdustmasses SBS0335−052 and IZw18 are notoriously difficult to deter- becausethemeantemperatureofthedustradiatingattheseshort mine. The main problem is contamination by nebular continuum wavelengthsishigherthanthebulkofthecoolerdustwhichdomi- emission which affects both the optical (e.g., Reines et al. 2008, natesthemass.Thewarmdustdominatesthelightbutthecooldust 2010; Adamo et al. 2010) and the near-infrared emission (e.g., dominatesthemassandasingletemperature(oreventwotemper- Smith&Hancock2009;Huntetal.2012).InSBS0335−052,the atures as in Izotov et al. 2014) are not able to accommodate the contamination from free-free emission at 3.4µm is 27% (Hunt temperaturegradients. et al. 2001) and ∼50% at 2.2µm (Vanzi et al. 2000); even more Thecold-dustmassfoundbyIzotovetal.(2014)forIZw18 extreme contamination is observed in IZw18, with >50% of the (cid:13)c 2015RAS,MNRAS000,1–10 4 RaffaellaSchneider,LeslieHuntandRosaValiante Table1.Adoptedphysicalpropertiesofthetwogalaxies.TheSFRvaluesarefromradio-continuumSEDfitting.Thestellaragesarethemeanvaluesofstellar clustersandthestellarmasseshavebeenderivedintegratingtheSFRoverthemeanages(seetext).ThevaluesinparenthesescorrespondtothosefromDUSTY SEDfitting(stellarmass,stellarage,metallicity,dustmass)andtoaconstantSFRinferredfromtheDUSTYSEDbest-fitstellarmassandages. Name Distance Gas Mgas Mstar SFR Age 12+ Z Mdust nmol Tmol (Mpc) Component (107M(cid:12)) (106M(cid:12)) (M(cid:12)yr−1) (Myr) Log(O/H)a (10−2Z(cid:12)) (102M(cid:12)) (cm−3) (K) IZw18 18.2 Ionized 3.07 Atomic 2.46 Molecularb 3.62 Total 9.15 1.02(1.82) 0.17(0.10) 6(18.3) 7.18 3.09(2) (3.4±1) 100 10 SBS0335−052 54.1 Ionized 5.85 Atomic 3.09 Molecularb 18.9 Total 27.8 7.92(23.5) 1.32(1.79) 6(13.1) 7.27 3.80(2) (3.8±0.6)×102 1500 80 aAveragestakenfromIzotovetal.(1999). bH2surfacedensitiesinferredbyH14fromgasscalingrelations,notdirectlydetected.Seetextformoredetails. IRAC 4.5µm flux due to nebular emission (Hunt et al. 2012). showthestellarmass-lifetimerelationforstarswithinitialmetal- Hotdustisalsoaproblem,especiallyinSBS0335−052whereit licityZ/Z =0.03,usingtheRaiterietal.(1996)formulation.The (cid:12) comprises ∼67% of its 4µm emission (Hunt et al. 2001). While shadedregionsillustratetherangesofstellarmassesthatcontribute nebularcontinuumlevelscanbeestimatedfromSFRs(e.g.,Smith tometalenrichmentbymeansofcore-collapseSNexplosionsand & Hancock 2009; Hunt et al. 2012), it is difficult to ascertain stellarwindsfromintermediatemassstars.Theverticalgreylines hot-dust levels without detailed multi-wavelength photometry. indicatethevaluesofstellaragesshowninthetable(dashedlines Thus stellar masses of low-metallicity dwarf starbursts such as aretheDUSTYstellarages).Thefigureshowsthatpartofthemet- SBS0335−052andIZw18arepronetolargeuncertainties. alsanddustthatwepresentlyobservemayhaveoriginatedinsitu, Table1reportsinparenthesesthevaluesofstellarmass,M , fromsupernovaexplosions(self-enrichmentscenario).However,if star and age inferred from DUSTY SED fitting (H14), and SFRs that weadoptthemeanageofthestellarclusters(solidline),onlythe correspond to the constant values needed to produce the DUSTY mostmassivesupernovaewith34M(cid:12)(cid:54) m (cid:54)40M(cid:12) haveevolved SED best-fit M when integrated over the best-fit age. However, to their metal production stage. Hence the ISM of the galaxies star forouranalysis,werequireameanageforthestellarpopulations must have achieved most of its metal content prior to the cur- producingthedustcurrentlyobserved.Ameanageofstellarclus- rentstar-formationepisode(pre-enrichmentscenario).If,instead, tersof6MyrhasbeencalculatedbyaveragingvaluesfromRecchi thestellarpopulationageforSBS0335−052 (IZw18)is13.1Myr et al. (2002) and Hunt et al. (2003) for IZw18 and from Reines (18.3Myr),asinferredfromDUSTYSEDfit,thenthemassrange etal.(2008)forSBS0335−052.Thus,wehavealsocomputedthe of the stars that can contribute to the ISM enrichment extends to stellarmassaccumulatedoverthetimespanofthemeanagesofthe 16M(cid:12)(cid:54) m (cid:54)40M(cid:12) (13M(cid:12)(cid:54) m (cid:54)40M(cid:12)). clustersataconstantrategivenbytheobservedvaluesofSFRde- Fig.3quantifiesthisdifferenceintermsofthemassofmetals rivedfromradiofree-freeemission(Huntetal.2005b;Johnsonet anddustthatcanbeproducedbyself-enrichment.Itshowsthat– al.2009).Allthesevalues(notinparentheses)arealsoreportedin dependingontheadoptedstellarage–themassfractionofmetals Table1. (dust)relativetothestellarmassisintherange1.5×10−3 (cid:54)YZ (cid:54) 7×10−3(3.26×10−6(cid:54)Y (cid:54)6.2×10−5)forSBS0335−052 andin The resulting M values are within 40% of previous es- d star therange1.5×10−3 (cid:54)Y (cid:54)7.9×10−3(3.26×10−6 (cid:54)Y (cid:54)8.6× timates obtained by fitting the optical-NIR SEDs of individual Z d 10−5)forIZw18.Usingthecorrespondingstellarmassesreported starclusterswithsinglestellarpopulationmodels(SBS0335−052: inTable1,wefindthat–evenassumingthatallthenewlyformed 5.6×106M ,IZw18:7.0×105M ,Reinesetal.2008;Fumagalli (cid:12) (cid:12) dustinjectedintheISMisconserved–thedustmassproducedby etal.2010,respectively). self-enrichment is always smaller than observed, being 26M (cid:54) (cid:12) Only if age priors (3-6Myr) are imposed for the fit are the M (cid:54) 1460M for SBS0335−052 and 3M (cid:54) M (cid:54) 157M d (cid:12) (cid:12) d (cid:12) DUSTYstellarmassesobtainedbyH14consistentwiththesevalues forIZw18.Asexplainedbelow,thesevalueshavebeenobtained forSBS0335−052.ThereisasimilardiscrepancyfortheDUSTY usingthedustandmetalyieldspresentedbyValianteetal.(2009) stellar mass of IZw18 at an age of 18.3Myr, almost a factor 2 andassumingthatthestarsformataconstantratewithaSalpeter largerthanthevalueobtainedwithaconstantSFRof0.17M(cid:12)yr−1. Initial Mass Function (IMF) in a mass range 0.1M (cid:54) m (cid:54) 100 (cid:12) Partofthereasonforthisisthat,atagivenluminosity,themass- M withametallicityofZ=0.03Z . (cid:12) (cid:12) to-lightratiosaresmallerforyoungerstellarpopulations(seeH14 fordetails).Anotherreasonisthatthereisanagegradientinboth galaxies,andtheSEDfittingreliesonglobalphotometrythaten- 2.6 Coldgasdensitiesandtemperatures compasses both young and old clusters. In SBS0335−052, the northernsuper-starclusters(SSCs)areolderwithamaximumage Theremainingquantitiesrequiredforourmodelsarethemeanden- of∼12Myr,comparedto(cid:46)3Myrforthesouthernones(Reineset sityandtemperatureofthecoldneutralmedium(CNM)andmolec- al.2008;Adamoetal.2010);inIZw18,theSEclusterandCcom- ularcloudsinwhichdustgrainsformandgrowbyaccretion(see ponent are older (∼ 10−15Myr) compared to the younger NW Sect.3).Wecanderivethenumberdensitiesofthemolecularphase cluster(∼3Myr,Huntetal.2003). byassumingthermalpressurebalanceattheatomic-molecularin- Such a difference in the stellar ages can have important im- terface (e.g., Krumholz et al. 2009a). Observationally and from plications for the chemical evolution of the system. In Fig. 2 we a theoretical point of view, the mean number density of molecu- (cid:13)c 2015RAS,MNRAS000,1–10 Thedustcontentofthemostmetal-poorgalaxies 5 firstconsideringtheobservedHicolumndensities2:7×1021cm−2 and 4.8×1021cm−2 for SBS0335−052 and IZw18, respectively (Thuan&Izotov1997;Lellietal.2012).Thesecanbeconverted to mean volume densities over the regions of interest (the area subtendedbythemassivestarclusters)byconsideringthediame- tersofthestar-formingregion:∼15.8pcforSBS0335−052(John- son et al. 2009) and ∼170pc for IZw18 (Cannon et al. 2002; Hunt & Hirashita 2009). We thus obtain a mean molecular den- sity (cid:104)n (cid:105)∼1435cm−3 and (cid:104)n (cid:105)∼91cm−3 for SBS0335−052 mol mol andIZw18,respectively. Despite the similar metallicities of the two galaxies, the in- ferred molecular densities differ by more than an order of mag- nitude.Nevertheless,theseestimatesareroughlyconsistent,given the uncertainties, with the densities that would be inferred from theputative(unobserved)molecularcomponentdiscussedbyH14. Assuming that the Kennicutt-Schmidt law relating gas and star- formationsurfacedensitiesholdsalsoforthesetwogalaxies,and withthesamesizesasabove,wewouldderive(cid:104)n (cid:105)∼1800cm−3 mol for SBS0335−052 and (cid:104)n (cid:105)∼40cm−3 for IZw18. The radio mol spectrum also shows evidence for such a difference in gas densi- tiesinthetwogalaxies.WhileinSBS0335−052thereistheclear Figure2.Thedependenceofthestellarlifetimeontheinitialstellarmass signatureofastronglyabsorbedthermalcomponent,bothglobally forstarswithmetallicityZ/Z(cid:12)=0.03(solidblackline).Theorangeandblue (Huntetal.2004)andaroundtheindividualsouthernSSCs(John- regionsindicatetheprogenitormassrangesofcore-collapseSNandAGB sonetal.2009),IZw18showsatypicalflatbremßtrahlungspec- stars,respectively.Thesolidanddashedverticallinesindicatetheestimated trum(Huntetal.2005b).Basedonfitsoftheradiospectrum,the stellaragesforthetwogalaxies,basedonindividualsuperstellarclusters ionized-gasdensitiesinferredforthetwoobjectsare∼3200cm−3 fitsandonDUSTYSEDfits,respectively(seetext). forSBS0335−052(Johnsonetal.2009),and<10cm−3forIZw18 (Hunt et al. 2005b). Finally, even the optical spectra of the two objects show a large difference in the densities measured from the [Sii] lines: (cid:38)500cm−3 for SBS0335−052 and (cid:46)100cm−3 for IZw18(Izotovetal.1999).Giventheuncertaintiesintheabovees- timates,inwhatfollowswetakethereferencevaluesof1500cm−3 and100cm−3forthemoleculargasdensitiesinSBS0335−052and IZw18,respectively. Following Krumholz et al. (2009a), we can use the temperature-densityrelationfortheCNMpredictedbyWolfireet al. (2003) ISM model3 to find T and then derive the temper- CNM ature of the molecular gas implied by thermal pressure balance, T =1.8T /φ .Theresultingvaluesforthetwogalaxiesare mol CNM mol showninTable1. 3 THECHEMICALEVOLUTIONMODEL The equations describing the chemical evolution of a galaxy that evolves in isolation (closed-box approximation), can be summa- rizedasfollows: M˙ (t)=SFR(t)−R˙(t), (1) star M˙ (t)=−SFR(t)+R˙(t) (2) ISM Figure3.Themassfractionofmetals(darkgreen)anddust(red)relative M˙Z(t)=−ZISM(t)SFR(t)+Y˙Z(t) (3) tothemassofstarsasafunctionofthestellarage.Thesolidanddashed verticallinesindicatetheestimatedstellaragesforthetwogalaxies,based M˙d(t) = −Zd(t)SFR(t)+Y˙d(t) (4) onindividualsuperstellarclustersfitsandonDUSTYSEDfits,respectively M (t) M (t) −(1−X ) d +X d (seetext). c τ c τ d acc 2 We have considered regions of similar size, constrained by requiring a similar physical resolution of the Hi observations: ∼524pc (2(cid:48)(cid:48)) for SBS0335−052and∼436pc(5(cid:48)(cid:48))forIZw18. lar clouds, (cid:104)nmol(cid:105), is expected to be φmol ∼ 10 times that in the 3 WehaveconsideredthemostgeneralexpressionfortheCNMtempera- CNM of the ISM: (cid:104)nmol(cid:105)=φmol(cid:104)nCNM(cid:105). We can therefore calcu- ture,whichtakesintoaccountthevastlydifferentDGRsforthesetwogalax- lateapproximatevaluesofnmol inSBS0335−052andIZw18by ies. (cid:13)c 2015RAS,MNRAS000,1–10 6 RaffaellaSchneider,LeslieHuntandRosaValiante where M isthestellarmass, M isthetotalmassintheISM Belowweapplythechemicalevolutionmodeltoeachofthe star ISM (the sum of the gas and dust masses), M is the total mass in two galaxies under investigation. Throughout the following, we Z heavy elements (both in the gas phase and in dust grains), M is adoptasolarmetallicityofZ =0.0134(Asplundetal.2009). d (cid:12) thedustmass(sothatthemassofgasphaseelementsisgivenby M = M −M ),Z (t)= M (t)/M (t)istheISMmetallicity, met Z d ISM Z ISM andZ (t) = M (t)/M (t)isthetotaldustabundanceintheISM. 3.1 SBS0335−052 d d ISM ThetermsR˙(t),Y˙Z(t)andY˙d(t)aretheratesatwhichthemassof The observed mass of metals in SBS0335−052 is Mmet(tobs) = gas, heavy elements and dust is returned to the ISM after stellar ZM (t )=[4.53×104 − 1.41×105] M (thelowerlimitcorre- gas obs (cid:12) evolution,respectively.Thesetime-dependenttermsdependonthe spondstopureatomicgasandtheupperonetothetotalgasmass, adoptedmodelgridsandstellarIMF.Wecomputethemasfollows: seeTable1).TheobserveddustmassisM (t )=3.8×104M . dust obs (cid:12) R˙(t)=(cid:90) mup(m−mr(m,Z))Φ(m)SFR(t−τm)dm, (5) 8H.e3n3c×e,1t0h4eMto(cid:12)ttaol1m.7a9ss×i1n05heMav(cid:12).yAesledmesecnrtisbeMdZin(toSbes)ct.ra2n,gthesemfroaxm- m(t) imumdustmassthatcanbeproducedbyself-enrichmentfromob- (cid:90) mup served stellar populations in SBS0335−052 is ∼ 1.5×103M , Y˙ (t)= m (m,Z)Φ(m)SFR(t−τ )dm, (6) (cid:12) Z Z m ∼25timeslowerthantheestimateddustmassreportedinTable1 m(t) (Hunt et al. 2014) and ∼ 50% lower than the lowest limit on the (cid:90) mup Y˙ (t)= m (m,Z)Φ(m)SFR(t−τ )dm, (7) dustmassreportedbyThuanetal.(1999).Itisthereforeunlikely d d m m(t) thattheoriginofthedustinSBS0335−052isself-enrichment.In fact,thesamestarsresponsibleformetalpre-enrichmentmayhave wherethelowerlimitofintegration,m(t),isthemassofastarwith alifetimeτ =t;m,m ,andm arerespectivelytheremnantmass, alsoformeddust.Alternatively,thedustmassmayhaveformedin m r Z d situbymeansofgraingrowth.Weexamineeachofthesetwopos- themetalanddustmassyields,whichdependonthestellarmass andmetallicity;andΦ(m)isthestellarIMF,whichweassumeto sibilitiesinturn. be a Salpeter law in the mass range 0.1M (cid:54) m (cid:54)100M (e.g., We first assume that the stars observed in SBS0335−052, (cid:12) (cid:12) with a total mass of M = 7.92 × 106M , have a mean age Valiante et al. 2009). For stars with m < 8M , we adopt metal star (cid:12) (cid:12) of 6 Myr and have formed at a constant rate of 1.32M /yr with yieldsfromvandenHoek&Groenewegen(1997)anddustyields (cid:12) a Salpeter IMF (see the values in Table 1). Under these condi- forintermediate-massstarsontheAGBphaseoftheevolutionby tions, only stars with masses m (cid:62) 34M had the time to evolve Zhukovskaetal.(2008).Formassivestars(12M < m <40M ) (cid:12) (cid:12) (cid:12) andthetotalmassofheavyelementsanddustinjectedintheISM metal and dust yields have been taken from Woosley & Weaver bySNeis1.18×104M and25.8M ,respectively,muchsmaller (1995) and from Bianchi & Schneider (2007), using the proper (cid:12) (cid:12) mass-andmetallicity-dependentvaluesandincludingtheeffectof than observed. From eq. (3), we can estimate the mass of met- als that was originally present in SBS0335−052, M (t ), where thereverseshockondustsurvivalinSNejecta.Forstarsinthein- Z ini termediatemassrange8M (cid:54) m (cid:54)12 M ,weinterpolatebetween tini = tobs −6Myr. This is equal to the mass presently observed, (cid:12) (cid:12) correctedforastrationandself-enrichment, theAGByieldsforthelargest-massprogenitorandSNyieldsfrom thelowest-massprogenitor.Above40M(cid:12),starsareassumedtocol- M (t )=M (t )−(cid:90) tobsdt (cid:104)−Z (t)SFR(t)+Y˙ (t)(cid:105), (11) lapse to black hole without contributing to the enrichment of the Z ini Z obs ISM Z tini ISM. Finally, the last two terms in the right-hand side of eq. (4) representtheeffectsofdustdestructionbyinterstellarshockwaves andwefindMZ(tini)∼1.79×105M(cid:12).AssumingtheSalpeterIMF- andgraingrowthinthedensephaseoftheISM.Herewesimplify averageddustandmetalyieldsforafully-evolvedstellarpopulation the treatment of the two-phase ISM model described in de Ben- withametallicityZ = 0.03Z(cid:12) (YZ = 1.43×10−2 andYd = 4.6× nassutietal.(2014),andquantifythefractionofISMinthecold 10−4),themaximummassofdustthatSBS0335−052couldhave phase with the parameter X . This is taken to be time-dependent achievedbypre-enrichmentcanbeestimatedas c andrescaledfromtheSFR, Y M (t )= d M (t )∼5.7×103M , (12) SFR(t)= (cid:15)∗Xc(t)Mgas(t), (8) d ini YZ Z ini (cid:12) τff whichisonly∼15%oftheobservedvalue. where(cid:15) isthestarformationefficiency(Krumholzetal.2012), Wecanrepeatthesamecalculationbutassumingthattheob- ∗ servedstarsinSBS0335−052 haveameanageof13.1Myr,ato- τff = (cid:114) 3π (9) taalcostnesltlaanrtmSaFsRs ooffM1.s7ta9rM= /2y.r35w×ith10a7SMal(cid:12)peatnedr IhMavFe(fsoeremtehdewviatlh- 64Gm <n > (cid:12) H mol ues in parenthesis in Table 1). In this case, newly formed stars isthefree-falltimescaleatthemeandensityofmolecularclouds< withmassesm(cid:62)16M produce1.65×105M ofheavyelements (cid:12) (cid:12) ρmol>∼2mH <nmol>.Finally,thetimescaleforgraindestruction, and 1460M(cid:12) of dust, too small to account for the observed dust τd and grain growth τacc are computed as in de Bennassuti et al. mass. Using eq. (11), we find that the mass of heavy elements (2014).Thelattertimescaledependsonthegasphasemetallicity, achieved by means of pre-enrichment at t = t −13.1Myr is ini obs temperatureanddensityofmolecularclouds, M (t ) ∼ 1.56×105M ,whichcorrespondstoamaximumdust Z ini (cid:12) (cid:18) n (cid:19)−1(cid:18)T (cid:19)−1/2(cid:18) Z (cid:19)−1 massofMd(tini)∼5×103M(cid:12)(fromeq.12),∼13%oftheobserved τ =20Myr× mol mol (10) value. acc 100cm−3 50K Z (cid:12) ItisimportanttostressthattheabovevaluesofM (t )should d ini wherewehaveassumedthatgrainswhichexperiencegraingrowth be regarded as upper mass limits. In fact, if we were to consider haveatypicalsizeof∼0.1µm(Hirashita&Voshchinnikov2014). only the atomic gas rather than the total (including the putative Ifn =103cm−3andT =50K,theaccretiontimescaleforgas molecularcomponent),thedustmassesallowedbypre-enrichment mol mol atsolarmetallicityisonly2 Myr(Asanoetal.2013). would be even lower, (cid:46) 10% in both cases. Moreover, eq. (12) (cid:13)c 2015RAS,MNRAS000,1–10 Thedustcontentofthemostmetal-poorgalaxies 7 Y is based on the implicit assumption that all the dust produced by M (t ) = d M (t )∼(0.62−1.23)×103M , previousstellargenerationshasbeenconservedintheISM,with- d ini YZ Z ini (cid:12) outundergoinganydestructionbyinterstellarshocks.Hence,pre- wheretheupper(lower)initialvalueshavebeenobtainedassuming enrichmentcannotaccountfortheobserveddustmasses,evenifwe astellarageof6(18.3)Myrandconsideringonlyatomicversusto- weretoconsiderafactor3-4reductionintheobserveddustmass, talgasmass.Becausetheinitialmaximumdustmassesareafactor eitherbyusingmoreemissivegrainmixtures(Jonesetal. 2013),or 2–4largerthantheobservedvalue,alloftheexistingdustmassin byartificiallyloweringtheobserved870µmdustfluxintheSED IZw18 couldoriginatefromdustpre-enrichment. (seeSect.2.4). Figure5showstheresultsofchemicalevolutionmodels.Sim- Independentlyoftheadoptedstellarages,amajorfractionof ilarlytothecaseofSBS0335−052,wesolvethesystemofequa- theexistingmassofdustinSBS0335−052musthaveformedby tions (1) - (4) in the closed-box approximation with parameters meansofgraingrowthinthedensephaseoftheISM. X and (cid:15) fixed to reproduce the mass of molecular gas compo- In Figure 4 we show the results of chemical evolution mod- c ∗ nent at t . We first fix the gas density to its observed value, els.Sinceitisimpossibletoconstraintheinitialvalueofdustmass obs (cid:104)n (cid:105)=100cm−3, and we run the model starting from the min- thatSBS0335−052hasinheritedfrompreviousstellargenerations, mol imum initial dust mass that allows the observed dust mass to be wehaveexploredtwolimitingcases:inthefirstone,wetakethe reproduced(redshadedregionbetweenthetwosolidlines).This observed gas density of (cid:104)n (cid:105)∼1500cm−3 (see Table 1) and we mol impliesastarformationefficiency1.7×10−2 (cid:54) (cid:15) (cid:54) 10−2 anda start from the minimum initial dust mass that allows the model ∗ moleculargasfractionof X = 0.39.Itisclearthatgraingrowth toreproducetheobservations(redshadedregionbetweenthetwo c isnegligibleandthattherequiredinitialdustmassissmallerwhen solid lines). This model shows that if the stellar age is 6 Myr, thestellarageis18.3Myr,duetothelargercontributiongivenby SBS0335−052muststartwiththemaximumpossibleinitialdust self-enrichment.Accordingtothisscenario,thesystemstartswith masspredictedbyeq.(12),graingrowthaccountsfor∼85%ofthe aninitialdustmassofM (t )∼[276−338]M ,andthenevolves existing dust mass, with pre-enrichment providing the remaining d ini (cid:12) veryslowly,withdustinjectedbynewly-formedstars,partlycom- ∼ 15%.Ifthestellarageis13.1Myr,duetothelongertimeavail- pensatedbygraindestructionbyinterstellarshocksandastration. able for grain growth, SBS0335−052 can start with a dust mass Asaresult,morethan∼80%oftheobserveddustmassisinherited thatis∼ 30%ofthemaximumvalueachievedbypre-enrichment frompre-enrichment,withgraingrowthmakinguptherest.Thisis andgraingrowthaccountsfor∼ 95%oftheobserveddustmass. differentfromthesolidlinesshowninFig.4,andaconsequence Inthesecondmodel(blueshadedregionbetweenthetwoshaded of the lower gas density observed in IZw18, which causes grain lines),weassumeaninitialdustmassofonly1M ,asifthechem- (cid:12) growthtobeinefficient.ThedashedlinesinFig.5showtheevolu- ical initial conditions inherited from previous stellar generations tionwhen–byconstruction–weimposegraingrowthtoprovide werenotfavourabletodustpre-enrichment.Underthispessimistic the dominant contribution to the final dust mass. In this case, we scenario,agasdensityofn =104cm−3(5×103cm−3)wouldal- mol can start from a negligible initial dust mass but the required gas lowgraingrowthtoincreasethedustmass,reachingtheobserved densitiesareintherange9.5×103cm−3(cid:54)n (cid:54)3.75×104cm−3, value in 6Myr (13.1Myr). The above results have been obtained mol valueswhicharenotsupportedbyobservationsofanyofthegas solving the system of equations (1) - (4) assuming an initial gas phases. massM (t )=M (t )+M (t )(closed-boxapproximation) gas ini gas obs star obs andfixingthefreeparametersX and(cid:15) toreproducethemassof c ∗ moleculargascomponentatt .For(cid:104)n (cid:105)∼1500cm−3 thiscon- obs mol strainsthestarformationefficiencytobe7×10−3 (cid:54)(cid:15) (cid:54)9×10−3 ∗ andthefractionofmoleculargastobeX =0.67. c Hence we conclude that, provided that a major frac- tion of the dense gas in SBS0335−052 is at densities 4 IMPLICATIONSFORHIGH-REDSHIFTGALAXIES 1.5 × 103cm−3 < n < 104cm−3, the observed dust mass mol inSBS0335−052 canbereproducedbymeansofgraingrowth. Thestrongdependenceofgraingrowthandtheassemblyofdust mass on ISM density has profound implications for early galaxy evolution.Todate,onlyonestar-forminggalaxyatz > 6,A1689- zD1withz∼7.5,hasacleardetectionofdustemission(Watsonet 3.2 IZw18 al.2015).Thisgalaxyhasa(lensing-corrected)stellarmassM ∼ star 1.7×109M , and SFR∼ 3−9M yr−1. With an estimated dust We next analyse the evolution of IZw18. The observed mass of (cid:12) (cid:12) metals and dust are M (t ) = ZM (t ) = [2.29−3.78]× mass of 4×107M(cid:12), the dust-to-stellar mass ratio for this galaxy met obs gas obs is relatively high, ∼0.02, comparable to the highest values found 104M (the lower limit corresponds to pure atomic gas and the upper(cid:12)one to the total gas mass, see Table 1) and M (t ) = for local star-forming galaxies at similar masses (e.g., Skibba et d obs al.2011).TheageofA1689-zD1isestimatedtobe∼80Myr,ata 3.4 × 102M , resulting in a total mass of heavy elements of M (t )=[2(cid:12).32−3.82]×104M .Dependingontheadoptedstellar redshiftwhentheuniversewas(cid:46)500Myrold. agZeso(b6sMyr(cid:54)t (cid:54)18.3Myr),(cid:12)between4and60%oftheobserved Despiteextensiveefforts,dustemissioninotherstar-forming age galaxiesatcomparableredshifts(z (cid:38) 7)hasnotyetbeendetected metalmasscanbeachievedbyself-enrichment,theremainingfrac- (e.g.,IOK-1,z8-GND-5296:Otaetal.2014;Schaereretal.2015). tionmusthavecomefrompreviousstellargenerations.Thesameis Thus, we predict that A1689-zD1 will be found to have a dense trueforthedustmass:evenassumingthatallthedustinjectedby ISM,andthusabletoassembleaconsiderabledustmassoverthe SNeintheISMisconserved,self-enrichmentcanproducebetween (cid:46)1and∼46%oftheexistingdustmass.Usingeqs.(11)and(12), short times available at these redshifts. Our findings suggest that dustmasscanbeasensitiveindicatorofthephysicalconditionsin theinitialmassofheavyelementsanddustcanbeestimatedtobe: theISM,andthatmetallicityaloneisinsufficienttodeterminethe M (t ) ∼ (1.93−3.82)×104M , amountofdust. Z ini (cid:12) (cid:13)c 2015RAS,MNRAS000,1–10 8 RaffaellaSchneider,LeslieHuntandRosaValiante ation in their dust content, with a dust mass of 3.8×104M in (cid:12) SBS0335−052,asinferredbyrecentALMAobservations(H14), andadustmassofonly340M inIZw18.Bymeansofachemi- (cid:12) calevolutionmodelwithdust,wefindthat: • TheobservedstellarpopulationinSBS0335−052cannotac- countfortheexistingmetalanddustmasses,hencepreviousstellar populationsmusthavepre-enrichedtheISMofthegalaxy. • Evenassumingthemaximumpossiblestellardustyields,the same stars which have pre-enriched the ISM of SBS0335−052 couldhaveinjectedadustmasswhichisatmost15%oftheob- served value. Hence, a major fraction of the observed dust mass mustoriginateinsituthroughgraingrowth. • TheobservedgasdensityofSBS0335−052islargeenoughto activateefficientgraingrowth.If(cid:104)n (cid:105)=1500cm−3,graingrowth mol canaccountformorethan85%oftheexistingdustmass,withdust pre-enrichmentmakinguptherest. • Despitethelongeragespreadestimatedforthestellarpopu- lationinIZw18,onlybetween4and60%oftheobservedmetals areproducedbyself-enrichmentthroughSNexplosionsofmassive stellar progenitors (m > 13−34M ). Hence, the metallicity has (cid:12) Figure4.ThepredictedevolutionofthedustmassinSBS0335−052 is beenmostlyinheritedbypreviousstellargenerations. comparedwiththeobservedvalue(greydatapoint).Theuppergreyshaded • DuetothesmallergasdensityofIZw18,graingrowthisvery regionindicatetherangeofvariationoftheinferredstellarages.Themax- inefficient.Sincedustinjectedbynewly-formedstarsispartlycom- imum initial dust mass achieved by pre-enrichment is illustrated by the pensatedbygraindestructionbyinterstellarshocksandastration, solid red line in the lower grey shaded region. The red region illustrate more than 80% of the existing dust mass is inherited from pre- therangeofmodelswheretheobserveddustmassisreproducedadopting enrichment,withgraingrowthmakinguptherest. (cid:104)nmol(cid:105)∼1500cm−3 tocomputethegraingrowthtimescaleandrequiring aninitialdustmassfrompre-enrichment.Theblueregionillustratemodels Since dust grains can be efficiently destroyed by interstellar wheredustpre-enrichmentisnegligibleandweadjustthedensityofdense shocks, it is very hard to predict the inital mass of dust that can gassothattheobserveddustmassisreproducedbymeansofgraingrowth beassembledbypre-enrichment.Forthisreason,wehavealsoex- (therequiredrangeofnmolisalsoshown,seetext). ploredalimitingcasewherethegalaxiesstartwithanegligibledust contentandachievealloftheirdustmassbymeansofgraingrowth. Thisrequiresthegasdensitytobelargerthaninferredfromobser- vations: 5×103cm−3 (cid:54) n (cid:54) 1×104cm−3 for SBS0335−052 mol and9.5×103cm−3(cid:54)n (cid:54) 3.75×104cm−3forIZw18.Whilefor mol SBS0335−052 n =5×103cm−3iswithinthevaluesestimated mol byJohnsonetal.(2009)fortheionizedgasdensities(seetheirTa- ble4),noobservationsforIZw18 suggestsimilarlyhighgasden- sities. However, independently of these considerations, our study suggests that the widely different dust masses in SBS0335−052 andIZw18reflectthedifferentefficienciesofgraingrowthintheir ISM,which–giventhecomparablemetallicity–islikelytoorigi- natefromthedifferentgasdensitiesofthetwogalaxies. ACKNOWLEDGMENTS We thank Luca Graziani for his insightful comments and Robert NikuttaforacarefulanalysisoftheSEDfitting.Theresearchlead- ing to these results has received funding from the European Re- search Council under the European Unions Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 306476. LHisgratefultofundingfromINAF-PRIN2012/2015. Figure5.SameasFig.4butforIZw18. 5 CONCLUSIONS REFERENCES In this paper we have investigated the origin of the observed Adamo,A.,Zackrisson,E.,O¨stlin,G.,&Hayes,M.2010,ApJ, dust masses in the two most metal-poor local dwarf galaxies, 725,1620 SBS0335−052 and IZw18. Despite their comparable metallici- Anders,E.,&Grevesse,N.1989,GeochimicaetCosmochimica ties,gasandstellarmasses,thesetwogalaxiesshowahugevari- Acta,53,197 (cid:13)c 2015RAS,MNRAS000,1–10 Thedustcontentofthemostmetal-poorgalaxies 9 Asano,R.S.,Takeuchi,T.T.,Hirashita,H.,&Inoue,A.K.2013, Lebouteiller,V.,Cormier,D.,Madden,S.C.,etal.2012,A&A, Earth,Planets,andSpace,65,213 548,A91 Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, Lelli,F.,Verheijen,M.,Fraternali,F.,&Sancisi,R.2012,A&A, ARA&A,47,481 537,AA72 Bianchi,S.,&Schneider,R.2007,MNRAS,378,973 Leroy,A.K.,Bolatto,A.,Gordon,K.,etal.2011,ApJ,737,12 Bocchio,M.,Jones,A.P.,&Slavin,J.D.2014,A&A,570,AA32 Madden,S.C.,Re´my-Ruyer,A.,Galametz,M.,etal.2013,PASP, Cannon,J.M.,Skillman,E.D.,Garnett,D.R.,&Dufour,R.J. 125,600 2002,ApJ,565,931 Magrini, L., Bianchi, S., Corbelli, E., et al. 2011, A&A, 535, Cannon,J.M.,Walter,F.,Skillman,E.D.,&vanZee,L.2005, AA13 ApJL,621,L21 Martin,C.L.1997,ApJ,491,561 Cormier,D.,Lebouteiller,V.,Madden,S.C.,etal.2012,A&A, Mun˜oz-Mateos,J.C.,GildePaz,A.,Boissier,S.,etal.2009,ApJ, 548,A20 701,1965 de Bennassuti, M., Schneider, R., Valiante, R., & Salvadori, S. Ota,K.,Walter,F.,Ohta,K.,etal.2014,ApJ,792,34 2014,MNRAS,445,3039 Peeples,M.S.,Werk,J.K.,Tumlinson,J.,etal.2014,ApJ,786, Draine,B.T.,etal.2007,ApJ,663,866 54 Draine,B.T.,&Li,A.2007,ApJ,657,810 Plante,S.,&Sauvage,M.2002,AJ,124,1995 Dwek,E.1998,ApJ,501,643 Pustilnik, S. A., Brinks, E., Thuan, T. X., Lipovetsky, V. A., & Ekta,B.,Pustilnik,S.A.,&Chengalur,J.N.2009,MNRAS,397, Izotov,Y.I.2001,AJ,121,1413 963 Raiteri,C.M.,Villata,M.,&Navarro,J.F.1996,A&A,315,105 Fisher,D.B.,Bolatto,A.D.,Herrera-Camus,R.,etal.2014,Na- Recchi,S.,Matteucci,F.,D’Ercole,A.,&Tosi,M.2002,A&A, ture,505,186 384,799 Fumagalli,M.,Krumholz,M.R.,&Hunt,L.K.2010,ApJ,722, Reines,A.E.,Johnson,K.E.,&Hunt,L.K.2008,AJ,136,1415 919 Reines,A.E.,Nidever,D.L.,Whelan,D.G.,&Johnson,K.E. Galametz,M.,Madden,S.C.,Galliano,F.,etal.2011,A&A,532, 2010,ApJ,708,26 A56 Re´my-Ruyer,A.,Madden,S.C.,Galliano,F.,etal.2013,A&A, Giammanco,C.,Beckman,J.E.,Zurita,A.,&Relan˜o,M.2004, 557,A95 A&A,424,877 Re´my-Ruyer,A.,Madden,S.C.,Galliano,F.,etal.2014,A&A, Gnedin,N.Y.,Tassis,K.,&Kravtsov,A.V.2009,ApJ,697,55 563,AA31 Granato,G.L.,Lacey,C.G.,Silva,L.,etal.2000,ApJ,542,710 Salvadori,S.,Schneider,R.,&Ferrara,A.2007,MNRAS,381, Hirashita,H.2015,MNRAS,447,2937 647 Hirashita,H.,Ferrara,A.,Dayal,P.,&Ouchi,M.2014,MNRAS, Schaerer, D., Boone, F., Zamojski, M., et al. 2015, A&A, 574, 443,1704 AA19 Hirashita,H.,&Voshchinnikov,N.V.2014,MNRAS,437,1636 Schmidt,K.-H.,&Boller,T.1993,AstronomischeNachrichten, Houck,J.R.,Charmandaris,V.,Brandl,B.R.,etal.2004,ApJS, 314,361 154,211 Skibba,R.A.,Engelbracht,C.W.,Dale,D.,etal.2011,ApJ,738, Hunt,L.,Bianchi,S.,&Maiolino,R.2005a,A&A,434,849 89 Hunt,L.K.,Dyer,K.K.,&Thuan,T.X.2005b,A&A,436,837 Smith,B.J.,&Hancock,M.2009,AJ,138,130 Hunt,L.K.,Dyer,K.K.,Thuan,T.X.,&Ulvestad,J.S.2004, Thuan,T.X.,&Izotov,Y.I.1997,ApJ,489,623 ApJ,606,853 Thuan,T.X.,Izotov,Y.I.,&Lipovetsky,V.A.1997,ApJ,477, Hunt,L.K.,&Hirashita,H.2009,A&A,507,1327 661 Hunt,L.,Magrini,L.,Galli,D.,etal.2012,MNRAS,427,906 Thuan,T.X.,Sauvage,M.,&Madden,S.1999,ApJ,516,783 Hunt,L.K.,Testi,L.,Casasola,V.,etal.2014,A&A,561,AA49 Valiante,R.,Schneider,R.,Bianchi,S.,&Andersen,A.C.2009, Hunt,L.K.,Thuan,T.X.,&Izotov,Y.I.2003,ApJ,588,281 MNRAS,397,1661 Hunt,L.K.,Vanzi,L.,&Thuan,T.X.2001,A&A,377,66 Valiante, R., Schneider, R., Salvadori, S., & Bianchi, S. 2011, Issa,M.R.,MacLaren,I.,&Wolfendale,A.W.1990,A&A,236, MNRAS,416,1916 237 Valiante,R.,Schneider,R.,Maiolino,R.,Salvadori,S.,&Bianchi, Ivezic,Z.,&Elitzur,M.1997,MNRAS,287,799 S.2012,MNRAS,427,L60 Izotov,Y.I.,Chaffee,F.H.,Foltz,C.B.,etal.1999,ApJ,527,757 Valiante, R., Schneider, R., Salvadori, S., & Gallerani, S. 2014, Izotov,Y.I.,Guseva,N.G.,Fricke,K.J.,Kru¨gel,E.,&Henkel, MNRAS,444,2442 C.2014,A&A,570,A97 van den Hoek, L. B., & Groenewegen, M. A. T. 1997, A&AS, Johnson,K.E.,Hunt,L.K.,&Reines,A.E.2009,AJ,137,3788 123,305 Jones A. P., Fanciullo L., Ko¨hler M., Verstraete L., Guillet V., van Zee, L., Westpfahl, D., Haynes, M. P., & Salzer, J. J. 1998, BocchioM.,YsardN.2013,A&A,558,62 AJ,115,1000 Jones,A.P.,&Nuth,J.A.2011,A&A,530,AA44 Vanzi,L.,Hunt,L.K.,Thuan,T.X.,&Izotov,Y.I.2000,A&A, Kassim, N. E., Weiler, K. W., Erickson, W. C., & Wilson, T. L. 363,493 1989,ApJ,338,152 Watson, D., Christensen, L., Kraiberg Knudsen, K., et al. 2015, Kennicutt,R.C.,Jr.1984,ApJ,287,116 arXiv:1503.00002,Nature,inpress Krumholz,M.R.,McKee,C.F.,&Tumlinson,J.2009a,ApJ,693, Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, 216 A.G.G.M.2003,ApJ,587,278 Krumholz,M.R.,McKee,C.F.,&Tumlinson,J.2009b,ApJ,699, Woosley,S.E.,&Weaver,T.A.1995,ApJS,101,181 850 Zaritsky,D.,Kennicutt,R.C.,Jr.,&Huchra,J.P.1994,ApJ,420, Krumholz,M.R.,Dekel,A.,&McKee,C.F.2012,ApJ,745,69 87 (cid:13)c 2015RAS,MNRAS000,1–10 10 RaffaellaSchneider,LeslieHuntandRosaValiante Zhukovska,S.,Gail,H.-P.,&Trieloff,M.2008,A&A,479,453 (cid:13)c 2015RAS,MNRAS000,1–10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.