ebook img

The chemical history of molecules in circumstellar disks. I. Ices PDF

3.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The chemical history of molecules in circumstellar disks. I. Ices

Astronomy&Astrophysicsmanuscriptno.collices c ESO2009 (cid:13) January23,2009 The chemical history of molecules in circumstellar disks. I. Ices R.Visser1,E.F.vanDishoeck1,2,S.D.Doty3,andC.P.Dullemond4 1 LeidenObservatory,LeidenUniversity,P.O.Box9513,2300RALeiden,TheNetherlands e-mail:[email protected] 9 2 Max-Planck-Institutfu¨rExtraterrestrischePhysik,Giessenbachstrasse1,85748Garching,Germany 0 3 DepartmentofPhysicsandAstronomy,DenisonUniversity,Granville,OH43023,USA 0 4 Max-Planck-Institutfu¨rAstronomie,Koenigstuhl17,69117Heidelberg,Germany 2 Received<date>/Accepted<date> n a ABSTRACT J 9 Context.Manychemicalchangesoccurduringthecollapseofamolecularcloudtoformalow-massstarandthesurroundingdisk. One-dimensionalmodelshavebeenusedsofartoanalysethesechemicalprocesses,buttheycannotproperlydescribetheincorpora- ] tionofmaterialintodisks. R Aims.Thegoalofthisworkistounderstandhowmaterialchangeschemicallyasitistransportedfromthecloudtothestarandthe S disk.Ofspecialinterestisthechemicalhistoryofthematerialinthediskattheendofthecollapse. . Methods.Atwo-dimensional,semi-analyticalmodelispresentedthatfollows,forthefirsttime,thechemicalevolutionfromthepre- h stellarcoretotheprotostarandcircumstellardisk.Themodelcomputesinfalltrajectoriesfromanypointinthecloudandtracksthe p radialandverticalmotionofmaterialintheviscouslyevolvingdisk.Itincludesafulltime-dependentradiativetransfertreatmentof - o thedusttemperature,whichcontrolsmuchofthechemistry.Asmallparametergridisexploredtounderstandtheeffectsofthesound r speedandthemassandrotationofthecloud.Thefreeze-outandevaporationofcarbonmonoxide(CO)andwater(H2O),aswellas t thepotentialforformingcomplexorganicmoleculesinices,areconsideredasimportantfirststepstoillustratethefullchemistry. s a Results.Bothspeciesfreezeouttowardsthecentrebeforethecollapsebegins.PureCOiceevaporatesduringtheinfallphaseand 1 [ rdseou-mraidnesgsootrhbliesdiiCnnfOtahlloabsaenodvpeadr1itss8koKffotarhmnedadtiiinosknextphphalaatsicneosinoaglnbtdheleeovwparpetohsreeantCceeOsowdfietCshoOinrpi∼tni1oc0nomAteUmetspo.efMrtahtauetersertiaaorlf.t∼Mh1ait8xeeKdn.dCsHOu2O-pHir2neOmthiaecienpsslaasnroeeltii-dmaapnlmodroctasontmteeivnte-rfkyoewremphiiennrgge v zonesofthedisk( 5–30AUfromthestar)ispredictedtospendenoughtimeinawarmzone(several104 yratadusttemperature 3 of20–40K)during∼thecollapsetoformfirst-generationcomplexorganicspeciesonthegrains.Thedynamicaltimescalesinthehot 1 inner envelope (hot core or hot corino) are too short for abundant formation of second-generation molecules by high-temperature 3 gas-phasechemistry. 1 . Keywords.astrochemistry–stars:formation–circumstellarmatter–planetarysystems:protoplanetarydisks–molecularprocesses 1 0 9 0 1. Introduction 2007,Berginetal.2007andBergin&Tafalla2007).Thechem- : istry in pre-stellar cores is relatively easy to model, because v The formationoflow-massstars andtheir planetarysystems is the dynamics and the temperature structure are simpler before i X a complexevent,spanningseveralordersofmagnitudein tem- the protostar is formed than afterwards. A key result from the poralandspatialscales,andinvolvingawidevarietyofphysical pre-stellarcoremodelsisthedepletionofmanycarbon-bearing r a andchemicalprocesses.Thankstoobservations(seereviewsby species towards the centre of the core (Bergin&Langer 1997; diFrancescoetal. 2007 and Whiteetal. 2007), theory (see re- Leeetal.2004). viewbyShuetal.1987)andcomputersimulations(seereviews Ceccarellietal. (1996) modelled the chemistry in the byKleinetal.2007andDullemondetal.2007),thegeneralpic- collapse phase, and others have done so more recently ture of low-mass star formation is now understood. An insta- (Rodgers&Charnley 2003; Dotyetal. 2004; Leeetal. 2004; bility in a cold molecular cloud leads to gravitationalcollapse. Garrod&Herbst2006;Aikawaetal.2008;Garrodetal.2008). Rotationandmagneticfieldscauseaflatteneddensitystructure All of these models are one-dimensional, and thus necessarily early on,whichevolvesintoa circumstellardisk at later times. ignorethecircumstellardisk.Astheprotostarturnsonandheats Theprotostarcontinuesto accretematterfromthediskandthe up the surrounding material, all models agree that frozen-out remnantenvelope,while also expellingmatterin a bipolarpat- speciesreturntothegasphaseifthedusttemperaturesurpasses tern.Graingrowthinthediskeventuallyleadstotheformation theirevaporationtemperature.Thehighertemperaturescanfur- ofplanets,andastheremainingdustandgasdisappear,amature therdriveahot-core-likechemistry,andcomplexmoleculesmay solarsystememerges.Whiletherehasbeenamplediscussionin beformediftheinfalltimescalesarelongenough. theliteratureontheoriginandevolutionofgrainsindisks(see If the model is expanded into a second dimension and the reviewsby Nattaetal. 2007and Dominiketal. 2007), little at- disk is included, the system gains a large reservoir where in- tentionhassofarbeenpaidtothechemicalhistoryofthemore falling material from the cloud can be stored for a long time volatilematerialinatwo-orthree-dimensionalsetting. before accreting onto the star. This can lead to further chem- Chemicalmodelsarerequiredtounderstandtheobservations ical enrichment, especially in the warmer parts of the disk and develop the simulations (see reviews by Ceccarellietal. (Aikawaetal.1997;Aikawa&Herbst1999;Willacy&Langer 2 Visseretal.:Thechemicalhistoryofmoleculesincircumstellardisks.I.Ices 2000; vanZadelhoffetal. 2003; Rodgers&Charnley 2003; includedinourmodel.Theyareunlikelytoaffectthechemistry Aikawaetal. 2008). The interior of the disk is shielded from directlyandtheirmainphysicaleffect(causingaflattenedden- directirradiation by the star, so it is colder than the disk’s sur- sitydistribution;Galli&Shu1993)isalreadyaccountedforby faceandtheremnantcloud.Hence,moleculesthatevaporatedas therotationofthecloud. theyfellintowardsthestarmayfreezeoutagainwhentheyen- Our model is an extension of the one used by terthedisk.ThiswasfirstshownquantitativelybyBrinchetal. Dullemondetal. (2006) to study the crystallinity of dust (2008, hereafter BWH08) using a two-dimensional hydrody- incircumstellardisks.Thatmodelwaspurelyone-dimensional; namicalsimulation. ourmodeltreatsthediskmorerealisticallyasatwo-dimensional In addition to observations of nearby star-forming regions, structure. the comets in our own solar system provide a unique probe into the chemistry that takes place during star and planet for- 2.1.Envelope mation. The bulk composition of the cometary nuclei is be- lieved to be largely pristine, closely reflecting the composition Thecloud(orenvelope)istakentobeauniformlyrotatingsingu- ofthepre-solarnebula(Bockele´e-Morvanetal.2004).However, larisothermalsphereattheonsetofcollapse.Ithasasolid-body largeabundancevariationshavebeenobservedbetweenindivid- rotationrateΩ andanr 2densityprofile(S77): 0 − ualcometsandtheseremainpoorlyunderstood(Kobayashietal. 2007).Two-dimensionalchemicalmodelsmayshedlightonthe c2 ρ (r)= s , (1) cometarychemicaldiversity. 0 2πGr2 Two molecules of great astrophysical interest are carbon monoxide(CO)andwater (H2O).Theyarethe mainreservoirs whereG isthegravitationalconstantandcs theeffectivesound ofcarbonandoxygenandcontrolmuchofthechemistry.COis speed. Throughoutthis work, r is used for the sphericalradius animportantprecursorformorecomplexmolecules;forexam- andRforthecylindricalradius.Settingtheouterradiusatrenv, ple,solidCOcanbehydrogenatedtoformaldehyde(H CO)and thetotalmassofthecloudis 2 methanol (CH OH) at low temperatures (Watanabe&Kouchi 3 2c2r 2002; Fuchs et al. subm.). In turn, these two molecules form M = s env . (2) 0 G the basis of even larger organic species like methyl formate (HCOOCH3; Garrod&Herbst 2006; Garrodetal. 2008). The After the collapse is triggered at the centre, an expansion keyroleofH2OintheformationoflifeonEarthandpotentially wave (or collapse front) travels outwards at the sound speed elsewhereisevident.Iftheentireformationprocessoflow-mass (S77; TSC84). Material inside the expansion wave falls in to- stars and their planets is to be understood, a thorough under- wards the centre to form a protostar. The infalling material is standingofthesetwomoleculesisessential. deflectedtowardsthegravitationalmidplanebythecloud’srota- Thispaperisthefirstinaseriesaimingtomodelthechem- tion.Itfirsthitsthemidplaneinsidethecentrifugalradius(where icalevolutionfromthepre-stellarcoretothediskphaseintwo gravity balances angular momentum; CM81), resulting in the dimensions,usingasimplified,semi-analyticalapproachforthe formationofacircumstellardisk(Section2.2). dynamics of the collapsing envelope and the disk, but includ- The dynamics of a collapsing singular isothermal sphere ingdetailedradiativetransferforthetemperaturestructure.The werecomputedbyS77intermsofthenon-dimensionalvariable modelfollowsindividualparcelsofmaterialastheyfallinfrom x=r/c t,withtthetimeaftertheonsetofcollapse.Inthisself- s thecloudintothedisk.ThegaseousandsolidabundancesofCO similar description, the head of the expansion wave is always andH2Oarecalculatedforeachinfallingparceltoobtainglobal at x = 1. Thedensity andradialvelocityare givenbythe non- gas-iceprofiles.Thesemi-analyticalnatureofthemodelallows dimensionalvariables andv,respectively.(S77usesαforthe for an easy explorationof physical parameters like the cloud’s density,butourmodelAalreadyusesthatsymbolfortheviscosity massandrotationrate,ortheeffectivesoundspeed.Tracingthe inSection2.2.)Thesevariablesaredimensionalisedthrough temperaturehistoryoftheinfallingmaterialprovidesafirstclue intotheformationofmorecomplexspecies.Themodelalsopro- (x) ρ(r,t)= A , (3) vides some insight into the origin of the chemical diversity in 4πGt2 comets. Section2containsafulldescriptionofthemodel.Resultsare ur(r,t)=csv(x). (4) presentedinSection3anddiscussedinabroaderastrophysical contextinSection4.ConclusionsaredrawninSection5. Valuesfor andvaretabulatedinS77. A CM81andTSC84analysedtheeffectsofslowuniformrota- tionontheS77collapsesolution,withtheformerfocussingon 2. Model the flow onto the protostar and the disk and the latter on what happensfurtheroutintheenvelope.IntheaxisymmetricTSC84 The physicalpart of our two-dimensionalaxisymmetric model description,thedensityandinfallvelocitiesdependonthetime, describes the collapse of an initially spherical, isothermal, t,theradius,r,andthepolarangle,θ: slowly rotating cloud to form a star and circumstellar disk. The collapse dynamics are taken from Shu (1977, here- (x,θ,τ) after S77), including the effects of rotation as described by ρ(r,θ,t)= A , (5) 4πGt2 Cassen&Moosman (1981, hereafter CM81) and Terebeyetal. (1984, hereafter TSC84). Infalling material hits the equatorial u (r,θ,t)=c v(x,θ,τ), (6) r s plane inside the centrifugal radius to form a disk, whose fur- ther evolution is constrained by conservation of angular mo- whereτ = Ω t isthe non-dimensionaltime.Thepolarvelocity 0 mentum(Lynden-Bell&Pringle 1974). Some propertiesof the isgivenby star and the disk are adapted from Adams&Shu (1986) and Young&Evans(2005,hereafterYE05).Magneticfieldsarenot u (r,θ,t)=c w(x,θ,τ). (7) θ s Visseretal.:Thechemicalhistoryofmoleculesincircumstellardisks.I.Ices 3 ThedifferentialequationsfromTSC84weresolvednumerically 2.2.Disk toobtainsolutionsfor ,vandw. The TSC84 solutioAn breaks down around x = τ2, so the The rotationofthe envelopecauses the infallingmaterialto be deflected towards the midplane, where it forms a circumstel- CM81solutionisusedinsideofthispoint.Astreamlinethrough lar disk. The disk initially forms inside the centrifugal radius apoint(r,θ)effectivelyoriginatedatanangleθ inthisdescrip- 0 (CM81),butconservationofangularmomentumquicklycauses tion: thedisktospreadbeyondthispoint.Theevolutionofthediskis cosθ cosθ R 0− c =0, (8) governedbyviscosity,forwhichourmodelusesthecommonα sin2θ cosθ − r prescription(Shakura&Sunyaev1973).Thisgivestheviscosity 0 0 coefficientνas whereR isthecentrifugalradius, c ν(R,t)=αc H. (14) 1 s,d R (t)= c m3t3Ω2, (9) c 16 s 0 0 The sound speed in the disk, c = kT /µm (with k the s,d m p withm0anumericalfactorequalto0.975.TheCM81radialand Boltzmannconstant,mptheprotonmassandµthemeanmolec- polarvelocityare ularmassof2.3nucleiperhydrogenmolpecule),isdifferentfrom thesoundspeedintheenvelope,c ,becausethemidplanetem- s GM cosθ peratureofthedisk,T ,variesasdescribedinHueso&Guillot u (r,θ,t)= 1+ , (10) m r − r cosθ (2005).TheothervariablefromEq.(14)isthescaleheight: r r 0 c GM cosθ cosθ cosθ H(R,t)= s,d , (15) uθ(r,θ,t)= 1+ 0− , (11) Ωk r cosθ sinθ r r 0 whereΩ istheKeplerianrotationrate: k andtheCM81densityis GM ρ(r,θ,t)= M˙ 1+2RcP (cosθ ) −1 , (12) Ωk(R,t)= R3∗ , (16) −4πr2u r 2 0 r r (cid:20) (cid:21) with M the stellar mass [Eq. (29)]. The viscosity pa- where P is the second-order Legendre polynomial and M˙ = rameter ∗α is kept constant at 10 2 (Dullemondetal. 2007; 2 − m c3/Gisthetotalaccretionratefromtheenvelopeontothestar Andrews&Williams2007b). 0 s anddisk(S77;TSC84).Theprimaryaccretionphaseendswhen Solving the problem of advection and diffusion yields the outer shell of the envelope reaches the star and disk. This the radial velocities inside the disk (Dullemondetal. 2006; pointintime(t = M /M˙)isessentiallythebeginningoftheT Lynden-Bell&Pringle1974): acc 0 TauriorHerbigAe/Bephase,butitdoesnotyetcorrespondtoa 3 ∂ typicalTTauriorHerbigAe/Beobject(seeSection3.2). u (R,t)= Σν√R . (17) TheTSC84andCM81solutionsdonotreproducethecavi- R −Σ√R∂R tiescreatedbythestar’sbipolaroutflow,sotheyhavetobeput (cid:16) (cid:17) Thesurfacedensityevolvesas inseparately.Outflowshavebeenobservedintwoshapes:con- icalandcurved(Padgettetal.1999).Bothcanbecharacterized ∂Σ(R,t) 1 ∂ = (ΣRu )+S , (18) by the outflow opening angle, γ, which grows with the age of ∂t −R∂R R theobject.Arce&Sargent(2006)foundalinearrelationshipin where the source functionS accountsfor the infall of material log-logspacebetweentheageofasampleof17youngstellarob- fromtheenvelope: jectsandtheiroutflowopeningangles.Someexplanationsexist fortheoutflowwideningingeneral,butitisnotyetunderstood S(R,t)=2Nρuz, (19) howγ(t) dependsonparameterslike theinitialcloudmassand with u the vertical component of the envelope velocity field z thesoundspeed.Itislikelythattheangledependsontherelative [Eqs.(6),(7),(10)and(11)].Thefactor2accountsfortheenve- ageoftheobjectratherthanontheabsoluteage. lopeaccretingontobothsidesofthediskandthenormalization The purpose of our model is not to include a detailed de- factorN ensuresthattheoverallaccretionrateontothestarand scription of the outflow cavity. Instead, the outflow is primar- thediskisalwaysequaltoM˙.Bothρandu inEq.(19)aretobe ily included because of its effect on the temperature profiles z computedatthedisk-envelopeboundary,whichwillbedefined (Whitneyetal. 2003). Its opening angle is based on the fit by attheendofthissection. Arce&Sargent(2006) to theirFig. 5, butit is takento depend AsnotedbyHueso&Guillot(2005),theinfallingenvelope on t/t rather than t alone. The outflow is also kept smaller, acc material enters the disk with a subkeplerian rotation rate, so, which brings it closer to the Whitneyetal. angles. Its shape is by conservation of angular momentum, it would tend to move takentobeconical.Withtheresultingformula, a bit further inwards. Not taking this into account would arti- γ(t) t ficially generate angular momentum, causing the disk to take log =1.5+0.26log , (13) longerto accrete ontothe star. As a consequencethe disk will, deg t acc atanygivenpointintime,havetoohighamassandtoolargea the opening angle is always 32◦ at t = tacc. The numbers in radius. Hueso&Guillot solved this problem by modifyingEq. Eq.(13)arepoorlyconstrained;however,thedetailsoftheout- (19)toplacethematerialdirectlyatthecorrectradius.However, flow (both size and shape) do not affect the temperature pro- thiscausesanundesirablediscontinuityintheinfalltrajectories. files strongly, so this introduces no major errors in the chem- Instead,ourmodeladdsasmallextracomponenttoEq.(17)for istry results. The outflow cones are filled with a constantmass t<t : acc of 0.002M at a uniform density, which decreases to 103–104 0 cm 3 at t depending on the model parameters. The outflow 3 ∂ GM − acc u (R,t)= Σν√R η . (20) effectivelyremovesabout1%oftheinitialenvelopemass. R −Σ√R∂R − rr R (cid:16) (cid:17) 4 Visseretal.:Thechemicalhistoryofmoleculesincircumstellardisks.I.Ices The functional form of the extra term derives from the CM81 solution.Aconstantvalueof0.002forη isfoundtoreproduce r verywelltheresultsofHueso&Guillot.Italsoprovidesagood matchwiththediskmassesfromYorke&Bodenheimer(1999), YE05andBWH08,whosemodelscoverawiderangeofinitial conditions. The disk’s innerradiusis determinedbythe evaporationof dustbythestar(e.g.YE05): L Ri(t)= 4πσT∗4 , (21) s evap Fig.1. Schematic view of the disk-envelope boundary in the (R,z)plane.Theblacklineindicatesthesurfacewheretheden- whereσistheStefan-Boltzmannconstant.Thedustevaporation sityduetothediskequalsthatduetotheenvelope.Thegreyline temperature,T ,issetto2000K.Takinganalternativevalue evap is the infall trajectory that would lead to point P . However,it of 1500 K has no effect on our results. The stellar luminosity, 1 alreadyintersectsthediskatpoint P ,so noaccretionispossi- L ,isdiscussedinSection2.3.InwardtransportofmaterialatR 2 le∗adstoaccretionfromthediskontothestar: i ble at P1. Thedisk-envelopeboundaryis thereforeraisedat P1 untilitcanbereachedfreelybyaninfalltrajectory. M˙ = 2πRu Σ, (22) d i R →∗ − with the radialvelocity,u , andthe surfacedensity,Σ, takenat thatduetothe envelope[Eqs.(5) and(12)].Inorderforaccre- R R.ThediskgainsmassfromtheenvelopeatarateM˙ ,sothe tion to take place at a given point P on the surface, it must i e d 1 diskmassevolvesas → be intersected by an infall trajectory. Due to the geometry of the surface, such a trajectory might also intersect the disk at a t Md(t)= M˙e d M˙d dt′. (23) larger radius P2 (Fig. 1). Material flowing in along that trajec- Z0 → − →∗ torywill accreteat P2 instead of P1. Hence,the secondstep in (cid:16) (cid:17) determiningthe disk-envelopeboundaryconsists of raising the Our modelusesa Gaussianprofilefortheverticalstructure surface at “obstructed points” like P to an altitude where ac- ofthedisk(Shakura&Sunyaev1973): 1 cretioncantakeplace.Thesourcefunctionisthencomputedat z2 that altitude. Physically, this can be understoodas follows: the ρ(R,z,t)=ρ exp , (24) c −2H2 regiondirectly abovethe obstructedpointsbecomesless dense ! thanwhatitwouldbeintheabsenceofadisk,becausethedisk with z the height above the midplane. The scale height comes also prevents material from reaching there. The lower density fromEq.(15)andthemidplanedensityis abovethediskreducesthedownwardpressure,sothediskpuffs upandthedisk-envelopeboundarymovestoahigheraltitude. Σ ρ (R,t)= . (25) The infall trajectories in the vicinity of the disk are very c H√2π shallow, so the bulk of the material accretes at the outer edge. Becausethediskquicklyspreadsbeyondthecentrifugalradius, Along with the radial motion [Eq. (20), taken to be indepen- much of the accretion occurs far from the star. In contrast, ac- dentofz], materialalsomovesverticallyinthedisk,asitmust cretion in one-dimensionalcollapse models occurs at or inside maintaintheGaussianprofileatalltimes.Toseethis,considera ofR .Ourresultsareconsistentwiththehydrodynamicalwork parcelofmaterialthatentersthediskattimetatcoordinatesR c of BWH08, where most of the infalling material also hits the andzinto a columnwith scale heightH andsurfacedensityΣ. outeredgeofaratherlargedisk.Thelargeaccretionradiileadto Thecolumnofmaterialbelowtheparcelis weakeraccretionshocksthancommonlyassumed(Section2.5). z 1 z ρ(R,ζ,t)dζ = Σerf , (26) Z0 2 H√2! 2.3.Star whereerf istheerrorfunction.Atalatertimet ,theentirecol- Thestargainsmaterialfromtheenvelopeandfromthedisk,so ′ umn has moved to R and has a scale height H and a surface itsmassevolvesas ′ ′ densityΣ.Thesameamountofmaterialmuststillbebelowthe ′ t parcel: M (t)= M˙ +M˙ dt . (29) e d ′ 1Σ′erf z′ = 1Σerf z . (27) Th∗e protZos0ta(cid:16)r do→e∗s not c→om∗(cid:17)e into existence immediately at the 2 H √2 2 H√2 ′ ! ! onset of collapse; it is preceeded by the first hydrostatic core Rearranginggivesthenewheightoftheparcel,z: (FHC; Masunagaetal. 1998; Boss&Yorke 1995). Our model ′ follows YE05 and takes a lifetime of 2 104 yr and a size of z(R,t )= H √2erf 1 Σerf z , (28) 5 AU for the FHC, independentof other×parameters.After this ′ ′ ′ ′ − "Σ′ H√2!# stage,arapidtransitionoccursfromthelargeFHCtoaprotostar ofafewR : whereerf 1istheinverseoftheerrorfunction.Intheabsenceof ⊙ − mixing,ourdescriptionleadstopurelylaminarflow. t 20,000yr Thelocationofthedisk-envelopeboundary[needed,forin- R = (5AU) 1 − +RPS stance,inEq.(19)]isdeterminedintwosteps.First,thesurface ∗  − s 100yr  ∗ isidentifiedwherethedensityduetothedisk[Eq.(24)]equals 20,000<t(yr)<20,100,  (30) Visseretal.:Thechemicalhistoryofmoleculesincircumstellardisks.I.Ices 5 Fig.2.Evolutionofthemassoftheenvelope,staranddisk(left Fig.3. Dust temperature due to the accretion shock (vertical panel)andtheluminosity(solidlines)andradius(dottedlines) axis)andstellarradiation(horizontalaxis)atthepointofentry ofthestar(rightpanel)forourstandardmodel(blacklines)and into the disk for 0.1-µm grains in a sample of several hundred ourreferencemodel(greylines). parcelsinourstandard(left)andreference(right)models.These parcels occupy positions from R = 1 to 300 AU in the disk at t .Shockheatingisnotimportantforthedustinmostofthese acc where RPS (ranging from 2 to 5 R ) is the protostellar radius parcels, becausethe shocktemperatureis lower thanthe radia- fromPall∗a&Stahler(1991).Fort>⊙2.01 104yr,R equalsRPS. tiveheatingtemperatureforallofthem.Notethedifferentscales Ourresultsarenotsensitivetotheexactv×aluesused∗forthesi∗ze betweenthetwopanels. and lifetime of the FHC or the duration of the FHC–protostar transition. The star’s luminosity, L , consists of two terms: the accre- 2.4.Temperature tionluminosity,L ,domin∗antatearlytimes,andtheluminos- ,acc ityduetogravitati∗onalcontractionanddeuteriumburning,L . The envelope starts out as an isothermal sphere at 10 K phot TheaccretionluminositycomesfromAdams&Shu(1986): and it is heated up from the inside after the onset of col- lapse. Using the star as the only photon source, the dust tem- 1 perature in the disk and envelope is computed with the ax- L (t) = L 6u 2+(2 5u ) 1 u + ∗,acc 0 6u ∗− − ∗ − ∗ isymmetric three-dimensional radiative transfer code RADMC η ( ∗ h p i (Dullemond&Dominik 2004). Because of the high densities ∗ 1 (1 ηd) d 1 (1 ηd) 1 u , (31) throughoutmostofthesystem,thegasanddustareexpectedto 2 − − M − − − ∗ ) bewellcoupled,andthegastemperatureissetequaltothedust (cid:2) (cid:3)h p i temperature.Cosmic-ray heating of the gas is included implic- whereL =GMM˙/R (withMthetotalaccretedmass,i.e.,M = 0 itlybysettingalowerlimitof8Kinthedustradiativetransfer M +M ),u =R /R∗,and d c results.AsmentionedinSection2.1,thepresenceoftheoutflow ∗ ∗ ∗ coneshassomeeffectonthetemperatureprofiles(Whitneyetal. 1 1 √1 u = u1/3 − du. (32) 2003).ThiswillbediscussedfurtherinSection3.2. Md 3 ∗ Zu u4/3 ∗ Analytical solutions exist for the asymptotic cases of u 0 2.5.Accretionshock andu 1.Forintermediatevalues,theintegralmustbes∗ol≈ved nume∗ric≈ally. The efficiency parameters η and η in Eq. (31) The infall of high-velocity envelope material into the low- d velocity disk causes a J-type shock. The temperature right be- have values of 0.5 and 0.75 for a 1 M e∗nvelope (YE05). The hind the shock front can be much higher than what it would photosphericluminosityisadoptedfrom⊙D’Antona&Mazzitelli beduetothestellarphotons.Neufeld&Hollenbach(1994)cal- (1994),usingYE05’smethodoffittingandinterpolating,includ- culated in detailthe relationshipbetween the pre-shockveloci- ingatimedifferenceof0.38t (equaltothefree-falltime)be- acc ties and densities(u and n ) and the maximumgraintempera- tweentheonsetofL andL (Myersetal.1998).Thesum s s ,acc ,phot ture reached after the shock (T ). A simple formula,valid for ofthesetwotermsg∗ivestheto∗talstellarluminosity: d,s u <70kms 1,canbeextractedfromtheirFig.13: s − L (t)=L +L . (33) ∗ ∗,acc ∗,phot T (104K) ns 0.21 us p agr −0.20 , (34) Figure2showstheevolutionofthestellarmass,luminosity d,s ≈ 106cm 3 30kms 1 0.1µm andradiusforourstandardcaseof M = 1.0 M ,c = 0.26km (cid:18) − (cid:19) (cid:18) − (cid:19) ! 0 s s−1 and Ω0 = 10−14 s−1, and our reference cas⊙e of M0 = 1.0 withagrthegrainradius.Theexponentpis0.62forus <30km M , c = 0.26 km s 1 and Ω = 10 13 s 1 (Section 2.6). The s 1and1.0otherwise. s − 0 − − − tra⊙nsition from the FHC to the protostar at t = 2 104 yr is The pre-shock velocities and densities are highest at early × clearlyvisible in the R and L profiles.At t = t , there isno times,whenaccretionoccursclosetothestarandalliceswould acc moreaccretionfromthe∗envelo∗peontothestar,sotheluminosity evaporate anyway. Important for our purposes is the question decreasessharply. whetherthedusttemperatureduetotheshockexceedsthatdue The masses of the disk and the envelopeare also shown in to stellar heating. If all grains have a radius of 0.1 µm, as as- Fig. 2. Our disk mass of 0.43 M at t = t in the reference sumedinourmodel,thisisnotthecaseforanyofthematerial acc caseisinexcellentagreementwith⊙thevalueof0.4M foundby inthediskatt foreitherourstandardorourreferencemodel acc BWH08forthesameparameters. ⊙ (Fig.3;cf.Simonellietal.1997). 6 Visseretal.:Thechemicalhistoryofmoleculesincircumstellardisks.I.Ices Inreality,thedustspansarangeofsizes,extendingdownto Table1.Summaryoftheparametergridusedinourmodel.a a radiusof about0.005 µm. Small grains are heated more eas- ily;0.005-µmdustreachesashocktemperaturealmosttwiceas Caseb Ω c M t τ M 0 s 0 acc ads d highasdoes0.1-µmdust[Eq.(34)].Thisisenoughfortheshock (s 1) (kms 1) (M ) (105yr) (105yr) (M ) − − temperatureto exceed the radiativeheating temperaturein part 1 10 14 0.19 1.0⊙ 6.3 14.4 0.22⊙ − of the sample in Fig. 3. However,this has no effect on the CO 2 10 14 0.19 0.5 3.2 3.6 0.08 − and H2O gas-ice ratios. In those parcels where shock heating 3(std) 10−14 0.26 1.0 2.5 2.3 0.05 becomesimportantforsmallgrains,thetemperaturefromradia- 4 10−14 0.26 0.5 1.3 0.6 0.001 tiveheatingliesalreadyabovetheCO evaporationtemperature 5 10−13 0.19 1.0 6.3 14.4 0.59 of about18 K and the shock temperatureremainsbelow 60 K, 6 10−13 0.19 0.5 3.2 3.6 0.25 7(ref) 10 13 0.26 1.0 2.5 2.3 0.43 whichisnotenoughforH Otoevaporate.Hence,shockheating − 2 8 10 13 0.26 0.5 1.3 0.6 0.16 isnotincludedinourmodel. − H Omayalsoberemovedfromthegrainsurfacesintheac- a Ω :solid-body rotationrate;c:effectivesound speed; M :initial 2 0 s 0 cretionshockthroughsputtering(Tielensetal.1994;Jonesetal. envelope mass; tacc: accretion time; τads: adsorption timescale for 1994).Thematerialthatmakesupthediskattheendofthecol- H2Oattheedgeoftheinitialcloud;Md:diskmassattacc. lapseinourstandardmodelexperiencesashockofatmost8km b Case3isourstandardparametersetandCase7isourreferenceset. s 1.Atthatvelocity,He+,themostimportantionforsputtering, − carries an energyof 1.3 eV. However,a minimum of 2.2 eV is requiredto removeH O (Bohdanskyetal. 1980), so sputtering 2.7.Adsorptionanddesorption 2 isunimportantforourpurposes. The adsorption and desorptionof CO and H O are solved in a 2 Someofthematerialinourmodelisheatedtomorethan100 Lagrangian frame. When the time-dependent density, velocity K during the collapse (Fig. 12) or experiences a shock strong and temperature profiles have been calculated, the envelope is enoughtoinducesputtering.Thismaterialnormallyendsupin populatedbyanumberofparcelsofmaterial(typically12,000) thestarbeforetheendofthecollapse,butmixingmaykeepsome at t = 0. They fall in towards the star or disk according to the ofitinthedisk.Thepossibleconsequencesarediscussedbriefly velocity profiles. The density and temperature along each par- inSection4.4. cel’s infall trajectory are used as inputto solve the adsorption- desorption balance. Both species start fully in the gas phase. The envelope is kept static for 3 105 yr before the onset of 2.6.Modelparameters × collapsetosimulatethepre-stellarcorephase.Thisisthesame valueasusedbyRodgers&Charnley(2003)andBWH08, and The standard set of parameters for our model corresponds to itis consistentwith recentobservationsby Enochetal. (2008). CaseJfromYorke&Bodenheimer(1999),exceptthatthesolid- The amount of gaseous material left over near the end of the bodyrotationrateisreducedfrom10 13to10 14s 1toproduce − − − pre-collapse phase is also consistent with observations, which amorerealisticdiskmassof0.05 M ,consistentwithobserva- tions (e.g.Andrews&Williams 2007⊙a,b). The envelopehas an showthatthe onsetofH2O ice formationis aroundan AV of 3 (Whittetetal. 2001). Insix ofoureightparametersets, thead- initialmassof1.0M andaradiusof6700AU,andtheeffective soundspeedis0.26k⊙ms 1. sorptiontimescales ofH2O at theedgeof thecloudare shorter − than the combined collapse and pre-collapse time (Table 1), The originalCase J (with Ω = 10 13 s 1), which was also 0 − − so all H O is expected to freeze out before entering the disk. 2 used in BWH08, is used here as a referencemodelto enable a Because of the larger cloud size, the adsorption timescales are direct quantitative comparison of the results with an indepen- muchlongerinCases1and5,andsomeH Omaystillbeinthe 2 dent method. This case results in a much higher disk mass of gasphasewhenitreachesthedisk. 0.43 M . Althoughsuch high disk masses are not excludedby Nochemicalreactionsareincludedotherthanadsorptionand observa⊙tionsand theoretical arguments(Hartmannetal. 2006), thermal desorption, so the total abundance of CO and H O in 2 they are considered less representative of typical young stellar eachparcelremainsconstant.Theadsorptionrateincm 3s 1 is − − objectsthanthedisksoflowermass. takenfromCharnleyetal.(2001): The parameters M , c and Ω are changed in one direc- 0 s 0 tion eachto create a 23 parametergrid.The two valuesfor Ω , T 10 14and10 13s 1,covertherangeofrotationratesobservedb0y Rads(X)=(4.55 10−18cm3K−1/2s−1)nHng(X) g , (35) − − − × sM(X) Goodmanetal.(1993).Theothervariationsarechosenfortheir oppositeeffect:alowersoundspeedgivesamoremassivedisk, wheren isthe totalhydrogendensity,T thegastemperature, H g andalowerinitialmassgivesalessmassivedisk.Thefullmodel n (X)thegas-phaseabundanceofspeciesXandM(X)itsmolec- g is run for each set of parametersto analyse how the chemistry ular weight. The numerical factor assumes unit sticking effi- can vary betweendifferentobjects. The parametergrid is sum- ciency, a grain radius of 0.1 µm and a grain abundance n of gr marisedinTable1.OurstandardsetisCase3andourreference 10 12withrespecttoH . − 2 setisCase7. ThethermaldesorptionofCOandH Oisazeroth-orderpro- 2 Table 1 also lists the accretion time and the adsorption cess: timescale forH O atthe edgeoftheinitialenvelope.For com- 2 E (X) parison, Evansetal. (2009) found a median timescale for the R (X)=(1.26 10 21cm2)n f(X)ν(X)exp b , (36) des − H embeddedphase (Class 0 and I) of 5.4 105 yr from observa- × "− kTd # × tions. It should be noted that the end point of our model (t ) acc whereT isthedusttemperatureand d is not yet representative of a typical T Tauri disk (see Section 3.2).Nevertheless,itallowsanexplorationofhowthechemistry n (X) f(X)=min 1, s , (37) respondstoplausiblechangesintheenvironment. N n " b gr# Visseretal.:Thechemicalhistoryofmoleculesincircumstellardisks.I.Ices 7 Table 2.Bindingenergiesanddesorbingfractionsforthefour- Inbothcases,thediskfirstemergesat2 104 yr,whenthe flavourCOevaporationmodel.a FHC contractsto becometheprotostar,buti×t isnotuntila few 104 yr later that the disk becomes visible on the scale of Fig. Flavour Eb(CO)/k(K)b Fractionc 4. The regions of high density (nH > 105–106 cm−3) are still 1 855 0.350 contractingatthattime,butthegrowingdiskseventuallycause 2 960 0.455 themtoexpandagain. 3 3260 0.130 Materialfallsinalongnearlyradialstreamlinesfaroutinthe 4 5773 0.065 envelope and deflects towards the midplane closer in. When a parcelentersthedisk,itfollowstheradialmotioncausedbythe a BasedonVitietal.(2004). viscous evolution and accretion of more material from the en- b TheratesforFlavours1–3arecomputed fromEq.(36)with X = velope.Atanytime,conservationofangularmomentumcauses CO.TherateforFlavour4isequaltotheH Odesorptionrate. 2 c ThesenumbersindicatefractionsofadsorbingCO:35%ofallad- partofthedisktomoveinwardsandpartofittomoveoutwards. sorbingCObecomesFlavour1,andsoon. An individualparcel entering the disk may move out for some timebeforegoingfurtherin.Thisleadstheparcelthroughsev- eraldensityandtemperatureregimes,whichmayaffectthegas- iceratiosorthechemistryingeneral.Theback-and-forthmotion with n (X) the solid abundanceof species X and N = 106 the occursespeciallyatearlytimes,whentheentiresystemchanges s b typicalnumberofbindingsitespergrain.Thenumericalfactor more rapidly than at later times. The parcel motions are visu- inEq.(36)assumesthesamegrainpropertiesasinEq.(35).The alisedinFigs.5and6,whereinfalltrajectoriesaredrawnfor24 pre-exponential factor, ν(X), and the binding energy, E (X)/k, parcelsendingupatoneofeightpositionsatt :atthemidplane b acc aresetto 7 1026 cm 2 s 1 and855K forCO andto 1 1030 ornearthesurfaceatradialdistancesof10,30,100and300AU. − − cm 2s 1and×5773KforH O(Bisschopetal.2006;Frase×retal. Onlyparcelsenteringthediskbeforet 2 105yrinourstan- 200−1).− 2 dardmodelort 1 105yrinourrefe≈renc×emodelundergothe ≈ × Using a single E (CO) value means that all CO evaporates back-and-forthmotion.Theparcelsendingupnearthemidplane b at the same temperature. This would be appropriate for a pure allenteredthediskearlierthantheonesendingupatthesurface. CO ice, but not for a mixed CO-H O ice as is likely to form Accretion from the envelope onto the disk occurs in an 2 inreality.Duringthewarm-upphase,partoftheCO istrapped inside-outfashion.Becauseofthegeometryofthedisk(Fig.1), inside the H O ice until the temperaturebecomes high enough mostofthematerialentersneartheouteredgeandpreventsthe 2 fortheH Otoevaporate.Recentlaboratoryexperimentssuggest oldermaterialfrommovingfurtherout.Ourflowinsidethedisk 2 thatCOdesorbsfromaCO-H Oiceinfoursteps(Collingsetal. ispurelylaminar,sosomematerialnearthemidplanedoesmove 2 2004). This can be simulated with four “flavours” of CO ice, outwardsunderneaththenewermaterialathigheraltitudes. each with a different E (CO) value (Vitietal. 2004). For each Because of the low rotation rate in ourstandard model,the b flavour,thedesorptionisassumedtobezerothorder.Thefour- diskdoesnotreallybegintobuildupuntil1.5 105 yr(0.6tacc) × flavourmodelissummarisedinTable2. aftertheonsetofcollapse.Inaddition,mostoftheearlymaterial to reach the disk proceeds onto the star before the end of the accretionphase,sothediskatt consistsonlyofmaterialfrom acc 3. Results theedgeoftheoriginalcloud(Fig.7,lefttwopanels). The disk in our reference model, however, begins to form Resultsarepresentedin thissectionforourstandardandrefer- rightaftertheFHC–protostartransitionat2 104 yr.Asinthe encemodels(Cases3and7)asdescribedinSection2.6.These standardmodel,alayeredstructureisvisible×inthedisk,butitis caseswillbecomparedtotheotherparametersetsinSection4.1. morepronouncedhere.Attheendofthecollapse,themidplane AppendixAdescribesaformulatoestimatethediskformation consistsmostlyofmaterialthatwasoriginallyclosetothecentre efficiency, defined as Md/M0 at the end of the collapse phase, oftheenvelope(Fig.7,righttwopanels).Thesurfaceandouter basedonafittoourmodelresults. partsofthediskaremadeupprimarilyofmaterialfromtheouter partsoftheenvelope.ThiswasalsoreportedbyBWH08. 3.1.Densityprofilesandinfalltrajectories 3.2.Temperatureprofiles Inourstandardmodel(Case3),theenvelopecollapsesin2.5 105 yrtogiveastarof0.94 M andadiskof0.05 M .There×- Whenthestarturnsonat2 104yr,theenvelopequicklyheats maining 0.01 M has disappea⊙red through the bipola⊙r outflow. up and reaches more than 1×00 K inside of 10 AU. As the disk The centrifugalr⊙adius in our standard model at t is 4.9 AU, grows,itsinteriorisshieldedfromdirectirradiationandthemid- acc butthediskhasspreadto400AUatthattimeduetoangularmo- planecoolsdownagain.Atthesametime,theremnantenvelope mentumredistribution.Thedensitiesinthediskarehigh:more material abovethe disk becomesless dense and warmer. As in than 109 cm 3 at the midplane inside of 120 AU (Fig. 4, left) Whitneyetal. (2003), the outflow has some effect on the tem- − and morethan 1014 cm 3 near0.3 AU. The correspondingsur- peratureprofile.Photonsemittedintotheoutflowcanscatterand − face densities of the disk are 2.0 g cm 2 at 120 AU and 660 g illuminatethediskfromthetop,causingahigherdisktempera- − cm 2at0.3AU. turebeyondR 200AUthaniftherewerenooutflowcone.At − ≈ Duetothehigherrotationrate,ourreferencemodel(Case7) smallerradii,thedisktemperatureislowerthaninano-outflow getsamuchhigherdiskmass:0.43M .Thisvalueisconsistent model. Without the outflow, the radiation would be trapped in withthe massof0.4 M reportedbyB⊙WH08. Overall,the ref- theinnerenvelopeandinnerdisk,increasingthetemperatureat erence densities from o⊙ur semi-analytical model (Fig. 4, right) smallradii. comparewellwiththosefromtheirmorerealistichydrodynam- At t = t in our standard model, the 100- and 18-K acc icalsimulations;thedifferencesaregenerallyless thana factor isotherms(whereH OandpureCOevaporate)intersectthemid- 2 oftwo. planeat20and2000AU(Fig.8,left).Thediskinourreference 8 Visseretal.:Thechemicalhistoryofmoleculesincircumstellardisks.I.Ices Fig.4.Total densityat fourtime steps forourstandardmodel(Case 3;left) and ourreferencemodel(Case 7;right).The time is giveninyearsaswellasinunitsoftheaccretiontime,witha(b)meaninga 10b.Thedensitycontoursincreasebyfactorsoften goinginwards;the 105-cm 3 contoursare labelledin the standardpanelsan×d the 106-cm 3 contoursin the referencepanels.The − − whitecurvesindicatethesurfaceofthediskasdefinedinSection2.2(onlyvisibleinthreepanels).Notethedifferentscalebetween thetwosetsofpanels. model is denser and therefore colder: it reaches 100 and 18 K at 5 and 580 AU on the midplane (Fig. 8, right). Our radiative transfermethodis a morerigorousway to obtainthe dusttem- perature than the diffusion approximationused by BWH08, so ourtemperatureprofilesaremorerealisticthantheirs. Compared to typical T Tauri disk models (e.g. D’Alessioetal. 1998, 1999, 2001), our standard disk at t is warmer. It is 81 K at 30 AU on the midplane, while the acc closest model from the D’Alessio catalogue is 28 K at that point.Ifourmodelisallowedtorunbeyondt ,partofthedisk acc accretesfurtherontothestar.Att=4t (106yr),thediskmass acc goes down to 0.03 M . The luminosity of the star decreases during this period (D’⊙Antona&Mazzitelli 1994), so the disk cools down: the midplane temperature at 30 AU is now 42 K. Meanwhile, the dust is likely to grow to larger sizes, which wouldfurtherdecreasethetemperatures(D’Alessioetal.2001). Hence,itisimportanttorealisethatthenormalendpointofour models does not represent a “mature” T Tauri star and disk as typicallydiscussedintheliterature. 3.3.Gasandiceabundances Ourtwo species, CO andH O, beginentirelyin the gasphase. 2 Theyfreezeoutduringthestaticpre-stellarcorephasefromthe centreoutwardsduetothedensitydependenceofEq.(35).After thepre-collapsephaseof3 105yr,onlyafewtenthsofpercent Fig.9.GaseousCOasafractionofthetotalCOabundance(top) × ofeachspeciesisstillinthegasphaseat3000AU.About30% and idem for H O (bottom) at two time steps for our standard 2 remainsinthegasphaseattheedgeoftheenvelope. model(Case3).Theblackcurvesindicatethesurfaceofthedisk Up to the point where the disk becomes important and the (onlyvisibleintwopanels).Theblackareanearthepoleisthe system loses its sphericalsymmetry,our modelgives the same outflow,wherenoabundancesarecomputed.Notethedifferent resultsastheone-dimensionalcollapsemodels:thetemperature spatial scale between the two panelsof each set; the small box quicklyrisestoafewtensofKinthecollapsingregion,driving intheleftCOpanelindicatesthescaleoftheH2Opanels. some CO (evaporating around 18 K in the one-flavour model) Visseretal.:Thechemicalhistoryofmoleculesincircumstellardisks.I.Ices 9 Fig.5. Infall trajectories for parcels in our standard model (Case 3) ending up near the surface (top panels) or at the midplane (bottompanels)at radialpositionsof10,30, 100and300AU (dottedlines) att = t . Each panelcontainstrajectoriesforthree acc parcels, which are illustrative for material ending up at the given location. Trajectories are only drawn up to t = t . Diamonds acc indicate where each parcel enters the disk; the time of entry is given in units of 105 yr. Note the different scales between some panels. Fig.6.SameasFig.5,butforourreferencemodel(Case7). intothegasphase,butkeepingH O(evaporatingaround100K) isnottakenintoaccounthere;thispossibilitywillbediscussed 2 onthegrains. inSection4.3. As the disk grows in mass, it provides an increasingly Thediskinourreferencemodelismoremassiveandthere- large body of material that is shielded from the star’s radia- forecolder.Afterabout5 104yr,theouterpartdropsbelow18 × tion,andthatisthusmuchcolderthanthesurroundingenvelope. K.COarrivinginthisregionre-adsorbsontothegrains(Fig.10, However,thediskinourstandardmodelnevergetsbelow18K top).Another2 105 yrlater,att = t , 19%ofallCO in the acc × beforetheendofthecollapse(Section3.2),soCOremainsinthe diskisinsolidform.Movingoutfromthestar,thefirstCO ice gasphase(Fig.9,top).NotethattrappingofCOintheH Oice isfoundatthemidplaneat400AU.Thesolidfractiongradually 2 10 Visseretal.:Thechemicalhistoryofmoleculesincircumstellardisks.I.Ices Fig.7.Positionofparcelsofmaterialinourstandardmodel(Case 3;left)andourreferencemodel(Case7;right)attheonsetof collapse (t = 0) and at the end of the collapse phase (t = t ). The parcels are colour-coded according to their initial position. acc A layered structure is visible in the disk, with materialnear the surface and at the outer edge originatingfrom further out in the envelopethanthematerialnearthemidplane.Thiseffectismostpronouncedinourreferencemodel.Thegreyparcelsfromt = 0 areinthestarorhavedisappearedthroughtheoutflowatt=t .Notethedifferentspatialscalebetweenthetwopanelsofeachset; acc thesmallboxintheleftpanelindicatesthescaleoftherightpanel. Fig.8.Dusttemperature,asinFig.4.Contoursaredrawnat100,60,50,40,35,30,25,20,18,16,14and12K.The40-and20-K contoursarelabelledinthestandardandreferencepanels,respectively.The18-and100-Kcontoursaredrawnasthickgreylines. ThewhitecurvesindicatethesurfaceofthediskasdefinedinSection2.2(onlyvisibleinfourpanels). increases to unity at 600 AU. At R = 1000 AU, nearly all CO model (Fig. 9, bottom). The surface of the disk holds gaseous issoliduptoanaltitudeof170AU. ThesolidandgaseousCO H OouttoR=41AU,andoverall13%ofallH Ointhediskis 2 2 regionsmeetclosetothe18-Ksurface.Thedensitiesthroughout inthe gasphase.Thisnumberismuchlowerin thecolderdisk mostofthedisk arehighenoughthatoncea parcelofmaterial ofourreferencemodel:only0.4%.Thesnowlinenowliesat7 goesbelow theCO desorptiontemperature,all CO rapidlydis- AU and gaseous H O can be found out to 17 AU in the disk’s 2 appears from the gas. The exception to this rule occurs at the surfacelayers(Fig.10,bottom). outeredge,near1500AU,wheretheadsorptionanddesorption timescales are longer than the dynamical timescales of the in- falling material. Small differences between the trajectories of Usingtheadsorption-desorptionhistoryofalltheindividual individual parcels then cause some irregularities in the gas-ice infallingparcels,theoriginalenvelopecanbe dividedintosev- profile. eral chemical zones. This is trivial for our standard model. All COinthediskisinthegasphaseandithasthesamequalitative TheregioncontaininggaseousH Oissmallatalltimesdur- history: it freezes out before the onset of collapse and quickly 2 ingthecollapse.Att=t ,thesnowline(thetransitionofH O evaporatesasitfalls in.H O also freezesoutinitially andonly acc 2 2 from gas to ice) lies at 15 AU at the midplane in our standard returnstothegasphaseifitreachestheinnerdisk.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.