ebook img

The centre-to-limb variations of solar Fraunhofer lines imprinted upon lunar eclipse spectra - Implications for exoplanet transit observations PDF

1.5 MB·English
by  Fei Yan
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The centre-to-limb variations of solar Fraunhofer lines imprinted upon lunar eclipse spectra - Implications for exoplanet transit observations

Astronomy&Astrophysicsmanuscriptno.CLV-paper (cid:13)cESO2015 January13,2015 The centre-to-limb variations of solar Fraunhofer lines imprinted upon lunar eclipse spectra Implications for exoplanet transit observations F.Yan1,2,3,R.A.E.Fosbury3,M.G.Petr-Gotzens3,G.Zhao1,andE.Pallé4,5 1 KeyLaboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A DatunRoad, ChaoyangDistrict,100012Beijing,China 5 e-mail:[email protected], [email protected] 1 2 UniversityofChineseAcademyofSciences,19AYuquanRoad,ShijingshanDistrict,100049Beijing,China 0 3 EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748GarchingbeiMünchen,Germany 2 4 InstitutodeAstrofísicadeCanarias,C/víaLáctea,s/n,38205LaLaguna,Tenerife,Spain n 5 Dpto.deAstrofísica,UniversidaddeLaLaguna,38206LaLaguna,Tenerife,Spain a J Received—–;accepted—– 0 1 ABSTRACT ] P Theatmospheresofexoplanetsarecommonlystudiedbyobservingthetransitoftheplanetpassinginfrontofitsparentstar. The E obscurationofpartofthestellardiskduringatransitwillrevealaspectsofitssurfacestructureresultingfromgeneralcentre-to-limb . variations(CLVs). Thesebecomeapparentwhenformingtheratiobetweenthestellarlightinandoutoftransit. Thesephenomena h canbeseenparticularlyclearlyduringtheprogressofapenumbrallunareclipse,wheretheEarthtransitsthesolardiskandmasks p differentregionsofthesolardiskastheeclipseprogresses. Wheninferringthepropertiesoftheplanetaryatmosphere,itisessential - o thatthiseffectoriginatingatthestarisproperlyaccountedfor. Usingthedataobservedfromthe2014-April-15lunareclipsewith r theESPaDOnSspectrograph mountedontheCanadaFranceHawaiiTelescope(CFHT),wehaveobtainedforthefirsttimeatime t s sequence of the penumbral spectra. These penumbral spectra enable us tostudy thecentre-to-limb variations of solar Fraunhofer a lineswhentheEarthistransitingSun. TheNaiandCaiiabsorptionfeaturesreportedfrompreviouslunareclipseobservationsare [ demonstrated to be CLV features, which dominate the corresponding line profiles and mask possible planetary signal. Detecting atmosphericspeciesinexoplanetsviatransitspectroscopymustaccountfortheCLVeffect. 1 v Keywords. planetsandsatellites:atmospheres–eclipse–Earth 6 0 3 1. Introduction isingtheatmospheresoftheseterrestrialexoplanetsisnotwithin 2 thereachofcurrentinstrumentation,thedetectionofsometheir 0 .With the discovery of almost 2000 exoplanets in the last atomicandmolecularcomponentsisverylikelytobecomepos- 1two decades, the characterisation of their atmospheres has be- siblewiththenextgenerationoflargeground-andspace-based 0come a new and rapidly-evolving field. Different atomic, telescopes(Hedeltetal.2013). TheEarthitselfcanbeusedasa 5 ionic, and molecular species have already been detected in benchmarkforthefuturedetectionofEarth-likeexoplanets,for 1 exoplanet atmospheres. Using Hubble Space Telescope data, example,usinglunareclipsestoobtainthetangentiallong-path : vCharbonneauetal. (2002) detected sodium in the atmosphere transmissionspectrumoftheEarth’satmosphere. iof HD 209458b for the first time by comparing the Nai dou- X Severallunareclipseobservationshavebeenmadewiththe blet absorptionlines in and out of transit. Snellenetal. (2008) aimofobtainingthetransmissionspectrumoftheEarth’satmo- rthenconfirmedtheNaiabsorptioninHD209458busingground- a sphere.Someofthesehavereportedtheanomalousbehaviourof based telescope data. Sodium has also been detected in sev- certain atomic absorption features. Palléetal. (2009, hereafter eralothergiantexoplanetssuchasHD189733b(Redfieldetal. P09)observedthelunareclipseof16August2008,andobtained 2008) and WASP-17b (Woodetal. 2011). Potassium was de- transmission spectra from the umbral lunar eclipse. In P09’s tectedinHD80606b(Colónetal.2012)andXO-2b(Singetal. spectra,theCaiiabsorptionfeaturesaredetectedandweakNai 2011),whileFossatietal.(2010)reportedthedetectionofMgii absorptions also appear. Vidal-Madjaretal. (2010, hereafter in WASP-12b. All of these used transmssion spectroscopy V10)observedthesamelunareclipseasP09,buttheyretrieved during transits. Molecular features have also been detected the transmission spectrum from the penumbral rather than the in exoplanet atmospheres, such as H O (Grillmairetal. 2008), 2 umbral eclipse. In V10, the authors detected relatively strong CO (Brogietal. 2012), CO2 (Swainetal. 2009), and CH4 Nai D lines absorption but no Caii absorption. Arnoldetal. (Swainetal.2008). (2014, hereafter A14) observed the penumbrallunar eclipse in In recent years, nearly 100 Earth-sized or smaller exoplan- December2010andtheirresultsaresimilartothoseofV10,i.e. ets have been discovered, one of them being in the habitable Nai absorption is detected while Caii is not. Yanetal. (2014) zoneofitshoststar(Quintanaetal.2014). Althoughcharacter- observedthelunareclipseofDecember2011andneithertheNai Articlenumber,page1of9 northeCaiiabsorptionfeaturesaredetectedinthetransmission spectrumobtainedfromtheumbraleclipse. The interpretation of these discrepancies is not straightfor- wardsincetheEarth’stransmissionspectrafromtheseobserva- tions are retrievedusing differentmethods. Althoughthere are Nai,Cai,andCaiilayersintheEarth’sionosphere,accordingto ourresearch,theNaiorCaiiabsorptionfeaturesintheobserved Earth’s transmission spectra are probably due to the centre-to- limb variation (CLV) of the solar lines rather than the absorp- tionsintheEarth’satmosphere. ThestrongsolarFraunhoferlineshaveprominentvariations in both line intensity and profile from centre to limb cross the solar disk. Athayetal. (1972) used the Fei line’s CLV spec- trumto generallyinterprettheCLV effect. Formoststrongso- Fig.1. AschematicofapenumbraleclipseasseenfromtheMoon. lar Fraunhoferlines, the normalisedspectralline fromthe cen- HerePenumbraAandPenumbraBrepresenttheviewsfromtwodiffer- tre disk is deeper than that from the limb. The observed CLV entpenumbrallocations(indicatedinFig.2). features are used to understand detailed solar physics and to guide the modelling work. For example, AllendePrietoetal. (2004)observedtheCLVofsolarlinesandusedthistotestnon- Moon),itistheintegrationoftheentiresolardisk. Theumbral Local ThermodynamicEquilibrium line formation calculations spectrumresults from the integratedlight of the solar disk that and Koesterkeetal. (2008) used the CLV data to test 3D solar is refracted by the Earth’s atmosphere into the umbral shadow hydrodynamicsimulations. (GarcíaMuñozetal.2012). Thelineshapeintheumbralspec- Since a lunar eclipse shares similarities with an exoplanet trumvaries,dependingonwhichpartofthesolardiskhasbeen transit, this CLV effect can also be present in transit spectra. refracted. However, the line shape difference between the um- The corresponding features will be considerably weaker since bralspectrumandthebrightMoonspectrumisrelativelysmall, theplanetonlyblocksasmallfractionofthestellarsurfacedur- andthepenumbralspectrumexhibitssignificantdifferences(see ingtransit. However,theCLVeffectcanstillhaveaninfluence Fig.3fordetails). ontheinterpretationofatomiclinedetectionsinexoplanetatmo- spheresandshouldbeproperlytreated. 2.1.TheApril2014lunareclipseobservations For the detection of sodium in HD 209458b, Charbonneauetal. (2002) considered the CLV in the Nai Weusedthefiber-fedESPaDOnSspectrographmountedonthe D lines and concludedthat the contributionwas small for their CanadaFranceHawaiiTelescope(CFHT)forourobservations. observation. Redfield et al. (2008) modelled the CLV effect The spectrograph covers a wavelength range of 370–1050 nm on the Nai D lines in HD 189733b (the CLV is referred to in a single exposure. The ‘object only’ mode was used to as differential limb darkening in their paper), and the model achievehighspectralresolvingpower(averageresolution:λ/∆λ shows that this contributionis much smaller than the observed ∼ 81,000). The observation began when the Moon was in the Nai absorption. However,for stellar lines that have significant Earth’s umbra and lasted until the Moon was fully out of the CLV effects or if the observation is performed at high spectral Earth’sshadow.Weusednon-siderealtrackingtolocatethefiber resolution,thiseffectcouldbecomeimportant. at the Eudoxus crater during the entire observation. The Eu- We observedthelunareclipseinApril2014andobtaineda doxuscrater is chosen because it enables us to access different set of spectra at differentstages of the eclipse. The changesin phases of the umbraleclipse as its trace is close to the umbral thesolarlineprofilescausedbytheCLVcanclearlybeseenin center. Fig. 2 shows the trace of Eudoxus with respect to the ourdata. InSection2,weuseourlunareclipsedatatodemon- Earth’s shadow. We obtained a sequence of spectra from the stratethiseffectandcompareitwiththesolarspectralAtlas. In umbra,penumbra,andbrightMoon,andweperformedthestan- Section 3, the Nai and Caii features observed in previous lu- dard data reductionprocedureusing the CFHT Upena pipeline nareclipseobservationsarecomparedwiththespectralfeatures 1. causedbyCLV.InSection4,wefurtherdiscusstheCLVeffect Thepenumbralspectralsequenceconsistsofabout60spec- on exoplanettransit spectroscopy. The telluric sodium absorp- trafromdifferentpenumbrallocations,enablingustostudythe tion and the Raman scattering in lunar eclipse spectra are also line shape change. We labelthe locationclose to the umbraas discussedinSection4. PenumbraAandthelocationclosetothebrightMoonasPenum- braB(Fig.1 andFig.2).Fig.3showsthechangesoftheHαline profile.Thespectrainthisfigurearetheratiosofthepenumbral 2. TheeffectofCLVonlunareclipseobservations spectra to a bright Moon spectrum. The bottom of this figure A penumbral lunar eclipse happens when the Moon enters the showstheratioofatypicalumbraltothebrightMoonspectrum Earth’s penumbral shadow. An observer on the Moon in the forcomparison. penumbra would see the Earth blocking different parts of the Atthebeginningofourpenumbraleclipseobservation(cor- solar disk (as shown in Fig. 1). Thus the penumbral spectrum responding to Penumbra A), the line shape is generally shal- comprises the integrated spectrum of the Sun, which is partly lower than that in the bright Moon spectrum, which results in eclipsedbytheEarth.Whenobservingdifferentlocationsonthe the ‘emission’ feature in Fig. 3. As the eclipse proceeds, the Moon in the Earth’s penumbra, the observed spectra are inte- Hα line becomes deeper. When the observed location is close gratedfromdifferentpartsofthesolardisk.Sincethesolarlines to Penumbra B, the Hα line becomes the deepest, even deeper vary in profile from the centre to limb, the line profiles in the thaninthebrightMoonspectrum.AsthischangeoftheHαline penumbralspectravaryastheeclipseproceeds.Forthespectrum observedfromtheun-eclipsedMoon(whichiscalledthebright 1 http://www.cfht.hawaii.edu/Instruments/Upena/ Articlenumber,page2of9 F.Yan etal.:Thecentre-to-limbvariationsofsolarFraunhoferlinesimprinteduponlunareclipsespectra 1.2 1.1 1.0 Penumbra A o ati r 0.9 Penumbra B 0.8 Umbra Fig. 2. The trajectory of the observed Eudoxus crater for the 15 April 2014 lunar eclipse. The arrow on the trajectory indicates the 0.7 moving direction of the crater. Here we choose two points on the 6500 6520 6540 6560 6580 6600 6620 trajectory (A and B) to indicate different eclipsing stages. Point A Wavelength(Å) andBcorrespondtothePenumbraAandPenumbraBviewssketched in Fig. 1. The figure is reproduced from the NASA eclipse website Fig.3. ThechangeofHαlineshapeindifferentpenumbraspectra.The (http://eclipse.gsfc.nasa.gov/lunar.html). spectraaretheratiosofthenormalisedpenumbraltobrightMoonspec- tra.Theratiosareshiftedsequentiallyby0.02forclarity.Eightpenum- bralspectrawhichweretakeneverytenminutesarechosentorepresent shapeiscorrelatedwiththeeclipsegeometry,weconcludethat differentpenumbrallocations. Theupperspectrumcorrespondstothe itresultsfromtheCLVeffect. penumbral positionclosetotheumbra(PenumbraAinFig.2), while Sincepreviousstudiesof lunareclipse observationsuse the thelowerspectrumcorrespondstothepositionclosetothebrightMoon penumbral spectrum obtained at a position close to the umbra (PenumbraBinFig.2).Thenormalisedratiooftheumbraltothebright (i.e. PenumbraA),wewillonlydiscussthistypeofpenumbral Moonspectrumisalsoshown atthebottomof thefigureforcompar- spectrumbelow. ison. Thisumbral spectrum isthe sumof seven individual exposures thatweretakenatpositionsclosetotheedgeoftheumbra(i.e.closeto PenumbraA).Thetotalobservedtimeforthisumbralspectrumisabout 2.2.CLVfeaturesinthespectrum 20minutes. Theumbral spectrumhasarelativelylowsignal-to-noise ratioandstrongtelluricabsorptionlines.Theradialvelocitydifferences Fig. 4a displaysthe ratio of an observedpenumbralto a bright betweenthesespectrahavebeencorrected. Moonspectrum. Herethepenumbralspectrumwastakenwhen theobservedlocationwasclosetotheumbra,whichmeansthe penumbral spectrum is mainly from the limb part of the solar disk (correspondingto Penumbra A in Fig. 1). In contrast, the nounced than in the adjacent continuum (Athay 1972). The brightMoonspectrumis from the wholesolar disk andso it is continuumlimbdarkeningismoreprominentatblue/UVwave- themixoflimbandcentresolarspectra. Thisspectralratiocan lengthsbecauseoftheamplificationofthetemperatureinduced therefore be qualitatively regarded as the limb to centre spec- intensityvariationintheWienside(shortwavelengthregion)of trumplusaconstant. ItcanbeseeninFig.4athatthesolarline theblackbodycurve.ThisalsomakesthemeanCLVfeaturesbe- featuresclearlyshowupespeciallytowardsthebluepartofthe comemoresignificantforthelineslocatedattheblue/UVwave- spectrum.StrongabsorptionlinessuchastheCaiiT(Caiinear- lengths. infraredtriplet),CaiiH&K,Hα,Hβ,andtheMgiblinesappear InadditiontothegeneralCLVfeaturesdescribedabove,the prominentlywhiletheNaiDlinesfeaturesarerelativelyweak. detailedprofilehas a complicatedstructure, whichdiffersfrom To better demonstrate the CLV effect in a lunar line to line. Forexample, the line core becomesbroaderin the eclipse, the solar spectrum from the Kitt Peak Solar Atlas limbspectrumthaninthecentrespectrum,whichmakestheline (Brault&Testerman 1972; Kurucz 2005) is used as a compar- coreCLVfeaturedifferfromthatofthelinewing. Thiscanbe ison. TheAtlascomprisestwo setsof spectra: oneobservedat seenforexampleintheCaiiTandNaiDlinesshowninFig.5 thecentreofthesolardiskwithµ = 1.0(whereµ = cos(θ),θis and 6. The line core CLV is due to the Doppler broadening, the angle between the normal to the solar surface and the line whichis strongerin the limbthanin the centrespectrum. This of sight)andthe otherat a limbpositionwith µ = 0.2. All the differentialDopplerbroadeningmaybe interpretedeitherasan spectra were taken when the Sun was quiet. The ratio of the increasedDopplervelocitywithheightorasananisotropyinthe centre to limb Solar Atlas is shown in Fig. 4b and one can see Dopplervelocityfieldwherethehorizontalvelocityexceedsthe thattheoverallfeaturesareverysimilartothoseinFig.4a. verticalvelocity(Athay1972). Othersolar phenomenasuchas ThesegeneralfeaturesshowthatthestrongFraunhoferlines theconvectivemotionofthegranules(Dravins1982) alsocon- aredeeperinthecentrethaninthelimbspectrum,whichmeans tribute to the detailed CLV features, but these are beyond the the mean limb-darkening within the spectral line is less pro- scopeofthispaper. Articlenumber,page3of9 Fig.4. (a)TheratioofapenumbralspectrumtoabrightMoonspectrumobservedonApril152014byCFHT.Thesolarlinesfeaturesremain intheratiospectrum. ThedataisbinnedtoalowresolutionandtheRVdifferencebetweenthetwospectrahasbeencorrected. Thedashedline regioniswherethetelluricH OandO linesareprominent.Theyarenotshownhereasweconcentrateonthesolarspectralfeature.(b)Theratio 2 2 ofthelimbsolarspectrumtothecentresolarspectrum.ThedataarefromtheKittPeakSolarAtlasandbinnedtoalowresolution. 3. CaiiandNaifeaturesinlunareclipse 3.1.CaiiandNaifeaturesinpreviouslowspectralresolution observations observation Palléetal. (2009) observed the 16 August 2008 lunar eclipse Since ionised calcium and neutral sodium are present in the at a relatively low resolution (6.8 Å in the optical wavelength Earth’s ionosphere and previousstudies of lunar eclipse obser- range). Theyregardedthepenumbralspectrumasthereference vationsclaimedthe detectionof theirabsorptionlines, itis im- spectrumandobtainedtheEarth’stransmissionspectrumbyus- portanttounderstandhowthesolarCLVaffectstheirdetections ingtheratiooftheumbraltothepenumbralspectrumtocancel in the Earth’s transmission spectrum. For the CLV of the Caii out the solar spectral features. However, because of the CLV, Fraunhoferlines(e.g.theCaiiTandCaiiH&K),wechoosethe thesolarabsorptionlineprofilesaredifferentintheumbraland Caii 8662Å line as a demonstration. Fig. 5 shows the 8662Å penumbralspectra.Thesolarlineshapesintheumbralspectrum line from both the Kitt Peak Solar Atlas and the CFHT lunar aresimilartothebrightMoonspectrumwhilethelineshapesin eclipsedata.Theratioofthesolarlimbtocentrespectrum(mid- thepenumbralspectrumhaveasignificantCLVeffect. Thusthe dle panel in Fig. 5) and the ratio of penumbra to bright Moon CaiiTandCaiiH&Klines,aswellastheweakNaiDlinesab- spectrum(bottompanel)arequitesimilar. Fig.6showstheNai sorptionfeaturesinP09’stransmissionspectrum,aremostlikely D lineat5889Å.TheCLVfeatureoftheNaiD lineissimilar tobetheresultoftheCLVeffect. 2 2 to,butmuchweakerthan,theCaiiTlines. Inthemiddlepanel Figure 7 shows the detailed features at the positions of the ofthisfigure,theone Åresolutionspectrum(shownasthegreen CaiiTlines. Heretheratioofthecentretolimbspectrumfrom line)smearsthefeature,indicatinghowtheinstrumentalresolu- theKittPeakSolarAtlas(Fig.7a) isusedtomimictheumbral tioncanaffecttheobservedstrengthoftheCLVfeature. topenumbralspectralratio. OurCFHTdataarealsoshownfor Articlenumber,page4of9 F.Yan etal.:Thecentre-to-limbvariationsofsolarFraunhoferlinesimprinteduponlunareclipsespectra Fig.5. Thedetailedlineshapeof Caii8662Åline. Toppanel: the Fig.6. ThesameasFig.5butforNaiD lineat5890Å. limbandcentrespectrafromtheKittPeakSolarAtlas. Middlepanel: 2 the ratio of the limb to centre Kitt Peak spectrum. The green line is samedataconvolvedto1 Åresolution. Bottompanel: theratioofthe TheNaiD line featuresarerelativelyweakin P09. Thisis penumbratobrightMoonspectrumfromCFHTlunareclipsedata(the interpretedasCLVfeaturesoftheNaidoubletbeingweakerthan samedatasetasshowninFig4a). other strong Fraunhofer lines and consequentially not strongly apparentatlowresolution. comparison. Fig. 7b is the ratio of the bright Moon spectrum 3.2.Naifeaturesinprevioushighspectralresolution to the penumbral spectrum from the CFHT observation and it observations showsabehaviourverysimilartothatconstructedfromtheSolar Atlas. Fig.7dshowsthesamedataasinFig.7bbutconvolved Vidal-Madjaretal. (2010) observed the 16 August 2008 lunar totheresolutionoftheP09data. ItisclearthattheCLVfeature eclipsewithhigh-resolutionspectroscopyandtheyobtainedthe intheCFHTdataissimilartothespectruminP09(Fig.7c). transmissionspectrumbyusingtheratioofthepenumbraltothe Articlenumber,page5of9 brightMoonspectrum.Intheirresultingtransmissionspectrum, theNaiDfeaturesarenotwellcancelledoutandthezerolevel shift (an offset of the spectral counts) is applied to correct the broad features at Nai D positions (Fig. 10 in V10). This cor- rectionresultsinadeeper‘absorption’featureatthelinecentre, which the authorsinterpretto be the atomicsodium absorption oftheEarth’satmosphere.However,weconcludethatthisisthe CLV featureof the Nai D lines and the featureat the line core originatesfromthedifferentialDopplerbroadeningbetweenthe centreandlimbsolarspectraasdiscussedinSection2.2. Arnoldetal. (2014) observed the 21 December 2010 lunar eclipse with two high-resolution ESO spectrographs: HARPS andUVES.TheyappliedasimilarmethodasV10andobtained the high-resolution transmission spectrum from the penumbral spectrum. IntheresultingtransmissionspectrumfromHARPS, the Nai D features occur (Fig. 9 in A14) and the authors use a Raman scattering modelto correctthe broadsignature of the linewing(theRamanscatteringwillbediscussedinthenextsec- tion). Thiscorrectionagainresultsinadeeper’absorption’fea- tureatthelinecore,whichissimilartotheresultinV10. They also applied a wavelength-dependentlimb darkeningto correct thepenumbralspectrum.Thelimbdarkeningtheyusedisalow- resolutionmodel(severalnanometres),thusitonlycorrectsthe limb darkening of the continuum while the CLV of the Nai D line remains in the ratio of the penumbral to the bright Moon spectrum. WereanalysedtheHARPSdatafromthe21December2010 lunar eclipse using the ratio of the bright Moon to penumbral Moon spectrum to simulate the effective altitude calculation method(Equation2inA14). Fig.8showstheresultofoursim- ulation. The top panel is the original ratio of the bright Moon tothepenumbralMoonspectrum. Thisissimilartothebottom figure of Fig. 16 in A14. The middle panel is the ratio spec- trum after the radial velocity (RV) correction. The RV differ- encebetweenthebrightMoonandthe penumbralMoonisdue tothemotionbetweentheEarth,Moon,andSun,aswellasthe Rossiter-McLaughlineffect(Yanetal. inpreparation). Wecor- rectthisRVdifferencetoperfectlyalignthesolarspectrallines. Fig. 8. The CLV features in the Nai D lines. Top panel: ratio of AftertheRVcorrection,theCLVfeatureoftheNaiDlinesap- thebrightMoontopenumbralspectrumfromtheHARPSobservation pearsclearly,andissimilartoFig.9inA14. Thebottompanel inDecember2010. Middlepanel: sameastop,exceptwiththeradial inFig.8istheratioofthecentretolimbspectrumfromtheKitt velocitycorrectionsapplied.Bottompanel:thecentretolimbspectrum fromtheKittPeakSolarAtlas. Peak SolarAtlas andit correspondsclosely to the featurefrom thelunareclipseobservation. In fact, the Nai D feature in V10 is basically the same as thatinA14exceptatalowerresolution.AsthespectrumofP09 of NaiDdoublet. BelowwequantitativelydiscusstheRingef- isin a muchlowerresolution,theNaiD featurein P09isonly fectcontributioninboththeumbralandpenumbralspectra. marginally observed. By comparing the Nai D feature in the GarcíaMuñoz&Pallé (2011) modelled the forward- threepapers,wecanseethattheappearanceoftheCLVfeature scatteredsunlightspectrumduringa lunareclipse. Theirresult isaffectedbythedataanalysismethod,spectralresolution,and shows that, at wavelength around Nai D doublet, the typical theradialvelocitycorrection. amount of the forward-scattered sunlight received at the lunar surface is 2×10−7 of the flux from the unobstructedSun (i. e. the bright Moon). The amount here is for the atmospheric 4. Discussion model containing molecular and aerosol scattering and O 3 absorption, i. e. model dIII in GarcíaMuñoz&Pallé (2011). 4.1.Theforward-scatteredsunlightandtheRingeffect In order to estimate the contribution of the scattered light, we The forward-scattered sunlight from the Earth’s terminator at- use our CFHT observation to generate an eclipse light curve. mosphere also contributes to the irradiance of the eclipsed Fig. 9 shows the observed fluxes, which are normalised to a Moon(Link1972;Vollmer&Gedzelman2008).Intheforward- bright Moon spectrum taken at the meridian. The flux of the scattered sunlight, there is a Raman scattering component that forward-scattered sunlight can be regarded as constant since it transferscontinuumphotonsintoasolarabsorptionlinetomake is a diffuse component and the scattering angle changes little the scattered line shallower. This filling-in of Fraunhoferlines duringthe eclipse. Itis clearthatthescattered lightproportion iscalledtheRingeffect(Grainger&Ring1962)andcanchange is larger for an eclipse spectrum taken at a position close to thesolarlineshapeinalunareclipsespectrum(Yanetal.2014). the umbral center where the irradiance of the lunar surface is ThisRingeffectwasemployedbyA14tocorrectthelineshape small. For the umbral spectrum, the scattered light proportion Articlenumber,page6of9 F.Yan etal.:Thecentre-to-limbvariationsofsolarFraunhoferlinesimprinteduponlunareclipsespectra Fig.7. TheCLVfeaturesintheCaiiTlines.(a)Topleft:ratioofthecentretolimbspectrumfromtheKittPeakSolarAtlas.(b)Topright:ratio ofthebrightMoonspectrumtothepenumbralspectrumfromourCFHTdata.(c)Bottomleft:theCaiiTfeatureinP09’stransmissionspectrum. (d)Bottomright:thesameas(b)exceptconvolvedtotheresolutionofP09data. can range from 0.01 to 10−4. For the penumbral spectrum, 4.2.TelluricSodiumabsorption the proportion is determined mainly by the portion of the unobstructedsolar disk and rangesfrom 10−4 to 2×10−7. For ThesodiumlayerexistingintheEarth’suppermesosphereorig- example, the amount of scattered light is on the order of 10−5 inatesfrommeteoroids(Plane2003). SincethesodiumD2−D1 doubletareresonancelines, their absorptionfeaturesshouldbe for Penumbra A (Fig. 1) where about 1/6 of the solar disk can imprintedon the transmission spectrum if there is a significant beseen. sodiumlayerintheobservedatmosphere. UsinganaverageNa concentration profile measured by Fussenetal. (2004) and the Intheforward-scatteredsunlight,therotationalRamanscat- cross-sectiondatain Fussenetal. (2010), we areableto model tering transfers a few percent of the continuum photons into theNa absorptionforthe integratedEarthatmosphere. TheNa theFraunhoferlinesatUVtoopticalwavelengths(Noxonetal. transmissionspectrumforeachtangentialpathwithaminimum 1979;Langfordetal.2007). Foraneclipsespectrumtakenclose atmosphericaltitudeiscalculated,andthenthespectrawiththe to the umbral center, this Raman scattering transfers roughly minimum altitudes from 0 km to 120 km are integrated to ob- 10−4 of the continuum into the lines after taking the forward- taintheintegratedabsorptionspectrum. Thismodelledabsorp- scatteringsunlightproportioninthetotalirradianceintoaccount. tionspectrumisconvolvedtotheinstrumentalresolutionforES- Thespectratakenatapositionawayfromtheumbralcenterwill PaDOnS/CFHTandtheequivalentwidthoftheD lineiscalcu- 1 have a lower filling-in effect. Here the estimation is for wave- latedtobe0.007 Åwithamaximumabsorptiondepthof0.08. lengthsaround600nm,however,thefilling-ineffectcanbesig- As stated before, the penumbralspectrumis predominantly nificantlystrongerattheblueorUVwavelengthswheretheto- the directsunlightwith a small componentof light transmitted talumbralirradianceislowerand consequentiallytheforward- fromtheEarthatmosphere. Theactualratiobetweenthedirect scattering proportion is larger. For a penumbral spectrum like sunlightandtransmittedsunlightdependson the portionof the Penumbra A, the Raman scattering transfers less than 10−6 of solar disk that is not occulted by the Earth. Fig. 10 shows an thecontinuumphotos,whichisanegligibleamount. exampleofthetheoreticalNaabsorptionfeatureinapenumbral spectrumwhen1/6ofthesolardiskcanbeseen(i.e. similarto Fromtheaboveestimates, we concludethatthe Ring effect thePenumbraAinFig.1). TheCLVfeatureofthecorrespond- can be important in the umbra especially for the spectra taken ingpenumbraltobrightMoonratiospectrumisalsoshownfor closetotheumbralcenter,andthelineshapeofthestrongFraun- comparison. hofer line is affected by both the Ring effect and CLV effect. WeemphasisethattheCLVfeaturesshownherearefromob- However,thelineshapeinthepenumbralspectrumisdominated servations,notatheoreticalmodel. Itisdifficulttotheoretically bytheCLVeffect,andtheRingeffectcanbesafelyignored. model the precise line profile for a given penumbral spectrum Articlenumber,page7of9 4.3.TheCLVeffectinexoplanettransits The standard way of detecting atomic or molecular species in anexoplanetatmosphereisbyobservingthecorrespondingab- sorption lines in and out of transit. Charbonneauet al. (2002) detected Nai for the first time in an exoplanet atmosphere us- ing the transit spectro-photometricmethod. They observedthe spectra of the Nai D lines in HD 209458while the planetwas transitingthestarandcomparedthiswithdataoutoftransit.The absorptiondepthofNaiDlinesintransitwasseentobedeeper thanthatoutoftransit, whichindicatestheexistenceofneutral sodiumsomewhereintheplanetaryatmosphere.Sincetheplanet blocks different parts of the stellar disk during the transit, the CLVeffectofthestellarlinesneedstobeconsideredwhencom- paringthe line depths. Charbonneauetal. (2002) modelledthe effectoftheCLVoftheNaiDlinesandfoundthedifferenceof theabsorptiondepthbetweenin-transitandout-of-transitcaused bytheCLVeffecttobe1.5×10−5forabandwidthof12Å(5887– 5899Å). Thisvalueisatthelevelofphoton-noiseanditseffect Fig.9. Fluxofthelunareclipsespectrumandtheforward-scattered ontheNaidetectionintheatmosphereofHD209458bisnegli- sunlight.Thegreenlineisthetotalobservedcountspersecondbetween giblegiventhattheactualobserveddifferenceoftheNaiDlines 550–650 nm of the 292 lunar spectra that were observed with CFHT depthis −23.2×10−5. Thusitis safe to ignorethe CLV effect duringthe2014-Apr-15lunareclipse. Thenumbersarenormalisedto a bright Moon spectrum taken at the meridian. The plot can be ap- fortheNaidetectionwithabroadbandwidthlike12Åusedin proximatelyregardedasthelightcurveoftheeclipsedMoon,whichis Charbonneauetal.(2002). However,ascanbeseenfromFig.6, normalised to the flux of the unobstructed Sun (i. e. the flux for the the Nai D line CLV feature is prominent in a high-resolution bright Moon). Theblack solidlineistheestimatedforward-scattered spectrumanda12ÅbandwidthwillsmeartheCLVfeature. If sunlightfromGarcíaMuñoz&Pallé(2011)andtheamountusedhere the observationis performedat a higher resolution that can re- is2×10−7ofthefluxfromtheunobstructedSun. solvethelineprofilewell,andanarrowerbandwidthisused,the NaiDCLVfeaturewouldbecomemoreprominent. Ascanbeseenfromthesolarlimbtocentreratiospectrumin Fig.4b,theNaiDCLVfeatureisrelativelyweakandbecomes more significant for other strong Fraunhofer lines such as Hα andCaiiH&K.ObservationsatblueandUVwavelengthsshould dealmorecarefullywiththeCLVsincetheeffectbecomesmore prominentatshorterwavelengths. Late-type dwarf stars are thought to be promising targets forexoplanetatmospheredetectionbecausetheplanetarytransit depthislargerduetotherelativelylargeplanet-starradiusratio. However, the CLV of the strong molecular absorption lines in these stars could affect the correspondingmolecular detections inexoplanetatmospheres. Fig.11showstheCObandCLVfea- tureinanM-typedwarfcalculatedfromaKuruczgridmodel2. Fromthemodel,wefindthattheCObandisdeeperinthelimb spectrumthaninthecentrespectrum.Thisindicatesthatwhena planettransitsthecentrepartofanM-typedwarf,theCOband in the observedspectrumwill be deepercomparedto the spec- trum out of transit, which could potentially be interpreted as a planetaryCOabsorptionfeature. We are currently performing a more detailed quantitative Fig.10. TheoreticaltelluricNaabsorptionandtheCLVfeatureforthe NaiD line(5896Å). ARVcorrectionhasbeenappliedtotheCFHT analysis of the CLV effect during exoplanet transits. Here we 1 spectra.TheCLVfeaturestilldominatesthelineprofileinapenumbral mentionthreegeneralaspectsthataffectthestrengthoftheCLV spectrum,whichmakesthetelluricNaabsorptiondifficulttodetect. feature. The first concerns the star itself. The CLV effect de- pendsonthe physicalparametersandthechemicalabundances of the star so that different stellar types and different spectral lines will exhibit different CLV signatures. The second aspect is the geometry of the planet transit system, including both becausethelineprofilechangesquicklywithtimeastheeclipse the planet-to-star radius ratio, which determines the obscured proceeds(asdemonstratedinFig.3withHα).AlsotheRossiter- proportion of the stellar disk and the impact parameter of the McLaughlineffectandtheconvectiveblueshiftcontributetothe planet’s transit trajectory on the stellar disk. The planet will changeof the lineprofileandthe line position. Thus, although transit only the limb part of the stellar disk if b is close to 1 thetelluricsodiumdoubletshouldtheoreticallybepresentinthe (bistheimpactparameterintheunitofthestellarradius),while penumbralspectrum,itsrelativelyweakabsorptionfeaturesare both the limb and the centre of the stellar disk will be blocked maskedbythesignificantlineprofilechangeofthesolarsodium doublet. 2 http://kurucz.harvard.edu/grids.html Articlenumber,page8of9 F.Yan etal.:Thecentre-to-limbvariationsofsolarFraunhoferlinesimprinteduponlunareclipsespectra Acknowledgements. ThisresearchusesdataobtainedthroughtheTelescopeAc- cessProgram(TAP),whichisfundedbytheNationalAstronomicalObservato- ries,ChineseAcademyofSciences,andtheSpecialFundforAstronomyfrom 1.04 M0V spectral type theMinistryofFinance. Thestudyissupported bytheNational Natural Sci- limb/centre enceFoundationofChinaundergrantsNos.11390371and11233004.Wethank theCFHTteamfortheobservations. Theauthorsthanktherefereeforuseful 1.02 suggestions.FeiYanacknowledgesthesupportfromESO-NAOCstudentship. o ati 1.00 r References AllendePrieto,C.,Asplund,M.,&FabianiBendicho,P.2004,A&A,423,1109 0.98 CO molecular absorption band Arnold,L.,Ehrenreich,D.,Vidal-Madjar,A.,etal.2014,A&A,564,A58 Athay,R.G.1972,RadiationTransportinSpectralLines Athay,R.G.,Lites,B.W.,White,O.R.,&Brault,J.W.1972,Sol.Phys.,24,18 0.96 Brault,J.&Testerman,L.1972,KittPeaksolaratlas Brogi,M.,Snellen,I.A.G.,deKok,R.J.,etal.2012,Nature,486,502 2000 2100 2200 2300 2400 2500 2600 2700 Charbonneau, D.,Brown, T.M.,Noyes, R.W.,&Gilliland, R.L.2002,ApJ, wavelength (nm) 568,377 Colón,K.D.,Ford,E.B.,Redfield,S.,etal.2012,MNRAS,419,2233 Dravins,D.1982,ARA&A,20,61 Fig.11. TheCLVfeaturesofaM0VtypestararoundtheCOband. Dravins,D.,Ludwig,H.-G.,Dahlén,E.,&Pazira,H.2014,ArXive-prints The spectrum shown is the flux ratio of the limb spectrum (µ = 0.2) Fossati,L.,Bagnulo,S.,Elmasli,A.,etal.2010,ApJ,720,872 tothecentrespectrumfromtheKuruczstellarmodel. Theratioisnor- Fussen,D.,Vanhellemont,F.,Bingen,C.,etal.2004,Geophys.Res.Lett.,31, malised to 1 at 2200 nm. The CO absorption band shows a different 24110 limbdarkeningcomparedtotheadjacentcontinuum. Fussen,D.,Vanhellemont,F.,Tétard,C.,etal.2010,AtmosphericChemistry& Physics,10,9225 GarcíaMuñoz,A.&Pallé,E.2011,J.Quant.Spec.Radiat.Transf.,112,1609 if b = 0 (i.e. edge-on). As can be seen from the lunar eclipse GarcíaMuñoz,A.,ZapateroOsorio,M.R.,Barrena,R.,etal.2012,ApJ,755, 103 datainFig.3,theactualCLVfeaturevarieswiththephaseofthe Grainger,J.F.&Ring,J.1962,Nature,193,762 transit. Thethirdaspectis relatedto the observationalmethod. Grillmair,C.J.,Burrows,A.,Charbonneau,D.,etal.2008,Nature,456,767 For example, the spectral resolution and the chosen bandwidth Hedelt,P.,vonParis,P.,Godolt,M.,etal.2013,A&A,553,A9 fortheanalysiswilldeterminetheapparentstrengthoftheCLV Koesterke,L.,AllendePrieto,C.,&Lambert,D.L.2008,ApJ,680,764 effect. Kurucz,R.L.2005,MemoriedellaSocietaAstronomicaItalianaSupplementi, 8,189 ConsequentlythetheoreticalCLVmodellingworkfordiffer- Langford,A.O.,Schofield,R.,Daniel,J.S.,etal.2007,AtmosphericChemistry entstellartypesneedstobewell-chosenfortheprecisecharac- &Physics,7,575 terisation of exoplanet atmospheres. An additional application Link,F.1972,AdvancesinAstronomyandAstrophysics,9,67 ofthesestudiesistheemploymentoftheCLVeffectsduringthe Noxon,J.F.,Whipple,Jr.,E.C.,&Hyde,R.S.1979,J.Geophys.Res.,84,5047 Pallé, E., Zapatero Osorio, M. R., Barrena, R., Montañés-Rodríguez, P., & exoplanettransittoserveasaprobeforthestudyofthestaritself Martín,E.L.2009,Nature,459,814 (Dravinsetal.2014). Plane,J.M.2003,Chemicalreviews,103,4963 Quintana,E.V.,Barclay,T.,Raymond,S.N.,etal.2014,Science,344,277 Redfield,S.,Endl,M.,Cochran,W.D.,&Koesterke,L.2008,ApJ,673,L87 5. Conclusions Sing,D.K.,Désert,J.-M.,Fortney,J.J.,etal.2011,A&A,527,A73 Snellen,I.A.G.,Albrecht,S.,deMooij,E.J.W.,&LePoole,R.S.2008,A&A, Using a sequence of lunar eclipse spectra observed with the 487,357 CFHT,wehavedemonstratedthesignificantcenter-to-limbvari- Swain,M.R.,Tinetti,G.,Vasisht,G.,etal.2009,ApJ,704,1616 ations of the solar Fraunhoferlines. Generally, the Fraunhofer Swain,M.R.,Vasisht,G.,&Tinetti,G.2008,Nature,452,329 Vidal-Madjar,A.,Arnold,L.,Ehrenreich,D.,etal.2010,A&A,523,A57 lines are deeper in the centre spectrum than in the limb spec- Vollmer,M.&Gedzelman,S.D.2008,Appl.Opt.,47,H52 trumandtheCLVfeaturesarestrongertowardstheblueandUV Wood,P.L.,Maxted,P.F.L.,Smalley,B.,&Iro,N.2011,MNRAS,412,2376 wavelengthrange. TheCLVoftheNaiDlinesisweakercom- Yan,F.,Fosbury,R.A.E.,Petr-Gotzens,M.G.,etal.2014,InternationalJournal paredtootherstronglines. ofAstrobiology,FirstView,1 ThisCLVeffectisespeciallyimportantforstudyingtheatom or ion absorptions in the transmission spectrum of the Earth’s atmosphere. For previous lunar eclipse observations, the Caii absorptionfeatureinPalléetal.(2009)andtheNaiDlinesfea- ture in Vidal-Madjaretal. (2010) and Arnoldetal. (2014) are shown to be most likely due predominately to the CLV of the correspondingsolarlines insteadof the Naior Caii absorption intheEarth’satmosphere. AlthoughtherearevariableCaiiand Nai layers in the Earth’s atmosphere, the reliable detection of their relatively weak absorption features is difficult because of theCLVfeatures. TheCLVeffectneedstobeconsideredinsearchesforatom or ion absorptions in exoplanet atmospheres using the transit technique, especially when observing at high spectral resolu- tion or at blue or UV wavelengths where the CLV is promi- nent. Molecular absorptions in M-type stars also exhibit CLV features, thus future molecular detections in planets transiting M-typestarsshouldemployanaccuratestellarmodel. Articlenumber,page9of9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.