ebook img

The Atacama Cosmology Telescope: Physical Properties of Sunyaev-Zel'dovich Effect Clusters on the Celestial Equator PDF

4.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Atacama Cosmology Telescope: Physical Properties of Sunyaev-Zel'dovich Effect Clusters on the Celestial Equator

SUBMITTEDTOTHEASTROPHYSICALJOURNAL,OCTOBER15,2012 PreprinttypesetusingLATEXstyleemulateapjv.12/16/11 THEATACAMACOSMOLOGYTELESCOPE:PHYSICALPROPERTIESOFSUNYAEV-ZEL’DOVICHEFFECT CLUSTERSONTHECELESTIALEQUATOR†‡ FELIPEMENANTEAU1,*,CRISTÓBALSIFÓN2,3,*,L.FELIPEBARRIENTOS2,NICHOLASBATTAGLIA4,J.RICHARDBOND5, DEVINCRICHTON6,SUDEEPDAS7,MARKJ.DEVLIN8,SIMONDICKER8,ROLANDODÜNNER2,MEGANGRALLA6,AMIRHAJIAN5, MATTHEWHASSELFIELD9,MATTHILTON10,ADAMD.HINCKS5,JOHNP.HUGHES1,*,LEOPOLDOINFANTE2,ARTHURKOSOWSKY11, TOBIASA.MARRIAGE6,DANICAMARSDEN12,KAVILANMOODLEY10,MICHAELD.NIEMACK13,18,MICHAELR.NOLTA5, LYMANA.PAGE14,BRUCEPARTRIDGE15,ERIKD.REESE8,BENJAMINL.SCHMITT8,JONSIEVERS14,DAVIDN.SPERGEL16, SUZANNET.STAGGS14,ERICSWITZER5,EDWARDJ.WOLLACK17 1RutgersUniversity,DepartmentofPhysics&Astronomy,136FrelinghuysenRd,Piscataway,NJ08854,USA 2 2DepartamentodeAstronomíayAstrofísica,FacultaddeFísica,PontificiaUniversidadCatólicadeChile,Casilla306,Santiago22,Chile 1 3LeidenObservatory,LeidenUniversity,POBox9513,NL-2300RALeiden,Netherlands 0 4McWilliamsCenterforCosmology,CarnegieMellonUniversity,DepartmentofPhysics,5000ForbesAve.,PittsburghPA,USA,15213 2 5CanadianInstituteforTheoreticalAstrophysics,UniversityofToronto,Toronto,ON,CanadaM5S3H8 6DepartmentofPhysicsandAstronomy,TheJohnsHopkinsUniversity,Baltimore,Maryland21218-2686,USA ct 7HighEnergyPhysicsDivision,ArgonneNationalLaboratory,9700SCassAvenue,Lemont,IL60439 O 8UniversityofPennsylvania,PhysicsandAstronomy,209South33rdStreet,Philadelphia,PA19104,USA 9DepartmentofPhysicsandAstronomy,UniversityofBritishColumbia,Vancouver,BC,CanadaV6T1Z4 5 10Astrophysics&CosmologyResearchUnit,SchoolofMathematics,Statistics&ComputerScience,UniversityofKwaZulu-Natal,Durban,SouthAfrica 1 11UniversityofPittsburgh,Physics&AstronomyDepartment,100AllenHall,3941O’HaraStreet,Pittsburgh,PA15260,USA 12DepartmentofPhysics,UniversityofCaliforniaSantaBarbara,CA93106,USA 13NISTQuantumDevicesGroup,325BroadwayMailcode817.03,Boulder,CO,USA80305 ] O 14JosephHenryLaboratoriesofPhysics,JadwinHall,PrincetonUniversity,Princeton,NJ,08544,USA 15DepartmentofPhysicsandAstronomy,HaverfordCollege,Haverford,PA19041,USA C 16DepartmentofAstrophysicalSciences,PeytonHall,PrincetonUniversity,Princeton,NJ,08544,USA . 17NASA/GoddardSpaceFlightCenter,Greenbelt,MD20771,USAand h 18DepartmentofPhysics,CornellUniversity,Ithaca,NY,USA14853 p SubmittedtotheAstrophysicalJournal,October15,2012 - o ABSTRACT r t s WepresenttheopticalandX-raypropertiesof68galaxyclustersselectedviatheSunyaev-Zel’dovichEffect a at 148GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 square degrees [ centered on the celestial equator, is divided into two regions. The main region uses 270 square degrees of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) 1 overStripe82plusadditionalnear-infraredpointedobservationswiththeApachePointObservatory3.5-meter v 8 telescope.Weconfirmatotalof49clusterstoz≈1.3,ofwhich22(allatz>0.55)arenewdiscoveries.Forthe 4 secondregiontheregular-depthSDSSimagingallowsustoconfirm19moreclustersuptoz≈0.7,ofwhich 0 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ 4 positionandthebrightestclustergalaxy(BCG).WefindnosignificantoffsetbetweentheclusterSZcentroid . andBCGlocationandaweakcorrelationbetweenopticalrichnessandSZ-derivedmass.WealsopresentX-ray 0 fluxesandluminositiesfromtheROSATAllSkySurveywhichconfirmthatthisisamassivesample. Oneof 1 thenewlydiscoveredclusters,ACT-CLJ0044.4+0113atz=1.1(photometric),hasanintegratedXMM-Newton 2 X-raytemperatureofkT =7.9±1.0keVandcombinedmassofM =8.2+3.3×1014h−1M placingitamong 1 X 200a −2.5 70 (cid:12) : themostmassiveandX-ray-hotclustersknownatredshiftsbeyondz=1. Wealsohighlighttheoptically-rich v cluster ACT-CL J2327.4−0204 (RCS2 2327) at z=0.705 (spectroscopic) as the most significant detection of Xi thewholeequatorialsamplewithaChandra-derivedmassofM200a=1.9+−00..64×1015h−701M(cid:12),intheranksofthe mostmassiveknownclusterslikeElGordoandtheBulletCluster. r a Keywords:cosmicmicrowavebackground—cosmology: observations—galaxies: distancesandredshifts— galaxies: clusters: general—large-scalestructureofuniverse 1. INTRODUCTION Clustersofgalaxiesarethecosmicsignpostsforthelargest †BasedonobservationsobtainedattheGeminiObservatory,whichis gravitationallyboundobjectsintheUniverse.Theirformation operatedbytheAssociationofUniversitiesforResearchinAstronomy, Inc.,underacooperativeagreementwiththeNSFonbehalfoftheGem- andevolutionasafunctionoflook-backtimeprovidesamea- inipartnership:theNationalScienceFoundation(UnitedStates),theSci- surementofcosmologicalparametersthatcomplementsthose enceandTechnologyFacilitiesCouncil(UnitedKingdom),theNational obtained from observations of the cosmic microwave back- ResearchCouncil(Canada),CONICYT(Chile),theAustralianResearch Council(Australia),MinistériodaCiência,TecnologiaeInovação(Brazil) ground(CMB,e.g.,Komatsuetal.2011;Dunkleyetal.2011; andMinisteriodeCiencia,TecnologíaeInnovaciónProductiva(Argentina) Reichardt et al. 2012), Type Ia Supernovae (e.g., Hicken et ‡BasedinpartonobservationsobtainedwiththeApachePointObser- al.2009;Sullivanetal.2011;Suzukietal.2012)andbaryon vatory3.5-metertelescope,whichisownedandoperatedbytheAstrophys- acousticoscillations(e.g.,Percivaletal.2010). Thenumber icalResearchConsortium. *Visitingastronomer,GeminiSouthObservatory. of clusters as a function of redshift, as demonstrated by X- 2 MENANTEAUETAL. rayandoptically-selectedsamples(e.g.,Vikhlininetal.2009; is the first and most fundamental step. In this paper we pro- Rozoetal.2010)providesastrongconstraintonboththeex- vide the optical and near-infrared (NIR) confirmation of SZ pansion history of the Universe and the gravitational growth cluster candidates from 504 square degrees of the 148GHz ofstructurewithinit(forarecentreviewseeAllen,Evrard,& ACT2009-2010mapsofthecelestialequator. OvertheACT Mantz2011). surveyareathatoverlapsS82(270deg2)weusetheugrizop- ThehotgasingalaxyclustersleavesanimprintontheCMB ticalimages,supplementedwithtargetedNIRobservations,to radiationthroughtheSunyaev-Zel’dovicheffect(SZ;Sunyaev identify49clustersuptoz≈1.3. FortargetsoutsideS82we & Zeldovich 1972). The SZ effect has a frequency depen- usetheregular-depthSDSSdatafromDataRelease8(DR8; dencethatproducestemperatureshiftsoftheCMBradiation Aihara et al. 2011) to confirm 19 clusters. The contiguous correspondingtoadecrementbelowandanincrementabove coverageprovidedbySDSSallowsustoinvestigatepotential the “null” frequency near 220GHz (Birkinshaw 1999; Carl- offsets between the clusters optical and SZ centroid position strom,Holder,&Reese2002). aswellastherelationbetweenopticalrichnessandSZsignal. Several experiments are now able to carry out large-area In a companion paper (Hasselfield et al. 2012) we present a cosmologicalsurveysusingtheSZeffect. TheAtacamaCos- full description of the SZ cluster selection technique as well mologyTelescope(ACT)andSouthPoleTelescope(SPT)are as cosmological implications using the cluster sample. Re- providingsamplesofgalaxyclustersoverhundredsofsquare centlyReeseetal.(2012)presentedhigh-resolutionfollow-up degrees at all redshifts (Staniszewski et al. 2009; Hincks et observationswiththeSunyaev-Zel’dovichArray(SZA)fora al.2010;Menanteauetal.2010a;Marriageetal.2011a;Van- smallsub-sampleoftheclusterspresentedhere. derlinde et al. 2010; Williamson et al. 2011; Reichardt et al. Throughout this paper we quote cluster masses as M 200a 2012),whilethePlanckSatelliteprobesthefullskyforclus- (or M ) which corresponds to the mass enclosed within a 500c ters up to redshifts of z≈0.55 (Planck Collaboration et al. radius where the overdensity is 200 (500) times the average 2011a). (critical) matter density. The larger radius associated with Althoughmodestinsize,thenewSZclustersampleshave with M , as opposed to M , is appropriate for studies 200a 500c provenusefulforconstrainingcosmologicalparameters(Van- of the dynamical masses, for example. We assume a stan- derlindeetal.2010;Sehgaletal.2011;Reichardtetal.2012; dard flat ΛCDM cosmology with Ω =0.27 and Ω =0.73, m Λ Hasselfield et al. 2012) and have opened a new window into andE(z)=(cid:112)Ω (1+z)3+Ω . Wegiverelevantquantitiesin M Λ the extreme systems, the most massive clusters at high red- termsoftheHubbleparameterH =70h kms−1Mpc−1.The shift(e.g.,Foleyetal.2011;Menanteauetal.2012),prompt- 0 70 assumedcosmologyhasasmalleffectontheclustermass,for ingstudiesthatmatchtheirobservednumberswiththeabun- exampleifweassumeacanonicalscalingofM∝E(z)−1,this dance predictions of the standard ΛCDM cosmology (e.g., impliesa2%−3%increasebetweenΩ =0.27andΩ =0.30 Hoyle, Jimenez, & Verde 2011; Mortonson, Hu, & Huterer m m for a flat cosmology at 0.4 < z < 0.8. In our analysis we 2011;Waizmann,Ettori,&Moscardini2012). convertmasseswithrespecttoaverageorcriticalatdifferent ACT is a millimeter-wave, arcminute-resolution telescope overdensitiesusingscalingsderivedfromaNavarro,Frenk,& (Fowler et al. 2007; Swetz et al. 2011) designed to observe White(1997,NFW)massprofileandtheconcentration-mass the CMB on arcminute angular scales (Dünner et al. 2012). relation, c(M,z), from simulations (Duffy et al. 2008). All The initial set of ACT observations during the 2008 season magnitudesareintheSDSSugrizABsystemandallquoted focused on surveying a 455 deg2 region of the southern sky errorsare68%confidenceintervalsunlessotherwisestated. centeredneardeclination-55◦(hereafter“thesouthernstrip”). Ourpreviousworkstudied23high-significanceclustersfrom 2. OBSERVATIONS the southern strip (Marriage et al. 2011a) with optical con- The detection of cluster candidates was performed from firmations (Menanteau et al. 2010a). One of the highlights matched-filtered ACT maps at 148GHz, while confirmation of this previous work was the discovery of the spectacular of the clusters was done using a combination of optical and El Gordo (ACT-CL J0102−4915) cluster merger system at near-infrared(NIR)imaging,andarchivalROSATX-raydata. z=0.87(Menanteauetal.2012). Inthefollowingsectionswedescribetheprocedurefollowed. Duringthe2009and2010seasons,ACTmainlysurveyeda long, narrow region of the celestial equator that nearly com- 2.1. SZobservations pletely overlaps with the publicly-available optical co-added images from the Sloan Digital Sky Survey (SDSS) of Stripe ACToperatesatthreefrequencybandscenteredat148GHz 82(hereafterS82;Annisetal.2011). SDSSprovidesanim- (2.0mm), 218GHz (1.4mm) and 270GHz (1.1mm), each mediate optical follow-up of clusters that is of high quality, band having a dedicated 1024-element array of transition- uniform and at a depth sufficient to detect massive clusters edge-sensing bolometers. The 270GHz band is not as sen- to z≈1. This iscurrently unique forhigh resolution SZex- sitiveasthelowerfrequencychannelsandtheanalysisofitis periments. Furthermore, theuniformSDSScoverageofS82 ongoingalthoughnotyetcomplete. ACThasconcludedfour has allowed combined CMB-optical studies such as the de- seasonsofobservations(2007-2010)surveyingtwoskyareas: tection of the SZ decrement from low mass (few 1014 M ) thesouthernstripneardeclination−55◦ andaregionoverthe (cid:12) celestial equator. In this paper, we apply similar techniques haloes by stacking Luminous Red Galaxies (LRGs, Hand et as the ones used on the southern strip for SZ cluster detec- al.2011),thefirstdetectionofthekinematicSZeffect(Hand tionandopticalidentification(Menanteauetal.2010a;Mar- etal.2012),andthecross-correlationoftheACTCMBlens- riage et al. 2011a) to the ACT 148GHz equatorial data. A ing convergence maps (Das et al. 2011b) and quasars (Sher- full description of the map making procedure from the ACT winetal.2012). time-ordereddataisdescribedinDünneretal.(2012). While the number density of SZ-selected clusters is a po- Cluster candidates were detected in the 148GHz ACT tentiallystrongcosmologicalprobe,theconfirmationofcan- equatorial maps over a 504deg2 region bounded by didatesastrueclustersandthedeterminationoftheirmasses 20h16m <RA<3h52m and −2◦07(cid:48) <Dec.<+2◦18(cid:48) as shown PHYSICALPROPERTIESOFACTEQUATORIALCLUSTERS 3 +02° Dec. (J2000) 0° -02° 04h 03h 02h 01h R.A. (J2000) +02° Dec. (J2000) 0° -02° 00h 23h 22h 21h R.A. (J2000) Figure1. ACTequatorialsurveycoveragewiththeSDSSStripe82deepopticalsurveyregionindicatedasredbox. Theredsquaresarethe18clustersinthe puresampleinS82(seeSection5.1). GraysquaresrepresenttherestoftheconfirmedclustersintheS82region. CirclesareotherconfirmedACTSZclusters outsideS82.Theblueboxrepresentstotalarea(504deg2)coveredbyACT. in Figure 1 as a blue box over the ACT map (Hasselfield et inAnnisetal.(2011). Themulti-epochscanningofthe2◦.5– al. 2012). Nearly fully contained within this region lies the wide SDSS camera provides between 20 to 40 visits for any S82 optical imaging area (shown as a red box in Figure 1) givensectionofthesurveywhich,afteraligningandaverag- whichspans20h40m<RA<4h0mand−1◦15(cid:48)<Dec.<+1◦15(cid:48) ing(i.e.,co-adding),resultsinsignificantlydeeperdata. The and covers 275deg2. The effective overlap between the S82 co-added S82 images reach ∼2 magnitudes deeper than the imaging and the ACT maps is 270deg2 and corresponds to single-pass SDSS data and have a median seeing of ∼1.(cid:48)(cid:48)1 withareported50%completenessforgalaxiesatr=23.5and thedeepestsectionoftheACTdataintheequatorialsurvey. i=23, while for DR8 this completeness level is reached at This constitutes the core of the data we use in this paper to r=21.5(Annisetal.2011). Photometriccalibrationhastypi- characterizetheSZselectionfunction. IntheACTregionof the maps beyond the S82 coverage we use the normal-depth calvariationof0.5%forgrizand1%−2%foruacrossthesur- vey. InFigure2weshowthedetectionlimitsfortheS82and legacy survey from the SDSS DR8. The effective beam for DR8photometryascomparedtotheobservedmagnitudesof the 148GHz band for the 2009 and 2010 combined seasons hasaFWHMof1.(cid:48)4. early-type galaxies of different luminosities at different red- shifts. Here we highlight the principal aspects of the SZ cluster The co-added, photometrically-calibrated images and cat- detection procedure described in Hasselfield et al. (2012) to alogs for S82 were released in October 2008 as part of the provide context for the characterization of the cluster sam- SDSS Data Release 7 (DR7; Abazajian et al. 2009) and are ple. AftersubtractingbrightsourcesfromtheACT148GHz available at the SDSS Data Archive Server (DAS)4 and the source catalog (corresponding to 1% of the map area), the Catalog Archive Server (CAS),5 respectively. The co-added mapismatch-filteredintheFourierdomainusingasetofsig- datawererunthroughtheSDSSpipelines;thestandardSDSS naltemplatesbasedontheUniversalPressureProfile(UPP)of flagsetisavailableforallobjects. Arnaudetal.(2010)modeledwithageneralizedNFWprofile We retrieved Galactic-extinction-corrected modelMag (Nagai,Kravtsov,&Vikhlinin2007,AppendixA)asafunc- photometry in all 5 bands for all galaxies from the Pho- tionofphysicalradius. WeusesignaltemplateswithFWHM of 0.(cid:48)4 to 9.(cid:48)2 in increments of 0.(cid:48)4 (23 sets) to match-filter toObjtabledesignatedfromruns106and206undertheCAS Stripe82databasetocreategalaxycatalogs,whichwesplit theACT148GHzmapstooptimizesignal-to-noise(S/N)on cluster-shapedobjectswithanSZspectralsignature. Cluster in0h20mwidetilesinrightascensionwithnooverlapbetween candidates are identified in the filtered maps as pixels with themtoavoidobjectduplication.AstheStripe82database S/N>4 using the core scale in which the cluster was most does not include spectroscopic information, for each galaxy significantlydetected. Thecatalogofclustercandidatescon- weusedtheDR8CASdatabaseforaspectroscopicredshift, tains positions, central decrements (∆T), and the local map which was ingested into the catalogs if available (Aihara et noiselevel.Candidatesseenatmultiplefilterscalesarecross- al.2011). Inordertooptimizeandspeedupourclusteriden- identifiedifthedetectionpositionsarewithin1(cid:48). tification we fetched all ugriz fits images for S82 from run numbers100006(North)and200006(South)andstoredthem locallytoquerylater. Thepixelscaleoftheco-addedimages 2.2. SDSSOpticalData is0.(cid:48)(cid:48)396/pixelforallbands. ThemainopticaldatasetusedfortheSZclusterconfirma- WecomputephotometricredshiftsforallobjectsintheS82 tion is the S82 optical imaging that almost completely over- photometric catalog using the spectral-energy-distribution lapswiththedeepestregionoftheACTequatorialmapswith (SED) based Bayesian Photometric Redshift code (BPZ, an effective area coverage of 270deg2. ACT’s survey over Benítez 2000) with no prior. We use the dust-corrected S82isuniqueforhighresolutionSZexperiments,sinceitpro- ugriz modelMag magnitudes and the BPZ set of template vides immediate optical follow-up of an extremely high and spectra described in Benítez et al. (2004), which in turn is uniformqualityatadepthsufficienttodetectmassiveclusters basedonthetemplatesfromColemanetal.(1980)andKin- to z≈1. Beyond this common region we use the shallower ney et al. (1996). This set consists of El, Sbc, Scd, Im, single-passdatafromDR8toconfidentlyreportclusteriden- SB3, and SB2 and represents the typical SEDs of elliptical, tificationtoz≈0.5. early/intermediate-type spiral, late-type spiral, irregular, and TheS82surveyisa275deg2 stripe(representedbythered box in Figure 1) of repeated ugriz imaging centered on the 4http://das.sdss.org CelestialEquatorintheSouthernGalacticCap, asdescribed 5http://casjobs.sdss.org/casjobs 4 MENANTEAUETAL. two types of starburst galaxies, respectively. For the targets withNIRfollow-upobservations,thecatalogsareaugmented Table1 APONIRobservationsofStripe82Clusters byincludingtheK –bandimaging. Thefinalresultsarecat- S alogs with photometric redshifts for all galaxies in S82 aug- ACTDescriptor DateObs. Exp.Time photo-z mentedbyspectroscopicredshiftsasavailable. ForafractionoftheSZclustercandidatesoutsidethecom- ACT-CLJ0012.0−0046 UT2011,Nov02 3870s 1.36±0.06 mon area between the ACT equatorial maps and S82, we ACT-CLJ0044.4+0113 UT2011,Nov06 3600s 1.11±0.03 ACT-CLJ0336.9−0110 UT2010,Oct27 3600s 1.32±0.05 use regular-depth SDSS imaging from DR8 to confirm clus- ACT-CLJ0342.0+0105 UT2010,Oct28 3150s 1.07±0.06 ters. We also retrieved ugriz Galactic-extinction-corrected ACT-CLJ2351.7+0009 UT2011,Oct02 1800s 0.99±0.03 modelMagmagnitudesforgalaxies,but,unlikefortheS82, dure described in Section 3.2, with the only variation being we only query the DR8 CAS database within a radius of 1◦ theuseofsixfiltersinsteadoffive. of each candidate. Similarly we only fetched and combined imagesfromtilessurroundingeachcandidatetocreate10(cid:48)fits imagesinall5bands. GiventhattheDR8CASdatabasepro- videswell-testedtraining-set-basedphotometricredshiftswe 2.4. ROSATX-rayObservations donotcomputeourownSED-basedestimates,aswedidfor WeextractedX-rayfluxesforallopticallyconfirmedACT S82,andinsteadwerelyontheonesavailableinthedatabase. equatorialclustersusingtheROSATAll-SkySurvey(RASS) InSection3.2wediscusstheaccuracyofthephotometricred- datafollowingthesameprocedureasinMenanteau&Hughes shiftmeasurements. (2009) and Menanteau et al. (2010a). The raw X-ray pho- toneventlistsandexposuremapsweredownloadedfromthe 2.3. NearInfraredImaging MPE ROSAT Archive6 and were queried with our own cus- Additional pointed follow-up NIR observations with tomsoftware. AttheACTSZpositionofeachcluster,RASS the Near-Infrared Camera and Fabry-Perot Spectrometer countratesinthe0.5−2keVband(correspondingtoPIchan- (NICFPS) on the ARC 3.5-m telescope of the Apache Point nels 52–201) were extracted from within radii of 3(cid:48) for the Observatory (APO) aided the confirmation of five high red- source emission and from within a surrounding annulus (5(cid:48) shiftclusterswithS/N>4.7. Theseclustersdidnothavease- to 25(cid:48) inner and outer radii) for the background emission. cureopticalclustercounterpartinthedeepS82area. Theob- Thebackground-subtractedcountrateswereconvertedtoX- servationswerecarriedoutonUT2010Oct27-28,UT2011 rayluminosity(inthe0.1–2.4keVband)assumingathermal Nov02andUT2011Nov06whentheseeingvariedbetween spectrum (kT =5 keV) and the Galactic column density of X 0.9−1.(cid:48)(cid:48)4. NICFPSisequippedwitha1024×1024Hawaii-I neutralhydrogen(N )appropriatetothesourceposition,us- H RGarraywith0.(cid:48)(cid:48)273pixelsanda4.(cid:48)58squarefieldofview. ingdatafromtheLeiden/Argentine/HIBonnsurvey(Kalberla We obtained between 1800 – 3870s of integration in the KS etal.2005).InTable4and5weshowtheX-rayfluxesandlu- band on each candidate, using 30s exposures with 8 Fowler minositiesforallACTclusters,regardlessofthesignificance samplesperexposure(Fowler&Gatley1990),inarepeating oftheRASSdetection. Uncertaintiesareestimatedfromthe 5 point dither pattern with box size 20(cid:48)(cid:48). The individual ex- countratesandrepresentstatisticalerrors. posuresweredarksubtracted,distortioncorrected,flatfielded (usingaskyflatmadefromthescienceframes),andskysub- 3. ANALYSISANDRESULTS tracted(usingarunningmedianmethod). SExtractor(Bertin Our analysis rovides a sample of optically-confirmed SZ & Arnouts 1996) was used to produce object masks used in clustersfromtheACTclustercandidatesat148GHzfoundin constructing the sky flat and sky images used in the latter themapsonthecelestialequatordescribedinHasselfieldetal. two processing steps. The individual exposures were then (2012). Asanimportantpartofthisprocesswemeasurethe astrometrically calibrated using SCAMP (Bertin 2006) and, “purity” of the ACT SZ candidate population over S82, that finally,mediancombinedusingSWARP(Bertinetal.2002). is, the fraction of real clusters as a function of SZ detection Thephotometriczeropoint(ontheVegasystem)foreachim- significance. agewasbootstrappedfromthemagnitudesofUKIDSSLAS (Lawrenceetal.2007)sourcesineachfieldandtransformed 3.1. ClusterConfirmationCriteria intotheABsystemforconsistencywiththeSDSSdata. The estimateduncertaintyonthezeropointspanstherange0.01– 0.06mag,withmedian0.02mag. Thefinalimagesreach5σ Ourconfirmationprocedurebuildsuponourpreviouswork depth 18.8 – 20.2 mag (median 19.4 mag; measured within on the ACT southern sample (Menanteau et al. 2010a) and a3(cid:48)(cid:48) diameteraperture),estimatedbyplacing1000apertures takes advantage of the contiguous and deeper optical cov- in each image at random positions where objects are not de- erage available from S82, which allows the systematic and tected. InTable1wesummarizetheNIRobservationsforthe rapidinvestigationofallSZclustercandidates,unlikeforthe confirmedclusters,whichwealsodiscussinSection4.1. 2008ACTdataandassociatedfollow-up.Theprocedurecon- FortheclusterswithNIRimaging,weregisteredtheK and sists of searching for an optical cluster associated with each S opticaldatatocreateadetectionimagefromtheχ2quadratic candidate’sSZdecrement. Thisisrelativelystraightforward, sumcombinationoftheiandK –bandsusingSWARP.Source sinceinconcordanceΛCDMcosmologythehalomassfunc- S detection and photometric catalogs were performed using tion(e.g.,Tinkeretal.2008)predictsthataround90%ofmas- SExtractor (Bertin & Arnouts 1996) in dual-image mode in siveclusters(i.e.,M200a>3×1014h−701M(cid:12)),suchastheones which sources were identified on the detection images using that make up the current generation of SZ samples, will lie a 1.5σ detection threshold, while magnitudes were extracted below z≈0.8 and are therefore accessible for intermediate- atmatchinglocationsfromallotherbands. Forclusterswith depthopticalimagingsuchasintheS82dataset. NIRimaging,weusetheisophotalmagnitudesinthenewcat- alogstocomputephotometricredshiftsusingthesameproce- 6ftp://ftp.xray.mpe.mpg.de/rosat/archive/ PHYSICALPROPERTIESOFACTEQUATORIALCLUSTERS 5 0.9 24 SDSS/S82 23 0.8 22 0.7 e SDSS/DR8 d t nitu21 dshif0.6 g e a20 R r m19 copic 0.5 s o0.4 r 18 0.4L∗ galaxy ect L∗ galaxy Sp0.3 17 4L∗ (BCG) 0.2 0.4 0.6 0.8 1.0 1.2 0.2 Redshift Figure2. Theobservedr-bandmagnitudesofL∗, 0.4L∗ and4L∗ (BCG) 0.1 early-typegalaxiesasafunctionofredshift.WeuseL∗asdefinedBlantonet al.(2003)forthepopulationofredgalaxiesatz=0.1andallowittopassively 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 evolvewithredshift. Weshowingraythe50%completenesslimitsforthe Photometric Redshift SDSS/S82andDR8dataforgalaxiesfromAnnisetal.(2011)reachingr= 23.5andr=21.5respectively.Forcomparisonwealsoshowasgraycircles the observed r-band magnitudes for the BCGs in the SZ southern sample Figure3. Spectroscopic redshift versus photometric redshift for the sub- clustersamplereportedinMenanteauetal.(2010a). sample37ofACTequatorialclusterswithknownspectroscopicredshifts. CirclesrepresentclustersfromtheS82areawhilesquaresaresystemout- Theopticalconfirmationrequiresthedetectionofabright- sidetheS82area. Errorbarsshowthe68%C.L.uncertaintiesonthecluster photometricredshift. estclustergalaxy(BCG)andanaccompanyingredsequence of cluster members, which are typically early-type galaxies In practice we perform the cluster confirmation by work- withluminositieslessthanL∗(thecharacteristicSchechterlu- ingon10(cid:48)×10(cid:48) wideimagescenteredonthepositionofthe minosity). InSection3.3wediscussourrichnesscriterionfor SZ candidate that are created from stitching together nearby opticalconfirmationofthesample. Weusethecompleteness S82 tiles in all 5 SDSS bands. Our inspection relies on a limitsestimatedfromsimulationsbyAnnisetal.(2011)tode- custom-created automated software that enables us to inter- termine how far in redshift we can “see” massive clusters in actively search for a BCG and its red cluster sequence us- S82. Forthis,wecomparethecompletenesslimitsofS82ob- ing our own implementation of the MaxBCG cluster finder servationstotheexpectedandobservedapparentmagnitudes (Koester et al. 2007) algorithm, as described in Menanteau ofgalaxiesinclustersasafunctionofredshift. Weestimated et al. (2010b) for the Southern Cosmology Survey (SCS; theexpectedapparentgalaxyr-bandmagnitudeasafunction Menanteau et al. 2009). This consists of visually selecting ofredshiftusingL∗asdefinedforthepopulationofredgalax- the BCG and from that recorded position iteratively choos- ies by Blanton et al. (2003) at z=0.1 and allowing passive ing cluster member galaxies using the photometric redshifts evolution according to a solar metallicity Bruzual & Charlot anda3σclippingalgorithmwithinalocalself-definedcolor- (2003) τ =1.0 Gyr burst model formed at z =5. We show f magnitude relation. For candidates with APO K follow-up thisrelationinFigure2forarangeofluminosities(0.4L∗,L∗ imaging we use 6 bands, which are limited to thSe ∼5(cid:48)×5(cid:48) and4L∗)aimedatrepresentingtheclustermembersfromthe field-of-view(FOV)ofNICFPS,butotherwisetheprocedure faintonestotheBCG.Wealsoshowasdifferentgraylevels isthesame.Oursoftwareaidstheprecisedeterminationofthe the50%completenesslevelasdeterminedbythesimulations BCGbyvisuallyflaggingallearly-typegalaxies(i.e., galax- for the S82 and DR8 samples (Annis et al. 2011). Figure 2 iesSEDtypes0and1fromBPZ)thataremoreluminousthan also shows, for comparison, the apparent r-band magnitude 4L∗ galaxies, with L∗ as defined above. Once the BCG has ofBCGsintheACTsouthernclustersampleMenanteauetal. been established, the next step in the optical confirmation is (2010a). todefinetheclusterredshiftandcolorcriteriatobeusedinse- WeconcludethatwecancomfortablydetectclusterBCGs lectingclustermembersasthesearerequiredtoestimatethe in S82 up to z>1 and outside S82 to z=0.7. A cluster red richnessofthecluster. sequencewillbeconfidentlydetectedtosomewhatlowerred- The determination of the cluster redshift is an iterative shifts,z≈0.8(S82)andz≈0.5(outsideS82),thussatisfying process, using our custom-developed tools, that starts with ourcriteriaforopticalclusterconfirmation. Insummary, we the redshift of the BCG as the initial guess for the clus- search for a BCG and associated red-sequence around each ter’s redshift and center. It then estimates the redshift as SZ candidate; if this condition is satisfied, we estimate the the mean value of the N brightest early-type galaxies (with redshift and richness for the cluster. If the cluster richness N = 7) within an inner radius of 250h−1kpc (with H = satisfies the minimum richness criteria (see Section 3.3) we 0 100kms−1Mpc−1h as defined by MaxBCG) and the redshift listthecandidateasarealcluster. interval∆z=0.045(1+z )wherez istheredshiftoftheclus- c c ter. Thenewredshiftisusedasinputandthesameprocedure 3.2. ClusterRedshiftDetermination isrepeateduntilconvergenceontheredshiftvalueisachieved, 6 MENANTEAUETAL. which usually occurs in three iterations or less. The selec- minosity,dimmerthantheBCGandbrighterthan0.4L∗. Ad- tionofN=7wasinformedbyoptimizingclusterredshiftsfor ditionallywedesignateclustermembersaccordingtothees- systemswithknownspectroscopicredshifts. Uncertaintiesin timated cluster size R , defined as the radius at which the 200 theclusterredshiftsaredeterminedviabootstrapresampling cluster galaxy density is 200Ω−1 times the mean space den- m (10,000times)ofthegalaxiesselectedfortheredshiftdeter- sity of galaxies in the present Universe. We estimated the mination. We also explored estimating errors using Monte scaledradiusR usingtheempiricalrelationfromHansenet 200 Carlo realizations of the sample which provided similar re- al. (2005), R =0.156N0.6 h−1Mpc which is derived from 200 1Mpc sults. We note that although our catalogs contain the spec- theSDSS.HenceN isthenumberofgalaxiessatisfyingthe 200 troscopicredshiftsavailablefromSDSS,intheprocedurede- aboveconditionswithinR . 200 scribed here we only make use of the photometric redshifts, For our richness measurements we estimated the galaxy in order to make a direct comparison with the spectroscopic background contamination and implemented an appropriate information. backgroundsubtractionmethodfollowingthesameprocedure Another important advantage of the overlap of ACT with described in Menanteau et al. (2009) (see section 3.1). We S82andSDSSisthatforallclustersatz<0.3theBCGwas useastatisticalremovalofunrelatedfieldgalaxieswithsim- spectroscopically targeted by SDSS and has a spectroscopic ilarcolorsandredshiftsthatwereprojectedalongthelineof redshift. Moreover, as BCGs are very luminous objects, in sight to each cluster. We estimate the surface number den- several cases it was possible to match them with a spectro- sityofellipticalsinanannulussurroundingthecluster(within scopicredshiftfromSDSStoz≈0.5.Thereare25ACTclus- 4<r<9h−1Mpc) with the same ∆z as above and the same ters in S82 for which a spectroscopic redshift was available colors as the cluster members. We measure this background from SDSS for the BCG or the next brightest galaxy in the contribution around the outskirts of each cluster and obtain cluster.FortheACTareaoutsideS82,theCASDR8database a corrected value N which is used to compute R and gal 200 providesimagingbutnospectroscopicredshiftsareavailable then a corresponding value of N . The magnitude of the 200 from SDSS on this region. Additionally, within the sample correctionrangesbetween10%−40%dependingontheclus- presentedinthispaper,21(18areonS82)S/N>4.5SZclus- ter richness. For the clusters confirmed using APO observa- ters have multi-object spectroscopic follow-up observations tions,thesmallerFOVofNICFPSprecludesusfrommaking usingGMOSonGemini-Saspartofourprogramaimedatob- aproperbackgroundcorrectionfortheN estimate. Instead tainingdynamicalmassesforACTclustersatz>0.35(Sifón gal we choose a conservative 40% correction factor. In the few etal.2012). Theobservationswerecarriedoutaspartofour caseswheretheclusterislocatedneartheedgeoftheoptical ongoing programs (GS-2011B-C-1, GS-2012A-C-2 and GS- coverage of S82 and the projected area of a 1h−1Mpc aper- 2012B-C-3)andprocessedusingourcustomsetoftoolsasde- tureisnotfullycontainedwithintheopticaldatawescaleup scribedinSifónetal.(2012). ThefulldescriptionoftheACT N by the fraction of the missing area. We will refer to the equatorialsamplefollow-upwithGeminiwillbedescribedin gal correctedvalueshereafter. afuturepaper(Sifónetal.,inprep.).InFigure3weshowthat The measured richness value, N , was used to optically thephotometricandspectroscopicredshiftsareingoodagree- gal confirmthecluster;werequireanumericalvalueofN >15. ment. Thusforclusterswithoutspectroscopicredshifts,upto gal InTable2and3wepresenttheN estimatedfortheS82and z≈0.8,weconfirmthatourphotometriconeswillbequiteac- gal DR8samplerespectively. curate.Forclustersatz>0.9,duetothelackofspectroscopic redshifts, we can only assume that the SDSS well-calibrated 4. THEACTEQUATORIALSZCLUSTERSAMPLE photometryprovidesrobustestimates. Bothphotometricand OuropticalconfirmationofSZcandidateshasresultedina spectroscopicredshiftsforthefullclustersamplearegivenin newsampleof68clusters: 49systemsarelocatedinthearea Tables2and3. overlappingwithS82and19clustersontheareathatoverlaps withtheshallowerDR8data. 3.3. DefiningClusterMembership Inordertohavearichnessmeasurementusefultocompare 4.1. ClustersinStripe82 acrosstheSZclustersample,onemustdefineclustermember- In Table 2 we present the 49 clusters in the 270deg2 area ship.WefollowasimilarproceduretothatinMenanteauetal. in S82 along with their redshift information, BCG positions (2010b).Oncetheredshiftoftheclusterisdetermined,weuse and optical richness. In Figures 4 and 5 we show 8 ex- BPZ-defined early-type galaxies within the same 250h−1kpc amples of z < 1 clusters confirmed using the S82 imaging radiusandredshiftinterval∆z=0.045(1+zc)asabovetoob- alone, while in Figure 6 we show examples of clusters con- tain a local self-defined color-magnitude relation (CMR) for firmed using the additional K -band APO imaging. Optical S eachcolorcombination,g−r,r−i,andi−z(z−Kswhenavail- and NIR images for the full sample are available at http: able)forallclustermembers, usinga3σ clippingalgorithm. //peumo.rutgers.edu/act/S82. We used NED7 to search for For the determination of cluster members we use the spec- clustercounterpartsforoursampleusinga500h−1kpcmatch- troscopic redshift when available to define zc. We use these ing radius and found that a number of them are70well-known spatial and color criteria to determine N1Mpc, the number of z<0.35 clusters reported as part of the Abell (Abell 1958), galaxies within 1h−1Mpc of the cluster center as defined by ROSATAll-SkyGalaxyClusterSurvey(NORAS;Böhringer Koesteretal.(2007). Formally,wecomputeN =N by etal.2000)andMaxBCG(Koesteretal.2007)catalogs. Also gal 1Mpc includingthosegalaxieswithinaprojected1h−1Mpcfromthe using NED we found matches for z < 0.55 systems in the clustercenterandwithin∆z=0.045(1+z )thatsatisfythree GMBCG (Hao et al. 2010) and WHL (Wen, Han, & Liu c conditions:(1)thegalaxymusthavetheSEDofanearlytype 2009)opticalclustercatalogs. TheGMBCGcatalogisanim- according to BPZ, (2) it must have the appropriate color to provedversionoftheMaxBCGmethodwhichusedtheSDSS beaclustermember(i.e.,colorswithin3σ ofthelocalCMR for all color combinations) and (3) it must have the right lu- 7http://ned.ipac.caltech.edu PHYSICALPROPERTIESOFACTEQUATORIALCLUSTERS 7 AACCTT--CCLL JJ00332266..88--00004433,, zz ==00..444488 AACCTT--CCLL JJ00002222..22--00003366,, zz ==00..880066 ssppeecc ssppeecc ((GGMMBBCCGG JJ005511..7700881144--0000..7733110044)) SSDDSSSS//SSttrriippee 8822 SSDDSSSS//SSttrriippee 8822 11 '' 11 '' [[--334499µµKK,,--1188µµKK]] [[--332200µµKK,,--1177µµKK]] AACCTT--CCLL JJ00115522..77++00110000,, zz ==00..223300 ssppeecc AACCTT--CCLL JJ00005599..11--00004499,, zz ==00..778866 ((AAbbeellll 00226677)) ssppeecc SSDDSSSS//SSttrriippee 8822 SSDDSSSS//SSttrriippee 8822 22 '' 11 '' [[--333355µµKK,,--1188µµKK]] [[--331199µµKK,,--1177µµKK]] Figure4. Compositecolorimagesfor4ACTSZclustersopticallyconfirmedusingtheS82imaging. Thehorizontalbarshowsthescaleoftheimages,where northisupandeastisleft.Whitecontoursshowthe148GHzSZmapswiththeminimumandmaximumlevels,inµK,displayedbetweenbrackets.Theyellow crossshowsthelocationofthecentroidoftheSZdetection. DR7. In Table 2 we designate the first reported alternative OurAPOfollow-upcampaignsaidedintheconfirmationof name for each system. For higher redshift systems we com- fivenewclustersatz≥1overtheS82regionbytheaddition pared our sample with the catalog from Geach, Murphy, & of the K imaging, described in Section 2.3, to the 5 optical S Bower (2011, GMB2011) which uses a red cluster sequence bands. InFigures6and7weshowtheopticalandNIRcom- algorithm on the same deep co-added S82 data used in this positeimagesofthe5clustersatz≥1. InTable1wepresent analysis to detect clusters. We searched for counterparts us- asummaryforthe5newclustersconfirmedwiththehelpof ing the same match radius and found 5 previously reported theNIRimaging. GMB2011 systems at 0.50<z<0.65. Beyond z>0.65 all 4.2. AdditionalClustersOutsideStripe82 SZconfirmedclusterinS82representnewdiscoveries,high- lightingthepoweroftheSZeffecttodiscovermassivegalaxy InTable3wepresentthesampleof19opticallyconfirmed clusters at high redshift. In summary, of the 49 ACT SZ- clusters using the ugriz imaging from the SDSS DR8 where selectedclustersfromS82,22arenewandlieatz>0.54. weprovidethesameinformationasfortheS82sampleabove. TheshallowercoverageovertheareabeyondS82onlyallows 8 MENANTEAUETAL. AACCTT--CCLL JJ22333377..66++00001166,, zz ==00..227755 AACCTT--CCLL JJ22112299..66++00000055,, zz ==00..223344 ssppeecc ssppeecc ((AAbbeellll 22663311)) ((MMaaxxBBCCGG JJ332222..4411664499++0000..0088992200)) SSDDSSSS//SSttrriippee 8822 SSDDSSSS//SSttrriippee 8822 22 '' 22 '' [[--337700µµKK,,--1199µµKK]] [[--331188µµKK,,--1177µµKK]] AACCTT--CCLL JJ00001144..99--00005577,, zz ==00..553333 ssppeecc AACCTT--CCLL JJ00220066..22--00111144,, zz ==00..667766 ((GGMMBBCCGG JJ000033..7722554433--0000..9955223366)) ssppeecc SSDDSSSS//SSttrriippee 8822 SSDDSSSS//SSttrriippee 8822 11 '' 11 '' [[--334455µµKK,,--1188µµKK]] [[--224433µµKK,,--1133µµKK]] Figure5. Compositecolorimagesfor4ACTSZclustersopticallyconfirmedusingtheS82imaging. Thehorizontalbarshowsthescaleoftheimages,where northisupandeastisleft.Whitecontoursshowthe148GHzSZmapswiththeminimumandmaximumlevels,inµK,displayedbetweenbrackets.Theyellow crossshowsthelocationofthecentroidoftheSZdetection. ustopresentopticalconfirmationsforanincompletesubsam- 4.3. NotableClusters ple. AsweseefromFigure2,theimagingdepthoftheDR8 In the following sections we provide detailed information datasetcanonly“see”L∗ galaxiesuptoz≈0.5. Moreover, onaselectedfewindividualclustersthatareworthyofspecial theDR8footprintdoesnotfullycovertheACTequatorialre- attention. gion. Withinthisskyregion,whichcontains10newclusters, islocatedthemostsignificantSZdetectionofthewholeACT 4.3.1. ACT-CLJ0044.4+0113 equatorialsample, ACT-CLJ2327.4−0204whichwediscuss indetailinSection4.3.2. ACT-CL J0044.4+0113 appeared serendipitously in an AnapproveddedicatedopticalandNIRfollow-upprogram archival XMM-Newton observation targeting the SLAC lens using the SOAR 4.1-m and APO 3.5-m telescopes in 2012B objectSDSSJ0044+0113(Augeretal.2009)takenonJan10, willprovideamoreuniformandcompleteclustersamplefor 2010(PI:Treu,ObsID:0602340101). Afterflarerejectionwe theremainingareaoutsideS82. obtained exposure times of 21ks for each MOS and 15ks for the pn. Our analysis used SAS version 12.0.1. In Fig- PHYSICALPROPERTIESOFACTEQUATORIALCLUSTERS 9 AACCTT--CCLL JJ00334422..00++00110055,, zz ==11..0077 AACCTT--CCLL JJ00001122..00--00004466,, zz ==11..3366 pphhoott pphhoott SSDDSSSS ++ AAPPOO 33..55mm SSDDSSSS ++ AAPPOO 33..55mm 11 '' 11 '' [[--223311µµKK,,--1122µµKK]] [[--223355µµKK,,--1122µµKK]] AACCTT--CCLL JJ00333366..99--00111100,, zz ==11..3322 AACCTT--CCLL JJ22335511..77++00000099,, zz ==00..9999 pphhoott pphhoott SSDDSSSS ++ AAPPOO 33..55mm SSDDSSSS ++ AAPPOO 33..55mm 11 '' 11 '' [[--117744µµKK,,--99µµKK]] [[--223311µµKK,,--1122µµKK]] Figure6. Compositecolorimagesfor4ofthe5highredshiftACTSZclustersconfirmedusingoptical(S82)andnear-infrared(APO)imaging.Thehorizontal barshowsthescaleoftheimages,wherenorthisupandeastisleft.Whitecontoursshowthe148GHzSZmapswiththeminimumandmaximumlevels,inµK, displayedbetweenbrackets.TheyellowcrossshowsthelocationofthecentroidoftheSZdetection. ure 7 we show the composite optical/NIR color image for T scalingrelationbasedonXMM-Newtonobservationstoes- X ACT-CL J0044.4+0113 with the overplotted XMM-Newton timatethemassforthecluster, X-ray surface brightness contours in the 0.5-4.5 keV band shown in white. The cluster is clearly extended and the X- M (cid:18) T (cid:19)α M = 0 X h−1M (1) ray surface brightness is above background up to a radius 500c,TX E(z) 5keV 70 (cid:12) of ∼50(cid:48)(cid:48) (439 h−1 kpc). Fits to the integrated spectrum to 70 R500c from a region of radius 1(cid:48).5, using a local annular re- with M =(3.84±0.14)×1014, α=1.71±0.09. The mea- gion (covering 2.1(cid:48) to 4.2(cid:48)) results in a best fit gas tempera- sured cl0uster temperature yields a mass of M =(4.7± ture of kT =7.9±1.0 keV and 0.5–2.0 keV band luminos- 500c,TX X 1.1)×1014h−1M . This mass is converted to the mass with ityofL =(4.2±0.15)×1044h−2ergs−1,whichassumesthe 70 (cid:12) X 70 respect to the average density, M =8.2+3.3×1014h−1M cluster’sphotometricredshiftofz=1.11. 200a −2.5 70 (cid:12) after scaling from critical to average density using M = WeusetheArnaud,Pointecouteau,&Pratt(2005)M − 200a 500c 1.77+0.26×M . This conversion factor was derived us- −0.17 500c 10 MENANTEAUETAL. Table2 OpticallyconfirmedACTEquatorialclustersonStripe82 ACTDescriptor R.A.(J2000) Dec.(J2000) z-spec z-photo Ngal SNR BCGdistance AlternativeName (1h−1Mpc) (148GHz) (Mpch−1) 70 ACT-CLJ0022.2−0036 00:22:13.0 −00:36:33.8 0.805† 0.80±0.03 65.9±8.1 9.8 0.124 ACT-CLJ0326.8−0043 03:26:49.9 −00:43:51.7 0.448‡ 0.45±0.03 41.7±6.5 9.1 0.014 GMBCGJ051.70814-00.73104a ACT-CLJ0152.7+0100 01:52:41.9 +01:00:25.5 0.230(cid:63) 0.23±0.02 67.2±8.2 9.0 0.026 Abell0267b ACT-CLJ0059.1−0049 00:59:08.5 −00:50:05.7 0.786† 0.77±0.03 41.0±6.4 8.4 0.064 ACT-CLJ2337.6+0016 23:37:39.7 +00:16:16.9 0.275(cid:63) 0.28±0.01 57.8±7.6 8.2 0.036 Abell2631b ACT-CLJ2129.6+0005 21:29:39.9 +00:05:21.1 0.234(cid:63) 0.24±0.01 35.0±5.9 8.0 0.028 RXJ2129.6+0005c ACT-CLJ0014.9−0057 00:14:54.1 −00:57:08.4 0.533‡ 0.52±0.02 56.2±7.5 7.8 0.070 GMBCGJ003.72543-00.95236d ACT-CLJ0206.2−0114 02:06:13.4 −01:14:17.0 0.676† 0.68±0.02 68.4±9.5 6.9 0.123 ACT-CLJ0342.0+0105 03:42:02.1 +01:05:07.5 ··· 1.07±0.06 41.2±6.3 5.9 0.248 ACT-CLJ2154.5−0049 21:54:32.3 −00:49:00.4 0.488† 0.48±0.02 56.9±7.5 5.9 0.090 WHLJ215432.2-004905e ACT-CLJ0218.2−0041 02:18:16.8 −00:41:41.8 0.672† 0.65±0.03 39.2±6.3 5.8 0.262 ACT-CLJ0223.1−0056 02:23:10.0 −00:57:08.9 0.663‡ 0.64±0.04 50.5±7.1 5.8 0.159 inGMB2011 ACT-CLJ2050.5−0055 20:50:29.7 −00:55:40.6 0.622‡ 0.60±0.03 38.6±6.2 5.6 0.098 inGMB2011 ACT-CLJ0044.4+0113 00:44:25.6 +01:12:48.7 ··· 1.11±0.03 73.0±8.5 5.5 0.258 ACT-CLJ0215.4+0030 02:15:28.5 +00:30:37.3 0.865† 0.73±0.03 29.5±3.8 5.5 0.046 ACT-CLJ0256.5+0006 02:56:33.7 +00:06:28.8 0.363‡ 0.37±0.01 39.8±6.3 5.4 0.113 RXJ0256.5+0006c ACT-CLJ0012.0−0046 00:12:01.8 −00:46:34.5 ··· 1.36±0.06 29.2±5.3 5.3 0.313 ACT-CLJ0241.2−0018 02:41:15.4 −00:18:41.0 0.684(cid:63) 0.68±0.03 50.5±7.1 5.1 0.040 ACT-CLJ0127.2+0020 01:27:16.6 +00:20:40.9 0.379‡ 0.37±0.02 64.8±8.1 5.1 0.075 GMBCGJ021.81939+00.34469a ACT-CLJ0348.6+0029 03:48:36.7 +00:29:33.0 0.297(cid:63) 0.29±0.02 29.4±5.4 5.0 0.142 GMBCGJ057.17821+00.48718a ACT-CLJ0119.9+0055 01:19:58.1 +00:55:33.6 ··· 0.72±0.03 21.5±3.3 5.0 0.218 ACT-CLJ0058.0+0030 00:58:05.7 +00:30:58.1 ··· 0.76±0.02 47.0±6.8 5.0 0.199 ACT-CLJ0320.4+0032 03:20:29.7 +00:31:53.7 0.384(cid:63) 0.38±0.02 55.9±7.5 4.9 0.158 GMBCGJ050.12410+00.53157a ACT-CLJ2302.5+0002 23:02:35.0 +00:02:34.2 0.520‡ 0.50±0.01 61.4±7.8 4.9 0.080 GMBCGJ345.64608+00.04281a ACT-CLJ2055.4+0105 20:55:23.2 +01:06:07.5 0.408‡ 0.41±0.03 37.7±6.1 4.9 0.233 GMBCGJ313.84687+01.10212a ACT-CLJ0308.1+0103 03:08:12.1 +01:03:15.0 0.633(cid:63) 0.63±0.03 41.1±6.4 4.8 0.174 ACT-CLJ0336.9−0110 03:36:57.1 −01:09:48.3 ··· 1.32±0.05 29.1±5.1 4.8 0.277 ACT-CLJ0219.8+0022 02:19:50.4 +00:22:14.9 0.537(cid:63) 0.53±0.02 59.0±7.7 4.7 0.191 GMBCGJ034.95781+00.37385a ACT-CLJ0348.6−0028 03:48:39.5 −00:28:16.9 0.345(cid:63) 0.34±0.02 56.9±7.5 4.7 0.095 GMBCGJ057.14850-00.43348a ACT-CLJ2351.7+0009 23:51:44.6 +00:09:16.2 ··· 0.99±0.03 76.0±8.7 4.7 0.039 ACT-CLJ0342.7−0017 03:42:42.6 −00:17:08.3 0.310(cid:63) 0.30±0.01 36.3±6.0 4.6 0.132 GMBCGJ055.67773-00.28564a ACT-CLJ0250.1+0008 02:50:08.4 +00:08:16.4 ··· 0.78±0.03 32.7±5.7 4.5 0.084 ACT-CLJ2152.9−0114 21:52:55.6 −01:14:53.2 ··· 0.69±0.02 22.7±3.9 4.4 0.156 ACT-CLJ2130.1+0045 21:30:08.8 +00:46:48.3 ··· 0.71±0.04 21.5±3.3 4.4 0.554 ACT-CLJ0018.2−0022 00:18:18.4 −00:22:45.8 ··· 0.75±0.04 27.8±5.3 4.4 0.393 ACT-CLJ0104.8+0002 01:04:55.3 +00:03:36.2 0.277(cid:63) 0.28±0.00 64.4±8.0 4.3 0.235 MaxBCGJ016.23069+00.06007d ACT-CLJ0017.6−0051 00:17:37.6 −00:52:42.0 0.211(cid:63) 0.22±0.01 38.3±6.2 4.2 0.268 MaxBCGJ004.40671-00.87833d ACT-CLJ0230.9−0024 02:30:53.8 −00:24:40.9 ··· 0.44±0.03 19.9±4.5 4.2 0.158 WHLJ023055.3-002549e ACT-CLJ0301.1−0110 03:01:12.0 −01:10:47.7 ··· 0.53±0.04 24.5±5.0 4.2 0.260 inGMB2011 ACT-CLJ0051.1+0055 00:51:12.8 +00:55:54.4 ··· 0.69±0.03 20.5±3.2 4.2 0.417 ACT-CLJ0245.8−0042 02:45:51.7 −00:42:16.4 0.179(cid:63) 0.17±0.01 40.2±6.3 4.1 0.038 Abell0381b ACT-CLJ2051.1+0056 20:51:11.0 +00:56:46.1 0.333(cid:63) 0.35±0.01 20.2±4.5 4.1 0.066 GMBCGJ312.79620+00.94615a ACT-CLJ2135.1−0102 21:35:12.0 −01:03:00.1 ··· 0.33±0.01 68.0±8.2 4.1 0.242 GMBCGJ323.80039-01.04962a ACT-CLJ0228.5+0030 02:28:30.4 +00:30:35.7 ··· 0.72±0.02 31.5±4.0 4.0 0.182 ACT-CLJ2229.2−0004 22:29:07.5 −00:04:11.0 ··· 0.61±0.05 16.4±3.9 4.0 0.569 ACT-CLJ2135.7+0009 21:35:39.5 +00:09:57.1 0.118(cid:63) 0.12±0.00 75.3±8.7 4.0 0.144 Abell2356b ACT-CLJ2253.3−0031 22:53:24.2 −00:30:30.8 ··· 0.54±0.01 23.0±3.4 4.0 0.488 ACT-CLJ2220.7−0042 22:20:47.0 −00:41:54.4 ··· 0.57±0.03 34.5±5.9 4.0 0.277 inGMB2011 ACT-CLJ0221.5−0012 02:21:36.6 −00:12:19.8 0.589(cid:63) 0.57±0.03 21.2±4.6 4.0 0.246 inGMB2011 Note.—R.A.andDec.positionsdenotetheBCGlocationintheopticalimagesofthecluster.TheSZpositionwasusedtoconstructtheACTdescriptoridentifiers. SpectroscopicredshiftsarereportedwhenavailableandcomefromtheDR8spectroscopicdatabaseandourownfollow-upwithGMOSonGeminiSouth. The horizontallinedenotesthedemarcationfortheSZclustersamplewith100%purity.ValuesofS/NarefromHasselfieldetal.(2012). †SpectroscopicredshiftfromGMOS/Gemini(Sifónetal.,inprep) ‡SpectroscopicredshiftfromGMOS/GeminiandSDSS (cid:63)SpectroscopicredshiftfromSDSS afromHaoetal.(2010) bfromAbell(1958) cfromBöhringeretal.(2000) dfromKoesteretal.(2007) efromWen,Han,&Liu(2009)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.