Astronomy&Astrophysicsmanuscriptno.AMIGA˙colors˙astroph (cid:13)c ESO2012 January30,2012 The AMIGA sample of isolated galaxies XI. A First Look at Isolated Galaxy Colors M.Ferna´ndezLorenzo1,J.Sulentic1,L.Verdes–Montenegro1,J.E.Ruiz1,J.Sabater2 andSa´nchez,S.1 1InstitutodeAstrof´ısicadeAndaluc´ıa,Granada,IAA-CSICApdo.3004,18080Granada,Spaine-mail:[email protected] 2InstituteforAstronomy,UniversityofEdinburgh,EdinburghEH93HJ,UK Received.....;accepted..... 2 ABSTRACT 1 0 Context.Thebasicpropertiesofgalaxiescanbeaffectedbybothnature(internalprocesses) ornurture(interactionsandeffectsof 2 environment).Deconvolvingthetwoeffectsisanimportantcurrenteffortinastrophysics.Observedpropertiesofasampleofisolated n galaxies should be largely the result of internal (natural) evolution. It follows that nurture–induced galaxy evolution can only be a understoodthroughcomparitivestudyofgalaxiesindifferentenvironments. J Aims.WetakeafirstlookatSDSS(g–r)colorsofgalaxiesintheAMIGAsampleinvolvingmanyofthemostisolatedgalaxiesinthe 7 localUniverse.ThisleadsustosimultaneouslyconsiderthepitfallsofusingautomatedSDSScolors. 2 Methods.WefocusonmedianvaluesfortheprincipalmorphologicalsubtypesfoundintheAMIGAsample(E/S0andSb–Sc)and comparethemwithequivalentmeasuresobtainedforgalaxiesindenserenvironments. ] Results.WefindaweaktendencyforAMIGAspiralgalaxiestoberedderthanobjectsinclosepairs.Wefindnocleardifference O whenwecomparewithgalaxiesinother(e.g.group)environments.However,the(g−r)colorofisolatedgalaxiesshowsaGaussian distributionasmightbeexpectedassumingnurture–freeevolution.Wefindasmallermedianabsolutedeviationincolorsforisolated C galaxiescomparedtobothwideandclosepairs.Themajorityofthedeviationonmediancolorsforspiralsubtypesiscausedbya h. color–luminositycorrelation.Surprisinglyisolatedandnon–isolated early–typegalaxiesshowsimilar(g−r).Weseelittleevidence p foragreenvalleyinoursamplewithmostspiralsredderthan(g−r)=0.7havingspuriouscolors. - Conclusions.ThereddercolorsofAMIGAspiralsandlowercolordispersionsforAMIGAsubtypes–comparedwithclosepairs–is o likelyduetoamorepassivestarformationinveryisolatedgalaxies. r t Keywords.galaxies:general—galaxies:fundamentalparameters—galaxies:interactions—galaxies:evolution s a [ 1. Introduction flected by the morphology–density relation (Dressler 1980; 1 v vanderWeletal. 2010, and references therein). In dense envi- Insomewaysourstudyofgalaxypropertiesisstillinitsinfancy. 4 ronmentsluminousredearly–typegalaxiespredominatewhilein Wehaveaplethoraoftheoreticalideasbutwearestilltryingto 3 lowestdensityenvironmentbluelate–typespiralsarethedefin- understandwhatbasic measurese.g.size, luminosityandcolor 8 ing population (Dressler 1980; Capaketal. 2007). While it is 5 are telling us. This is, in part, because galaxies are composite easytorecognizearichcluster,definitionsoflowdensityenvi- 1. structuresandinanotherpartbecausewecannoteasilyseparate ronmentscanbeconfusing.Inrecentyearstherehasbeenanin- effects of nature (internalprocesses) from nurture(interactions 0 creased emphasison identifyinglow density or isolated galaxy andeffectsofenvironment). 2 populations.One of the most useful samples remains the visu- 1 Theopticalcolorsofgalaxiesreflecttheirstellarpopulations ally selected Catalog of Isolated Galaxies (CIG) compiled by : and these colors correlate with morphology and environment. Karachentseva(1973)morerecentlyvettedastheAMIGAsam- v The distribution of galaxy colors in the (g−r) vs. (u−g) plane ple(Sulentic2010,andreferencestherein). i X (Stratevaetal.2001)showsastrongbimodalitywithclearsep- Starformationisstronglydependentonenvironmentwithin- r aration into red and blue sequences. Study of morphologyand creasedactivitytowardslowdensityenvironments(Lewisetal. a spectral classification (Stratevaetal. 2001) for subsamples of 2002;Hoggetal.2003,2004;Baldryetal.2006).Inthissense, 287redand500bluegalaxiesshowthatthetwocolorpeakscor- Baloghetal. (1998) foundthat the mean star formationrate in respondroughlytoearly–(E,S0,andSa)andlate–type(Sb,Sc, galaxies with similar bulge–to–total (B/T) luminosity ratios is andIrr)galaxiesas expectedfromthe respectivedominanceof alwayslowerinclustersthaninthefield.HoweverPattonetal. oldandyoungstellarpopulations.Colorsofgalaxiesalsodepend (2011)foundthattheoppositeishappeningingalaxypairswith stronglyonluminosityinthesensethatmoreluminousgalaxies clear signs of star formation induced by interaction within the ofthesamemorphologicaltypeareredder(Baldryetal.2004). bluegalaxies.Thisresultagreeswiththebluer(U−BandB−V) Thecolor–magnituderelationismostobviousintherest–frame colorsfoundpreviouslybyLarson&Tinsley(1978)forpeculiar (g−r)(correctedtoz=0.1),wheretheseparationbetweenthered galaxies. andbluepopulationsisevident(Blantonetal.2003). Approximately10%ofthelowdensityuniverseispopulated Environment is also thought to play a role in the mix of bypairs(alsobytripletsanddensegroups)whereenvironmen- morphological types for a sample of galaxies which is re- tal effects can reproducethe processes that happen in starburst galaxies and clusters (e.g. Xu&Sulentic 1991; Iovino 2002). Sendoffprintrequeststo:M.Ferna´ndezLorenzo What we are trying to say is that there are two sources of en- 1 Ferna´ndezLorenzoetal.:TheAMIGAsampleofisolatedgalaxiesXI vironmentaleffects: 1) the morphology–densityrelation and 2) catalog (see details below). These workflows allow also com- one–on–onegalaxy interactions which can be found in a wide parisonbetween valuesstored in the AMIGA databasecoming range of density environments. In this sense, the AMIGA vet- fromdifferentreleases,registeringthenewvalueswhilekeeping ting of the CIG (see below) is intended to produce an isolated aversionoftheoldones.Thereforethemethodologytocalculate samplethatminimizesbotheffects. thesevaluesisstoredintheseworkflowsenablingreproducibil- The AMIGA project (Analysis of the interstellar Medium ityandre–usability,eventhere–purposabilityforsimilarcross– of Isolated GAlaxies) is producing and analyzing a mul- boundary use cases. Currently releases of data in HyperLeda tiwavelength database for a refinement of the Catalog of are not registered, hence while the methodology, as explained Isolated Galaxies (CIG, Karachentseva 1973, n=1050 galax- above, can be preserved, traceability of the HyperLeda data is ies). We have evaluated and improved the sample in dif- notpossibleyet.TheseworkflowshavebeenbuiltintheTaverna ferent ways: 1) Revision of all CIG positions in the sky Workflow Mamagement System2 and can be accessed in the (Leon&Verdes-Montenegro 2003), 2) optical characterization MyExperimentportal3.ThedataforthefullAMIGAsampleare of the sample including completeness, luminosities, and helio- listedinTable1,andarealsoavailableintheAMIGAVOcom- centricvelocities(Verdes-Montenegroetal.2005,andsection2 pliant interface. We describe the details of the revision below. ofthispaper),3)Morphologicalrefinementandidentificationof For completeness, we explain here all the revised parameters, galaxieswithasymmetries(Sulenticetal.2006,andsection2.2 althoughopticalluminosityhasnotbeenusedinthispaper. of this paper), and 4) quantification of the degree of isolation includingthe numberdensityto the 5th neighbour(η ) and the k 2.1.VelocitiesandDistances estimationofthetidalforce(Q)(Verleyetal.2007a,b). The multiwavelength analysis of our AMIGA sample has We have searched for new velocitiesfor those CIG with helio- shown that isolated galaxies have different properties than centric velocities (V ) larger than 1000 km/s, since for lower galaxies in higher density environments (even field samples). hel values redshift–independent distance estimates have been pre- Variables expectedto be enhancedby interactionsare lower in ferred,andthesameasinVerdes-Montenegroetal.(2005)were AMIGAthananyothersample,suchaslowerinfraredluminos- kept.ThevalueofV foragalaxywithavailableredshiftdata ity(L <10.5L⊙)andcolderdusttemperature(Lisenfeldetal. hel FIR hasbeenupdatedwhentheerrorsquotedintherecentbibliogra- 2007), a low level of radio continuum emission dominated phyweresmallerthaninourpreviouscompilation.Forasubset by mild disk star formation (Leonetal. 2008), no radio ac- ofgalaxieswefoundthatthesourceofthedataprovidedinNED tive galactic nuclei (AGN) selected using the radio–FIR cor- wereobtainedfromStockeetal.(2004)but,whilethepaperwas relation (0%; Sabateretal. 2008) and a small number of opti- providing galactocentric velocities, NED was quoting them as cal AGN (22%; Sabateretal. 2012, submitted), a smaller frac- heliocentric.ThiserrorwasreportedtoNEDteamandbothcor- tionofasymmetricHIprofiles(<20%,Espadaetal.2011),and rected in NED and in our database. Only for 40 CIG galaxies less molecular gas (Lisenfeldetal. 2011). In addition, early– velocitydatawerenotfoundinthebibliography,hence1010out type galaxies in AMIGA are fainter than late types, and more of1050CIGgalaxiescurrentlyhaveredshiftmeasures. AMIGAspiralshostpseudo–bulgesratherthanclassicalbulges Distanceswereobtainedfromvirgo–centricvelocities(V ) (Durbalaetal. 2008). The data are being released and periodi- vir asD= V /H (usingH =75km/sMpc−1),whereV iscal- callyupdatedathttp://amiga.iaa.es,whereaVirtualObservatory vir 0 0 vir culated from the heliocentric velocityV and galactic coordi- compliant web interface with different query modes has been hel natesfollowingHyperLedaconvention.Virgo–centricvelocities implemented. were calculated as V = V + 208 cos(θ), where V is the ThispaperpresentsafirstlookatcolorsfortheAMIGAsam- hel lg lg radialvelocitywithrespectto theLocalGroupandθ isthean- ple. It now becomes possible to analyze more than half of the gulardistancebetweenthegalaxyandVirgocenter.Inorderto AMIGA sample using uniform digital images, magnitudesand transformtheV toV wetransformedαandδcoordinatesin colorsofthesloan digitalskysurvey(SDSS,Yorketal. 2000). hel vir Leon&Verdes-Montenegro(2003)tolandbvalues. InSect.2,thedatarevisionoftheAMIGAsampleisprovided. The sample selection is presented in Sect. 3, and the determi- nation of the absolute magnitudes is described in Sect. 4. The 2.2.Morphologies dependenceof the rest–framecoloras functionof the morpho- logical type and environment is analyzed in Sect. 5 and 6, re- Sulenticetal. (2006) performed a careful revision of the mor- spectively.Finally,theconclusionsarepresentedinSect.7. phologiesforthewholeCIGsamplebasedonPOSSII(Second PalomarObservatorySkySurvey;Reidetal.1991)images.We have recently revised those morphologies for all CIG galaxies 2. TheAMIGAdatarevision with V > 1000 km/s and CCD images available either from hel SDSSorourowndata(N=843).ForCIGgalaxieswithV < Giventhat,sincetheprojectstarted,asignificantnumberofnew hel 1000km/s(N = 57),morphologicaltypeswere compiledfrom data are available for the sample, we have revised the appar- the bibliographyand the mean value used. For N = 134galax- ent magnitudes, morphologicaltypes, distances and optical lu- ieswithonlyPOSSIIdataavailable,asecondrevisionhasbeen minositiesfor the CIG sample with respect to the onesused in performed, with minor modifications to the values assigned in Verdes-Montenegroetal. (2005) and Lisenfeldetal. (2007). In theframeoftheWf4Everproject1,therevisionoftheseproper- Sulenticetal. (2006). For the remaininggalaxiesfor which we wereunabletoperformanyclassification,weuseddatafoundin tieshasbeenpartiallyautomatedbytheimplementationofsci- NEDandHyperLedadatabase. entific workflows which ask for and gather values, of some of thepropertiesforalltheAMIGAgalaxies,fromtheHyperLeda Globallythereisashiftinthemorphologieswithrespectto Sulenticetal.(2006)towardslatertypesby∆T=0.2,thatwein- 1 http://www.wf4ever-project.org terpretasduetothehigherresolutionprovidedbyCCDimages 2 http://www.taverna.org.uk/ revealingsmaller bulges. Types(T) havebeen codedfollowing 3 http://www.myexperiment.org/packs/231.html RC3 (seemorphologicalcodesinTab.2).Sulenticetal.(2006) 2 Ferna´ndezLorenzoetal.:TheAMIGAsampleofisolatedgalaxiesXI Table1.MainpropertiesoftheCIGsample1. CIG V D T IA B A A A Bc L D d i Target hel T g i K T B 25 25 (kms−1) (Mpc) (RC3) (mag) (mag) (mag) (mag) (mag) [L )] (′) (′) (o) ⊙ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 1 7299 96.926 5 1 14.167 0.173 0.571 0.040 13.383 10.570 1.393 0.640 65.094 0 2 6983 94.745 6 0 15.722 0.255 0.278 0.031 15.157 9.840 0.721 0.502 46.816 1 3 - - 4 0 16.057 0.246 0.354 - 15.457 - 0.402 0.242 55.052 0 4 2310 31.880 3 0 12.818 0.252 0.863 0.017 11.685 10.283 3.289 0.729 90.000 1 5 7865 105.907 0 0 15.602 0.225 0.131 0.118 15.128 9.949 0.726 0.318 75.468 1 6 4528 61.623 7 1 15.395 0.412 0.638 0.016 14.329 9.798 0.697 0.308 65.321 1 7 12752 169.896 4 0 15.662 0.100 0.338 0.083 15.141 10.354 0.692 0.427 53.958 1 8 6342 85.041 5 0 15.624 0.489 0.726 0.035 14.374 10.060 0.752 0.277 71.680 0 9 8474 113.035 5 1 15.537 0.111 0.637 0.047 14.742 10.160 0.910 0.380 68.066 1 10 4613 63.645 5 0 15.377 0.366 0.546 0.025 14.440 9.782 1.054 0.501 63.935 0 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 Thefulltableisavailableinelectronicformathttp://amiga.iaa.es.Thecolumns correspond to(1)Galaxyidentificationaccording toCIG catalog; (2) Heliocentric velocity; (3) Distance; (4) Morphological type; (5): Degree of optical asymmetry, (6) B–band magnitude from HyperLeda,(7):Galacticextinction,(8):Internalextinction;(9)KcorrectionintheB–band;(10):CorrectedmagnitudeintheB–band;(11) logarithm of the optical luminosity in the B–band; (12): Major axis; (13) Minor axis; (14) Galaxy inclination, as described in Sect. 2. In column(15)weflaggalaxieswichcode1whenthegalaxyispartofthestudiedinthispaper,and0otherwise,followingSect.3. also flaggedgalaxiessuspectedto be interacting.We havenow 2.3.Opticalluminosity replacedthiscodebyadescriptiveone,basedalsoonvisualin- Theopticalluminositieshavebeenderivedas spection of the optical images, as described next. Code IA=0 is assigned if no relevant signs of distortions are visible. Code log(L /L )=11.95+2log[D(Mpc)]−0.4Bc (2) IA=1 correspondsto galaxies seen in the images as asymmet- B ⊙ T ric, lopsided, warped or distorted, with an integral sign shape where the solar luminosity is given in units of the solar bolo- or tidal feature (tail, bridge, shell). Those galaxies are always metricluminosityasinLisenfeldetal.(2007).Themeanvalue treatedseparatelyinouranalysis,inordertocheckwhetherthey ofthedifferencebetweenournewvaluesforopticalluminosities presenta differentbehaviourthantheonesclassified with code withrespecttotheonesusedinLisenfeldetal.(2007)isassmall 0.CodeIA=2isassignedifthegalaxywasidentifiedaspairsin as0.02±0.18magbuthastheadvantageofbeingderivedfrom Verleyetal.(2007a)and/orinNED,orifthegalaxylookslikea B magnitudescompiledfromHyperLedadatabase,soreducing mergerorsuperpositionoftwogalaxies.Thesegalaxiesarenot T theerrors. consideredpartofAMIGAsampleandaremarkeddifferentlyin theplots.ThenewdataarepresentedinTab.1andnowallCIG galaxieshaveamorphologicalcode. 2.4.Opticaldiameterandaxisratio(D andR ) 25 25 WehavemadeuseoftheHyperLedadatabaseinthecompilation 2.2.1. Apparentmagnitudes ofthemajoraxisD (isophotallevelat25mag/arcsec2intheB– 25 band)andaxisratiosR (R =D /d ,whered istheminor BlueopticalmagnitudesB havebeenobtainedfromHyperLeda 25 25 25 25 25 T axis, at an isophotal level of 25 mag/arcsec2), as well as their (Patureletal. 2003), instead of using the Catalog of Galaxies errors(minorandmajoraxisaregiveninTab.1). and Clusters of Galaxies (Zwickyetal. 1961-1968) as in Verdes-Montenegroetal.(2005),andthecorrectedBc wascal- T culatedasfollows: 2.5.Inclinations The inclination (i) was determined from the value of R in Bc =B −A −A −A (1) 25 T T g i K HyperLeda database and our revised morphological type with thefollowingequation(Heidmannetal.1972): where A is the galactic dust extinction, A the internal ex- g i tinction correction and AK the K correction. Ag has been ob- 1−10−2log(R25) tained from HyperLeda (Schlegeletal. 1998), except for CIG sin2(i)= (3) 447forwhichonlyNEDdatawereavailable.A wascalculated 1−10−2log(R0) i as in HyperLeda (Bottinellietal. 1995) using their values for wherelog(R )=0.43+0.053×TforT≤7andlog(R )=0.38 log(R ) (axis ratio of the isophote 25 mag/arcsec2 in the B– 0 0 25 forT>7. bandforgalaxies)butourownmorphologicaltypes.FinallyA K was obtained as defined in HyperLeda2 (A =ak(T)V /10000; K hel deVaucouleursetal. 1976), using our own morphologies and 3. Sampleselection distances. Bothuncorrectedandcorrectedmagnitudesarelisted inTab.1. Asstarting samplewe use thecatalogof 791AMIGA galaxies selected by Verleyetal. (2007b), where the galaxies with iso- 2 http://leda.univ-lyon1.fr/leda/param/btc.html lation parameters Q>-2 and ηk>2.4 (the tidal strength created 3 Ferna´ndezLorenzoetal.:TheAMIGAsampleofisolatedgalaxiesXI surprise underthe assumption thatisolated galaxiesare simply theoutliersofloosegroupswheretheearly–typefractionis∼0.4 (vanderWeletal.2007).Wefind∼0.15inoursample,whichis still largeenoughto be interesting.Other typesare represented in such small numbers that we assume them to be simply ran- dom galaxies that happen to be unusually isolated at this time. Thisassumptionismotivatedbythestandardideathatalldisky galaxies with a large bulge are products of nurture. The late– type spiral population involves galaxies with small bulges (or even pseudo–bulges, Durbalaetal. 2008) which, if interpreted asa secularevolutiondiagnostic,cannothavespentmuchtime inricherenvironments. 4. Derivingrest–framecolors Fig.1.Distributionoftheheliocentricvelocitiesofthe466CIG A variety of magnitudeestimates are given for each galaxyin- galaxiesusedinthiswork. cludedintheSDSScatalog.Wechosethemodelmagnitudesfor derivingcolorsinoursamplebecausetheyarecalculatedusing best–fitparametersinr–bandwhicharethenappliedtotheother byall theneighbours, Q, ismorethan 1%ofthe internalbind- bands. Model magnitudes are therefore computed through the ing forces; for the local numberdensity, η , this translates to a sameapertureforallbands.Inordertocomputeabsolutemag- k valueof2.4;Athanassoula1984),andwithrecessionvelocities nitudesineachbandthefollowingcorrectionswereapplied: V <1500 km/s, were rejected. These conditions imply that all r – A correction for Galactic dust extinction applying the galaxies in our starting sample have their evolution dominated reddening corrections computed by SDSS following by their intrinsic properties (see Verleyetal. 2007b, for more Schlegeletal.(1998). details). This sample is complete up to Bc=15.3, where Bc is T T – Thek–correctionineachbandwascalculatedusingthecode themagnitudeintheB–bandfromHyperLedaaftercorrections. kcorrect(Blanton&Roweis2007),whichdeterminesthe ThecompletenesslimitwasdecidedinVerdes-Montenegroetal. spectralenergydistribution(SED)ofthegalaxyusingSDSS (2005)(Bc=15mag)afterapplyingthe<V/Vm>test(Schmidt T photometry from a nonnegative linear combination of five 1968),andhasbeenrecentlyupdatedsinceB–bandmagnitudes templatesbasedontheBruzual&Charlot(2003)stellarevo- wererecalculatedfollowingHyperLedaexpressionsin2010(see lutionsynthesiscodes. section2).Thereare657objectsinthecompleteAMIGAsam- – Absolutemagnitudeswerecalculatedusingtheupdateddis- plethatalsofulfilltheaboveisolationcriteria.Photometricdata tancesshowninTab.1. used in this work come from the SDSS–III (Data Release 8, DR8 Aiharaetal. 2011). The SDSS project used a 2.5 m tele- TheinternalextinctioncorrectioninB–bandwascalculated scope(Gunnetal.2006)toobtainphotometricinformationfrom byVerdes-Montenegroetal.(2005)asafunctionofinclination CCD imagesin u, g,r,i, andz passbands.A newapproachfor andmorphologicaltypefollowingdeVaucouleursetal.(1991). backgroundsubtractionwasappliedinDR8thatfirstmodelsthe We used the Calzetti law (Calzettietal. 2000) for deriving the brightestgalaxiesineachfieldinordernottoaffecttheestimated SDSS–band internal extinctions based on the B–band correc- skybackground(Blantonetal.2011). tions. We represented the rest–frame color (g−r) versus incli- Fromthe657galaxiesthatarepartofthecompleteAMIGA nationbeforeandaftertheextinctioncorrectionsandfoundthat sample,wefound496objectsintheSDSSdatabase.We found thiscorrectionwasoverestimated(theslopeofthelinearregres- and removed14 galaxies from the catalog involving imprecise sionchangesfrom0.17to−0.21forScgalaxiesandfrom0.16 identificationsofgalaxynucleiintheSDSSdatabaseorgalaxies to−0.13forSbgalaxies,aftercorrections).Mastersetal.(2010) with a nearby bright star adversely affecting galaxy photome- studied the effect of this correction on the colors through its try.We alsoremoved16galaxieswithunknownredshiftssince dependencyoninclination,spiraltypeandabsolutemagnitude. thosewillbeneededforthefollowinganalysis.Thefinalsample Thebestresultforour(g−r)versusinclinationplotsisobtained consists of 466isolated galaxieswith radialvelocitiesbetween usingalinearcombinationoftheirrelationsasdefinedinequa- 1500and24000kms−1.Hereafter,werefertoitastheAMIGA– tion3intheirpaper(theslopeofthe(g−r)versusinclinationre- SDSS sample. We have represented its redshift distribution in lationafterthiscorrectionis0.025forScand0.023forSbgalax- Fig.1.Thissampleincludes70galaxieswithasymmetriesthat ies),whiletheexpressionstheygiveforeachmorphologicaltype aresuspectedofbeinginvolvedininteractionsorhavingnearby (bulge–diskratio)produceanovercorrectioninalloursubsam- companions.Thesepropertiesarerepresentedinoursampleby ples.Wealsonotethatthedependenceoftheinternalextinction the degree of asymmetry IA=1 (63) or IA=2 (7) (see Section correctionongalaxyluminosityderivedinMastersetal.(2010) 2.2),whereIA=2representsthemostasymmetricgalaxies.We isnotreproducedbyourdata.IfAMIGAspiralsarereallymore do not rejectthese objects since we are tryingto see whatfea- dynamicallyquiescentsystems,itisperhapsnotsurprisingthat turescanagalaxydevelopinisolation,but,throughoutthepaper, correctionsderivedfromalmostcertainlylessquiescentsamples we check the effect of these galaxies in the median colors. We wouldyielddifferentcorrections.Moreover,thispreliminaryre- focusourattentiononthetwomoststatisticallysignificantsub- sultoflowerextinctioninAMIGAspiralscanbeunderstoodas samplesinvolvingSb–ScspiralsandE/S0early–types.Thesein- asignoflessdustduetoourassumptionthatthestarformation volveapproximately68%and15%oftheAMIGA–SDSSsam- has been lower in our isolated galaxies for all or most of their pleusedinthisworkrespectively.Theformerisinterpretedasa lives(Leonetal.2008). kindof ”parentpopulation”ofisolated galaxiesbecauseit rep- Finally, we applied the correction of Mastersetal. (2010), resents 2/3 of the total sample. The latter was somewhat of a based on their equation 3, to our Sa–Sc galaxies. We have not 4 Ferna´ndezLorenzoetal.:TheAMIGAsampleofisolatedgalaxiesXI early–typegalaxiesalthoughmedian(g−r)valuesremainessen- tiallyconstantouttoT=3(Sb).BeginningwithtypeSbweseea decreaseinmedian(g−r)asexpectedifthissequencereflectsa uniformlydecreasingcontributionfromanoldstellarpopulation (Stratevaetal.2001;Blantonetal.2003). Surprisingly the color distributions for our late–type spiral Sb–Sc populationshow some galaxies with colors even redder than the E/S0 subsample. Either AMIGA early–type galaxies areextraordinarilyblueorthesespiralshaveanomalouscolors. Careful examination of these objects using the SDSS naviga- tiontoolshowsthatcolorsofthereddestSb–Scgalaxiesareun- reliable and/or that the assigned galaxy types are incorrect. In the case of our Sc subsample (which is perhaps the easiest to classify) we find n=10 galaxies with (g−r)>0.7 (tipical colors ofearly–types).In8casesthereisaproblemwiththecolor:1) Fig.2.DistributionofHubbletypesintheAMIGA–SDSSsam- fiveareaffectedbyastarprojectedonorveryclosetothegalaxy ple. (CIG261,304,649,716,1010),2)two(CIG349,946)belongto the7galaxiespreviouslyidentifiedwithahighdegreeofasym- metry(IA=2),3)one(CIG988)ishighlyinclinedandtheex- tinctioncorrection(Mastersetal.2010)couldbemaximallyaf- fectedbyuncertaintyoftheadoptedinclination.Oftheremain- ing 2 red Sc spirals, one (CIG 709) shows among the highest recession velocity in our sample (V>14000km/s). At this dis- tance the number of resolution elements in the galaxy images approachesthatofPOSSII.InthecaseofCIG709,theimageof SDSSshowsacloseobjectwithunknownredshiftwhichcould be a minor companioncausingsome kindof asymmetryin the opticalbands.Finally,CIG807maywellbeanScspiralbutthe blue disk is not resolved. The point of this exercise is to show thatonecanidentifyremarkablypureisolated(local)spiralsub- samplesbutonly if the abovepitfalls are taken intoaccount.If theseeffectsarenottakenintoaccounttheaveragepropertiesof theisolatedsubsamplescanbeblurredbeyondstatisticalutility. Consideration of Sbc and Sb spirals reveal similar effects amongthereddestgalaxiesthatonlydetailedsurfacephotometry could correct. Naturally similar problems can afflict the bluest galaxies in each spiral subtype. Colors for 2/4 of the bluest Sc spirals((g−r)<0.4)arealsolikelyaffectedbytheirnearbybright stars.Theseeffectscanbeasourceofseriousscatterincolordis- Fig.3.Distributionoftherest–frame(g−r)colorasafunctionof tributionsforanygalaxysampleandillustratethecautionneeded Hubble type. The yellow points are the median values of each inusingSDSScolors.Ontheotherhand,whiletheobjectswith morphologicaltype. The blue triangles are objects with asym- IA=2areoutsidethenormaltrendofthemedianvalues,thecolor metryindexIA=1whiletheredopenpointsrepresentthemost oftheAMIGAgalaxieswithasymmetryindexIA=1agreeswith asymmetricobjects(IA=2)inoursample.Theerrorbarsrepre- thecolorofsymmetricgalaxies(IA=0).Inthefollowinganaly- sentthemedianabsolutedeviation. sis, objectswith IA=2have been removedbutnotobjectswith spuriouscolors,sincetheyalsoexistinthesamplesthatwehave used as comparison.Nevertheless,we took accountof their ef- correctedthemorphologicaltypesearlierthan0(E/S0)andlater fectsthroughtheerrormeasures. than 6 (Scd/Sd/Irr) because their numbers are small and their We expectto find a smaller color dispersionfor spiralsub- (g−r)vs. inclinationplotsdo notshowany clear trendof color types in the AMIGA sample because these galaxies are mini- vs.i(theslopeofthefitsis∼0). mallyaffectedbyenvironmentaleffectswhichapparentlyinduce alargercolordispersion.Thishasbeenknownsincethefirststa- tisticalstudyofcolorsforgalaxiesininteractingpairsandmul- 5. (g–r)colorasfunctionofmorphologicaltype tiplets (i.e. they evolve more passively, e.g. Larson&Tinsley In Fig. 2 we presentedthe numberof galaxiesin the AMIGA– 1978). One of the goals of the AMIGA project is to provide a SDSSsampleofeachmorphologicalsubtype,andFig.3shows samplethatcouldbettercharacterizeintrinsicgalaxyproperties the distribution of SDSS (g−r) colors for the AMIGA sample andtheirdispersions. as a function of the morphologicalsubtype. We calculated the What is the main source of color dispersion for spiral sub- medianvaluesratherthanmeanvalues,sincetheyarelesssen- typesifwehaveachievedourgoalofminimizingeffectsofenvi- sitivetooutliersproducedbyanerrorinthecolorforoneobject ronmentalnurturefromoursample?Spiralscontainaredbulge or misclassification. We have used the median absolute devia- (rednessdependingon the nature of the bulge) and a blue disk tionasascattermeasuresinceitrepresentsarobustestimatorof makingtheirglobal(g−r)colorsensitivetotheapertureusedin dispersion for median values. Not surprisingly the reddest me- estimatingthe g and r magnitudes.We checkedthe (g−r)color dianvaluesof(g−r)arefoundforthefirstfourbinsrepresenting versusabsolutemagnituderelationforScgalaxiesinthreesep- 5 Ferna´ndezLorenzoetal.:TheAMIGAsampleofisolatedgalaxiesXI arate redshift ranges. The results are presented in Fig. 3. We find a tendency for galaxies of fixed absolute magnitude to be (g−r)∼0.08 redder at lower recession velocities implying that colormeasuresinoursamplecouldbeincreasinglyaffectedby bulgelightatlowerrecessionvelocities.Thisisaminorbutsys- tematiceffect.However,anapertureeffectwillalsounderstimate theabsolutemagnitudeofthegalaxy,makingitmoredifficultto estimatetheamplitudeofthecolorbias. Fig. 4 shows that the major source of color dispersion in Fig. 3 is connected with the color–luminosity trend. Sb–Sc color distributions show Gaussian distributions for each sub- typewithFWHM=0.15–0.2,spanningalmost2dexinluminos- ity(M =−19to−22.5).TheeffectislargestforScspiralsinour r sample where the color–luminositytrend appearsto be steeper (ScspiralswithM =-22.5are∼0.25magredderthanSc spirals r with M =-19). Fig. 4 also shows the (g−r) vs. M density dia- r r gramobtainedfromtheNair&Abraham(2010) samplecover- ing the range 0.01<z<0.05 (SDSS DR8). This sample applied no morphology or environmental selections so we see the bi- modality previouslyfoundfor SDSS data (Stratevaetal. 2001; Blantonetal. 2003). The distribution of our Sc subsample fol- lows the blue sequence with the recession velocity vs. color Fig.4.(g−r)color–magnitudediagramfortheScgalaxiesinthe bias visible. The same bias in the color as function of redshift AMIGA sample. The blue diamondsare objectsat z<0.02,the hasbeenfoundbyusingthesampleofNair&Abraham(2010). yellow triangles are galaxies at redshift 0.02<z<0.04, and the Moreover,fora givenluminosityand morphologicaltype(Sc), pink squares are those objects at z>0.04. The grey–scale rep- the petrosian radius R given in the SDSS database for the resentsthedensitydiagramobtainedfromtheNair&Abraham 90 Nair&Abraham(2010)sampledecreasesaswegoatlowerred- (2010)sampleat0.01<z<0.05,usingthedataofDR8. shifts.Themaintrendofourdatainthefigure(andhencesource ofcolordispersion)clearlyinvolvesthecolor–luminositycorre- lation. The overlap (i.e. green valley) rather than being a class ofgalaxieswithintermediatecolorsmaybeentirelyduetospi- ralswithspuriousredcolorsduetotheeffectsdiscussedabove. The(g−r)vs.M diagramforavettedsampleofisolatedgalax- r ies likely shows a much clearer dichotomythan othersamples. Thereisnoevidenceforanastrophysicallysignificantgreenval- leybutweneedmorereliablecolorstoconfirmthisresult. Fig.5showsanequivalentdiagramfortheearly–type(E/S0) part of the AMIGA sample. Despite their isolation they fall in theredsequencedefinedbyearly–typesinricherenvironments (e.g.Nair&Abraham(2010)).Theydonotprovideevidencefor a greenvalley.Ourearly–typesubsampleshowsnocolortrend with recession velocity. We notice only a slight trend between colorandluminosity(galaxieswithM =-22.5are∼0.1magred- r der than galaxies with M =-19). In the case of early–typesthe r FWHM of the Gaussian fit to the color distribution is ∼0.14 (similar to Sb galaxies color distribution). The bluest galaxies mightbemisclassifiedasE/S0althoughphotometricstudyofa fewofthem(Marcumetal.2004)suggeststhattheymaynotbe spirals.Inaddition,threeofthem(CIG264,981,and1025)hav- ingHIemissionwererevisedinordertocheckforthepresence Fig.5.Same asFig. 4 butfortheE/S0 galaxiesinthe AMIGA ofpeculiaritiesinthe morphologies,suchas dustlanes,optical sample. shells,bluecoresorstarformation.Allofthemwereconfirmed asearly–typegalaxies(Espada 2006). colors(Pattonetal.2011).Larson&Tinsley(1978)foundlarger colordispersioninanextremenurturesample,whoseevolution 6. Colordependenceonenvironment iscompletelydominatedbyexternaleffects.Thekeywordhere Some studies have shown that galaxies of a fixed morphol- isdispersion:colorsofgalaxiesinpairsandgroupsarenotsys- ogyinhigherdensityenvironmentsareredder(Balletal.2008; tematically bluer but they show a larger color dispersion. The Skibbaetal.2009)andthereasonmightbethatdenseenviron- AMIGAsample ofgalaxiesinvolvessomeofthe mostisolated mentssuppressstarformation(Baloghetal.1998).Ontheother objectsin the localUniverseandare minimallyaffectedby ex- handisolatedgalaxiesarelikelytoshowratherpassivestarfor- ternalprocesses,at leastduringthe pastfew Gyr. We therefore mationleadingonetoexpectspiralsinricherenvironments(e.g. expectthatAMIGAgalaxiesofagivenmorphologicaltypewill pairs, even the isolated pairs usually included in field galaxies showminimalcolordispersionandtheaboveresultssupportthat samples) to show more active star formation and hence bluer expectation. 6 Ferna´ndezLorenzoetal.:TheAMIGAsampleofisolatedgalaxiesXI Table2.Median(g−r)colorsasfunctionofmorphologicaltype.Theerrorsrepresentthemedianabsolutedeviation. Type T AMIGA NAIR EFIGI CPG CPG (WID) (CLO) E -5 0.72±0.06 0.78±0.03 0.78±0.03 0.79±0.03 0.76±0.03 E -4 0.77±0.02 − 0.78±0.02 0.80±0.08 0.79±0.04 E/S0 -3 0.75±0.04 0.76±0.05 0.77±0.04 0.79±0.06 0.77±0.07 S0 -2 0.75±0.04 0.76±0.04 0.76±0.04 0.78±0.06 0.77±0.06 S0 -1 − − 0.78±0.06 0.72±0.05 0.73±0.09 S0/a 0 0.74±0.07 − 0.76±0.07 0.77±0.05 0.78±0.04 Sa 1 0.77±0.05 0.71±0.06 0.73±0.05 0.72±0.11 0.71±0.09 Sab 2 0.74±0.05 0.69±0.07 0.72±0.07 0.71±0.10 0.67±0.15 Sb 3 0.71±0.06 0.67±0.08 0.71±0.08 0.71±0.13 0.69±0.12 Sbc 4 0.65±0.09 0.61±0.08 0.66±0.07 0.63±0.12 0.59±0.14 Sc 5 0.57±0.08 0.56±0.08 0.62±0.09 0.69±0.12 0.51±0.15 Scd 6 0.49±0.06 0.46±0.07 0.58±0.09 0.55±0.11 0.51±0.17 Sd 7 0.42±0.06 0.42±0.06 0.47±0.08 0.34±0.17 0.43±0.10 Sdm 8 0.35±0.05 0.41±0.07 0.44±0.12 0.48±0.07 0.30±0.12 Sm 9 − 0.36±0.09 0.40±0.16 − 0.56±0.13 Im 10 0.24±0.03 0.33±0.10 0.29±0.09 − 0.29±0.12 Table 2 provides a quantitative comparison of (g−r) me- dian colors in our sample and in samples involving denser en- vironments. We used three catalogs for this comparison: 1) Nair&Abraham(2010)whichincludesadetailedvisualclassi- ficationsfor14,034galaxiesintheSDSSDR4.Weselectedonly objectswith morphologicalclassification availableand redshift 0.01<z<0.05 (8976) to better match our AMIGA–SDSS sam- ple ( 98%); 2) the EFIGI catalog (Baillardetal. 2011) which provides detailed morphological information for a sample of 4458PGCgalaxiesalsousingSDSSDR4.Bothsamplesinclude galaxiesin a wide range of environments;3) We also compare withthecatalogofisolatedpairsofgalaxies(CPG,Karachentsev 1972),composedby1206objects.Itwasvisuallycompiled,like CIG,usingPOSSIIandapplyinganisolationcriterion. We used SDSS DR8 photometric data for all three sam- ples and derived rest–frame colors in the same way as for our sample. For the CPG sample, there are 916 galaxies with SDSSphotometry.Wecalculatedtheprojecteddistancebetween galaxies in each pair using redshifts taken from HyperLeda. Following Xu&Sulentic (1991) we separated this sample into Fig.6. Distribution of absolute magnitudes in the r–band for close–interacting(CLO–galaxieswithseparationSEP<2Mpc) thewholeAMIGA–SDSSsample,andfortheNair&Abraham andwide(WID)pairs(SEP>2Mpc).Wecheckedthedistribution (2010),Efigi,andCPGsamplesdescribedinthetext. ofredshiftandabsolutemagnitudesinther–bandforeachsam- ple and found good agreementwith the whole AMIGA–SDSS sample. In the cases of EFIGI and CPG catalogs, we removed the E/S0 population of AMIGA is fainter than any other sam- theobjectswithrecessionvelocitieslowerthan1500km/saswe ple (Sulenticetal. 2006). The median values of colors for the didforourAMIGAsample,duetothedeterminationoftheiso- Nair&Abraham(2010)andclosepairssamples,forthe(Sb–Sc) lation parameters (Verleyetal. 2007b). We have also removed spirals,areconsistentbutslightlybluerthanoursample.Inthe objectsfainterthanMr >-17sincewedonothavecounterparts caseofthecomparisonwithNair&Abraham(2010),thediffer- in the AMIGA–SDSS sample. The final samples of compari- encesin colormaybe producedbythe differentmorphological son have 8879 (Nair), 3294 (EFIGI), and 839 (CPG) galaxies. classificationsusedinbothsamples.Wefindtheirmorphologies In Fig. 6 we present the absolute magnitudedistribution in the to be earlier than ours, with a mean deviationof ∼1.5 for each r–bandforeachsample,as wellasthe probabilitygivenbythe Hubbletype.Inordertotestthispossibility,weselectedasub- Kolmogorov–Smirnov two sample test that these distributions samplecomposedbythe142commonobjectsbetweenAMIGA areindistinguishabletothe AMIGA–SDSSone.Thisprobabil- andtheNair&Abraham(2010)sample,andcalculatedtheme- ityislargerthan90%fortheCPGandNairsamples,whilethe dianvaluesof(g−r)obtainedusingeachmorphologicalclassifi- lowestvalueisfoundinthecaseoftheEFIGIsample(63%). cation.Wefoundthatthedifferencebetweenbothmediancolors Wefoundgoodagreementforthecolorsofearly–typegalax- inthecommonsamplewasconsistentwiththatfoundusingthe ies in all samples. However, in all cases (from T=-5 to T=0), fullsamples. the median values for the AMIGA sample are a little bluer Nevertheless,thedifferencesincolorofclosepairsseemto (but within the errors) than the other samples. Because the be more robust because the colors of wide pairs are as red as color–luminosityrelationhasatrend(brightergalaxiesarered- thecolorsofisolatedgalaxies.Thescatteris alsolargerforthe der), this bluer color could be presumably due to the fact that closepairs,inagreementwithLarson&Tinsley(1978).InFig.7 7 Ferna´ndezLorenzoetal.:TheAMIGAsampleofisolatedgalaxiesXI Fig.7.Distributionofabsolutemagnitudesintheg–band(left),r–band(centre)and(g−r)color(right)forallSb(top),Sbc(middle) andSc(bottom)galaxies.ThesolidlinesrepresenttheAMIGA–SDSSsampleandthedashedlinesarethedistributionoftheCPG closepairs. we present the distribution of absolute magnitudes in r and g– We have also investigated the change in the median colors bandsaswellas(g−r)colorforthreemorphologicaltypes(Sb, whenwerejectedobjectswithasymmetries(IA=1)andthedif- Sbc and Sc) of the AMIGA–SDSS sample. We have also rep- ferencesarenegligible. resented the same distributions for the close pairs of the CPG sample.Whilethecolordistributionofeachmorphologicaltype hasgaussiandistributionforoursample,thecolorhistogramfor 7. Conclusions the CPG sample follows a non gaussian distribution. The loss Wehavetakenafirstlookatthecolorsofisolatedgalaxiesusing ofGaussianity in thedistributionofcolorcan beinterpretedas SDSSgandrmagnitudes.Afirstlookisalsoinevitablyanintro- aneffectoftheenvironmentalnurturethatoccursinasampleof ductionintothepitfallsofusingtheSDSSautomatedmeasures pairs. of magnitudes. We find that the color distributions of morpho- 8 Ferna´ndezLorenzoetal.:TheAMIGAsampleofisolatedgalaxiesXI logicalsubtypescanbewelldescribedasGaussiandistributions deVaucouleurs,G.,deVaucouleurs,A.,&Corwin,H.G.,Jr.1976,inSecond withFWHM(g−r)=0.1–0.2.Thisisexpectedforsampleswhere referencecatalogueofbrightgalaxies,Austin:UniversityofTexasPress.,6 effects of environmental nurture have been minimized, and is +396p. deVaucouleurs,G.,deVaucouleurs,A.,Corwin,H.G.,Jr.,Buta,R.J.,Paturel, supportedbythe factthatthisGaussianity wasnotobservedin G.,&Fouque,P.1991,Volume1-3,XII,2069pp.7figs.. Springer-Verlag thesampleofgalaxypairs.Themajorityofthecolordispersion BerlinHeidelbergNewYork forspiralsubtypesis caused bya color–luminositycorrelation, Dressler,A.1980,ApJ,236,351 with more massive spirals showing redder colors. In fact most Durbala,A.,Sulentic,J.W.,Buta,R.,&Verdes-Montenegro,L.2008,MNRAS, 390,881 of the Sb spirals in our sample concentrateat the upperregion Espada,D.2006,Ph.D.Thesis ofthebluecloud,belowtheredsequence.Weseelittleevidence Espada,D.,Verdes-Montenegro,L.,Huchtmeier,W.K.,etal.2011,A&A,532, for a green valley in our sample with most spirals redder than A117 (g−r)=0.7havingspuriouscolors(∼80%).Wefindapreliminary Fouque,P.,&Paturel,G.1985,A&A,150,192 difference in the color of the isolated and paired spiral galax- Gunn,J.E.,etal.2006,AJ,131,2332 Heidmann,J.,Heidmann,N.,&deVaucouleurs,G.1972,MmRAS,75,105 ies. The median value of (g−r) seems to be bluer when inter- Hogg,D.W.,etal.2003,ApJ,585,L5 actions come into play. Nevertheless, no difference is found in Hogg,D.W.,etal.2004,ApJ,601,L29 the (g−r) color of early–type galaxies, which suggests that the Iovino,A.2002,AJ,124,2471 bluer color of spirals in pairs is presumably due to interaction Karachentsev, I. D. 1972, Soobshcheniya Spetsial’noj Astrofizicheskoj Observatorii,7,1 enhancedstar formation.Our sample of isolated galaxiesgives Karachentseva,V.E.1973,AstrofizicheskieIssledovaniiaIzvestiyaSpetsial’noj amedianabsolutedeviationincolorwhichislowerthanthatin AstrofizicheskojObservatorii,8,3 pairs of galaxies, where a more active star formation and, per- Larson,R.B.,&Tinsley,B.M.1978,ApJ,219,46 haps,ahigherdustdiffusioncausedbytheinteraction,are also Leon,S.,&Verdes-Montenegro,L.2003,A&A,411,391 sourcesofcolordispersion.Themeancolorsanddispersionsfor Leon,S.,Verdes-Montenegro,L.,Sabater,J.,etal.2008,A&A,485,475 Lewis,I.,etal.2002,MNRAS,334,673 isolatedgalaxysubtypes(especiallyE/S0andSb–Sc)arelikely Lisenfeld,U.,Verdes-Montenegro,L.,Sulentic,J.,etal.2007,A&A,462,507 thebestnurture–freemeasuressofarobtained. Lisenfeld,U.,Espada,D.,Verdes-Montenegro,L.,etal.2011,arXiv:1108.2130 Marcum,P.M.,Aars,C.E.,&Fanelli,M.N.2004,AJ,127,3213 Acknowledgements. ThisworkhasbeensupportedbyGrantAYA2008-06181- Masters,K.L.,etal.2010,MNRAS,404,792 C02 co-financed by MICINN and FEDER funds, and the Junta de Andaluca Nair,P.B.,&Abraham,R.G.2010,ApJS,186,427 (Spain) grants P08-FQM-4205 and TIC-114. We are grateful to the AMIGA Patton,D.R.,Ellison,S.L.,Simard,L.,McConnachie,A.W.,&Mendel,J.T. team for the great work they have done on improving the sample and to the 2011,MNRAS,412,591 anonymousrefereeforusefulcomments. Paturel,G.,Fouque,P.,Bottinelli,L.,&Gouguenheim,L.1989,A&AS,80,299 Wf4EverisfundedbytheSeventhFrameworkProgrammeoftheEuropean Paturel,G.,Theureau,G.,Bottinelli,L.,etal.2003,A&A,412,57 Commission (Digital Libraries and Digital Preservation area ICT-2009.4.1 Reid,I.N.,Brewer,C.,Brucato,R.J.,etal.1991,PASP,103,661 projectreference270192).Wearegratefultoallourcollaboratorsinthisproject. Sabater,J.,Leon,S.,Verdes-Montenegro,L.,etal.2008,A&A,486,73 Wethankthe SDSSgroupformakingtheir catalogues anddata publicly Sabater,J.,Verdes-Montenegro,L.,Leon,S.,etal.2012,TheAMIGAsampleof available. Funding for SDSS-III has been provided by the Alfred P. Sloan isolatedgalaxies.X.Opticalcharacterisationofnuclearactivity,Submittedto Foundation,theParticipatingInstitutions,theNationalScienceFoundation,and A&A theU.S.DepartmentofEnergy.TheSDSS-IIIwebsiteishttp://www.sdss3.org/. Schlegel,D.J.,Finkbeiner,D.P.,&Davis,M.1998,ApJ,500,525 SDSS-III is managed by the Astrophysical Research Consortium for the Skibba,R.A.,etal.2009,MNRAS,399,966 ParticipatingInstitutionsoftheSDSS-IIICollaborationincludingtheUniversity Schmidt,M.1968,ApJ,151,393 ofArizona,theBrazilianParticipationGroup,BrookhavenNationalLaboratory, Stocke,J.T.,Keeney,B.A.,Lewis,A.D.,Epps,H.W.,&Schild,R.E.2004, UniversityofCambridge,UniversityofFlorida,theFrenchParticipationGroup, AJ,127,1336 the German Participation Group, the Instituto de Astrofisica de Canarias, Strateva,I.,etal.2001,AJ,122,1861 the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins Sulentic,J.W.,etal.2006,A&A,449,937 University, Lawrence Berkeley National Laboratory, Max Planck Institute for Sulentic,J.2010,GalaxiesinIsolation:ExploringNatureVersusNurture,421,3 Astrophysics,NewMexicoStateUniversity,NewYorkUniversity, OhioState vanderWel,A.,Holden,B.P.,Franx,M.,etal.2007,ApJ,670,206 University,PennsylvaniaStateUniversity,UniversityofPortsmouth,Princeton vanderWel,A.,Bell,E.F.,Holden,B.P.,Skibba,R.A.,&Rix,H.-W.2010, University,theSpanishParticipationGroup,UniversityofTokyo,Universityof ApJ,714,1779 Utah,VanderbiltUniversity, UniversityofVirginia,UniversityofWashington, Verdes-Montenegro,L.,Sulentic,J.,Lisenfeld,U.,Leon,S.,Espada,D.,Garcia, andYaleUniversity. E.,Sabater,J.,&Verley,S.2005,A&A,436,443 WethanktheSAO/NASAAstrophysicsDataSystem(ADS)thatisalways Verley,S.,Odewahn,S.C.,Verdes-Montenegro,L.,etal.2007a,A&A,470,505 souseful. Verley,S.,etal.2007b,A&A,472,121 Xu,C.,&Sulentic,J.W.1991,ApJ,374,407 York,D.G.,etal.2000,AJ,120,1579 References Zwicky, F., Herzog, E., Karpowicz, M., Kowal, C., & Wild, P. 1961-1968, Catalogue of Galaxies and of Cluster of Galaxies (Pasadena, California Aihara,H.,etal.2011,ApJS,193,29 InstituteofTechnology,CGCG) Athanassoula,E.1984,Phys.Rep.,114,321 Baillard,A.,etal.2011,arXiv:1103.5734 Baldry,I.K.,Glazebrook,K.,Brinkmann,J.,etal.2004,ApJ,600,681 Baldry, I. K., Balogh, M. L., Bower, R. G., Glazebrook, K., Nichol, R. C., Bamford,S.P.,&Budavari,T.2006,MNRAS,373,469 Balogh, M. L.,Schade, D., Morris, S. L.,Yee, H. K. C., Carlberg, R. G., & Ellingson,E.1998,ApJ,504,L75 Ball,N.M.,Loveday,J.,&Brunner,R.J.2008,MNRAS,383,907 Blanton,M.R.,etal.2003,ApJ,594,186 Blanton,M.R.,&Roweis,S.2007,AJ,133,734 Blanton,M.R.,Kazin,E.,Muna,D.,Weaver,B.A.,&Price-Whelan,A.2011, arXiv:1105.1960 Bottinelli,L.,Gouguenheim,L.,Paturel,G.,&Teerikorpi,P.1995,A&A,296, 64 Bruzual,G.,&Charlot,S.2003,MNRAS,344,1000 Calzetti,D.,Armus,L.,Bohlin,etal. 2000,ApJ,533,682 Capak,P.,Abraham,R.G.,Ellis,R.S.,Mobasher,B.,Scoville,N.,Sheth,K.,& Koekemoer,A.2007,ApJS,172,284 9