ebook img

Texts in Computing - SQIG PDF

19 Pages·2008·1.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Texts in Computing - SQIG

Texts in Computing Volume 10 Foundations of Logic and Theory of Computation Volume 3 Logical Reasoning: A First Course Rob Nederpelt and Fairouz Kamareddine Volume 4 The Haskell Road to Logic, Maths and Programming Kees Doets and Jan van Eijck Volume 5 Bridges from Classical to Nonmonotonic Reasoning David Makinson Volume 6 Automata and Dictionaries Denis Maurel and Franz Guenthner Volume 7 Learn Prolog Now! Patrick Blackburn, Johan Bos and Kristina Striegnitz Volume 8 A Meeting of the Minds: Proceedings of the Workshop on Logic, Rationality and Interaction, Beijing, 2007 Johan van Benthem, Shier Ju and Frank Veltman, eds. Volume 9 Logic for Artificial Intelligence & Information Technology Dov M. Gabbay Volume 10 Foundations of Logic and Theory of Computation Am´ılcar Sernadas and Cristina Sernadas Texts in Computing Series Editor Ian Mackie [email protected] Foundations of Logic and Theory of Computation Am(cid:19)(cid:16)lcar Sernadas and Cristina Sernadas (cid:13)c Individual author and College Publications, 2008. All rights reserved. ISBN 978-1-904987-88-8 College Publications Scientific Director: Dov Gabbay Managing Director: Jane Spurr Department of Computer Science King’s College London Strand, London WC2R 2LS, UK Original cover design by Richard Fraser Cover produced by orchid creative www.orchidcreative.co.uk All rights reserved. No part of this publication may be reproduced, stored in a retrieval system ortransmitted,inanyform,orbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,withoutpriorpermission,inwriting,fromthepublisher. Preface Themainobjectiveofthebookistoprovideaself-containedintroductionto mathematical logic and computability theory for students of Mathematics or Computer Science. It starts with the basics of computability theory, presents the language, semantics, Hilbert calculus and Gentzen calculus of first-order logic, develops the notion of first-order theory, proves the incompleteness theorems about arithmetic and concludes with a decidable theory of arithmetic. The material is organized around the failures and successes of Hilbert’s programme for the formalization of Mathematics. It is widely known that the programme failed with G¨odel’s incompleteness theorems and related negative results about arithmetic. Unfortunately, the positive outcomes of theprogrammearelesswellknown,evenamongmathematicians. Thebook covers key successes, like G¨odel’s proof of the completeness of first-order logic, Gentzen’s proof of its consistency by purely symbolic means, and the decidability of a couple of useful theories, including Presburger arith- metic. It also tries to convey the message that Hilbert’s programme made a significant contribution to the advent of the computer as it is nowadays understood and, thus, to the latest industrial revolution. Part I starts with Hilbert’s programme and moves on to computability. Part II presents first-order logic, including G¨odel’s completeness theorem and Gentzen’s consistency theorem. Part III is focused on arithmetic, rep- resentability of computable maps, G¨odel’s incompleteness theorems and decidability of Presburger arithmetic. Part IV provides detailed answers to selected exercises. Thebookcanbeusedinseveralwaysatlateundergraduatelevelorearly graduate level. An undergraduate course would concentrate on Parts I and II, leaving out Chapter 9, and sketching the way to the 1st incompleteness v vi theorem. A more advancedcoursemightskip early materialalready known to the students and concentrate on the positive and negative results of Hilbert’s programme, thus covering Chapter 9 and Part III in full. Other paths through the book are possible as depicted in Figure 1. The text is an outgrowth of the translation1 into English of the 2006 Portuguese draft. It is the result of many years of experience of teaching logic and computability to undergraduate and graduate students. The authors would like to express their deepest gratitude to their stu- dents who reacted to early drafts of the book, several colleagues (especially Lu´ısCruz-Filipe,PauloMateus,JaimeRamosandJo˜aoRasga)whohelped in the debugging stage, and the anonymous referee for many suggestions. The remaining mistakes and omissions are of course the sole responsibility of the authors. The excellent working environment provided by the Department of Mathematics of Instituto Superior T´ecnico (IST) and the Security and Quantum Information Group (SQIG) of Instituto de Telecomunica¸c˜oes is also acknowledged by the authors. Lisbon, March 14, 2008. Am´ılcar Sernadas Cristina Sernadas Department of Mathematics Instituto Superior T´ecnico Universidade T´ecnica de Lisboa Security and Quantum Information Group Instituto de Telecomunicac¸˜oes 1By our colleague Lu´ıs Cruz-Filipe. vii 1. Preliminaries (cid:178)(cid:178) 2. Hilbert’s programme (cid:178)(cid:178) 3. Computability (cid:178)(cid:178) 4. FOL syntax (cid:178)(cid:178) 5. FOL axiomatization (cid:178)(cid:178) 6. FOL theories (cid:178)(cid:178) 7. FOL semantics (cid:117)(cid:117)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108) (cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:41)(cid:41) 8. FOL completeness 9. FOL sequent calculus (cid:178)(cid:178) 10. Equality (cid:178)(cid:178) 11. Arithmetic (cid:117)(cid:117)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108)(cid:108) (cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:82)(cid:41)(cid:41) 12. Representability 15. Decidable arithmetic (cid:178)(cid:178) 13. 1st incompleteness theorem (cid:178)(cid:178) 14. 2nd incompleteness theorem Figure 1: Chapter dependence graph viii Contents 1 Preliminaries 1 1.1 Functions versus maps . . . . . . . . . . . . . . . . . . . . . 1 1.2 Lambda notation . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Inductive definitions as fixed points . . . . . . . . . . . . . . 2 1.4 Proofs by induction. . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Programming in Mathematica . . . . . . . . . . . . . . . . . 7 I Formalizing Mathematics 11 2 Hilbert’s Programme 13 3 Computability theory 17 3.1 Formal languages . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Church–Turing postulate. . . . . . . . . . . . . . . . . . . . 19 3.3 Computability in Mathematica . . . . . . . . . . . . . . . . 20 3.4 G¨odelizations . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5 Computability `a la Kleene . . . . . . . . . . . . . . . . . . . 36 3.6 Undecidability of the halting problem . . . . . . . . . . . . 40 3.7 Enumerating the computable functions . . . . . . . . . . . . 42 II First-order predicate logic 45 4 Syntax 47 4.1 Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Terms and formulas . . . . . . . . . . . . . . . . . . . . . . 50 ix x CONTENTS 4.3 Free and bound variables . . . . . . . . . . . . . . . . . . . 54 4.4 Free terms and substitutions . . . . . . . . . . . . . . . . . 56 5 Hilbert calculus 61 5.1 Axioms and rules . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Derivation as a fixed point . . . . . . . . . . . . . . . . . . . 65 5.3 Properties of derivation . . . . . . . . . . . . . . . . . . . . 69 5.4 Metatheorems and admissible rules . . . . . . . . . . . . . . 76 6 Theories and presentations 91 6.1 Formalizing mathematical concepts . . . . . . . . . . . . . . 91 6.2 Decidability and semi-decidability . . . . . . . . . . . . . . 94 6.3 Quantifier elimination . . . . . . . . . . . . . . . . . . . . . 99 7 Semantics 105 7.1 Interpretation structures . . . . . . . . . . . . . . . . . . . . 106 7.2 Satisfaction, entailment and validity . . . . . . . . . . . . . 108 7.3 Basic lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.4 Soundness of the Hilbert calculus . . . . . . . . . . . . . . . 119 7.5 Theory of interpretation structure . . . . . . . . . . . . . . 123 7.6 Relating interpretation structures . . . . . . . . . . . . . . . 123 8 Completeness 131 8.1 Lindenbaum’s lemma . . . . . . . . . . . . . . . . . . . . . . 132 8.2 Henkin construction . . . . . . . . . . . . . . . . . . . . . . 135 8.3 G¨odel’s completeness theorem . . . . . . . . . . . . . . . . . 144 9 Gentzen calculus 149 9.1 Rules and derivations . . . . . . . . . . . . . . . . . . . . . 151 9.2 Cut elimination and consistency . . . . . . . . . . . . . . . 157 9.3 Consistency of first-order logic . . . . . . . . . . . . . . . . 167 9.4 Soundness and completeness . . . . . . . . . . . . . . . . . . 171 10 Equality 177 10.1 Theories with equality . . . . . . . . . . . . . . . . . . . . . 177 10.2 Normal models . . . . . . . . . . . . . . . . . . . . . . . . . 183 10.3 First-order logic with equality . . . . . . . . . . . . . . . . . 187

Description:
Foundations of Logic and Theory of Computation. Amılcar Sernadas and mathematical logic and computability theory for students of Mathematics or Computer
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.