ebook img

Testing for rational speculative bubbles in the Brazilian residential real-estate market PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Testing for rational speculative bubbles in the Brazilian residential real-estate market

Noname manuscript No. (will be inserted by the editor) Testing for rational speculative bubbles in the Brazilian residential real-estate market Marcelo M. de Oliveira · Alexandre C. L. Almeida 4 Received: date/Accepted: date 1 0 2 n a J 9 2 Abstract Speculative bubbles have been occurring periodically in local or ] global real estate markets and are considered a potential cause of economic N crises. In this context, the detection of explosive behaviors in the financial G marketandthe implementation ofearly warningdiagnosistests areof critical . importance.TherecentincreaseinBrazilianhousingpriceshasrisenconcerns n that the Brazilian economy may have a speculative housing bubble. In the i f presentpaper,weemploy arecentlyproposedrecursiveunit roottestin order - q to identify possible speculative bubbles in data from the Brazilian residential [ real-estate market. The empirical results show evidence for speculative price bubbles both in Rio de Janeiro and Sa˜o Paulo, the two main Brazilian cities. 1 v Keywords Speculative Bubbles · Real-Estate Market · recursive unit-root 5 tests · explosive behavior · price-rent ratio · Emerging markets 1 6 7 JEL Classification: C15,C22,G01,R31. . 1 0 4 1 : v i X r Authorsafilliation:UniversidadeFederaldeS˜aoJoa˜odelRei,CampusAltoParopeba, a 36420-000, OuroBranco,MinasGerais-Brazil E-mail:[email protected](M.M.deOliveira) E-mail:[email protected](A.C.L.Almeida) 2 MarceloM.deOliveira,AlexandreC.L.Almeida 1 Introduction The efficient market hypothesis (EMH) assumes that all information is re- flected instantaneously in assetprices [1]. Hence, marketprices should always be consistent with the “fundamentals”. On the other hand, sudden dramatic price changes over short periods of time, in which prices diverge from funda- mentals, have been observedin severalmarkets around the world [2]. Famous examplesincludetheDutch“Tulipmania”,the1929CrashintheUnitedStates andtherecentAmericansubprimecrises[3,4].Suchbehaviorhasraisedmany questions regarding market efficiency and has stimulated researchon rational speculative bubbles [5,6]. Rationalspeculativebubblesoccurwhenthereisanexcessivepublicexpec- tation of future price increasing, which produce rapid increases in valuations of an asset [7]. For example, during a real-estate bubble, investors (homebuy- ers) stay in the market despite the deviations of prices from fundamentals becausethey expectsignificantfurther priceincreases.Additionally,whenthe bubble is emerging, people think that real estate prices are very unlikely to fall,lettingtoalittleperceivedriskassociatedwithinvestingintherealestate market. But eventually the prices may reach unsustainable levels, and crash: the bubble bursts [7,8,9]. Bubbles,rationalornot,havebeenoccurringperiodicallyinlocalorglobal realestatemarketsandareconsideredofcriticalimportanceandafundamen- tal cause of financial crises and ensuing economic crises [2,10,11,12]. Hence, the study of real-estate bubbles is an important contribution to the literature onfutureeconomicdevelopment.Moreover,abubbleishazardousforfinancial and macro stability, since it can amplify a credit boom by inflating collateral values and causing misallocation of economic resources. In order to minimize the negative macroeconomic effects of a bubble, one needs to detect it early as soon as prices begin to rise. The usual definition of a bubble is a deviation of the asset price from its fundamental value. However it can be very difficult to evaluate what is the “fundamental” price.Alternatively, constantly diminishing dividend-price ratiocanserveasareferenceforidentifyingarationalbubbleinastockmarket. If price expectations are rising, but higher dividends fail to materialize, the price rise is probably not based on fundamentals. A large number of studies have been proposed to empirically detect asset bubbles, mostly focusing in stock markets. Some of these methods have been applied to the study of real estate bubbles. Econometrics tests, like unit root tests or cointegration tests provide direct tests for the no-bubble hypothesis. If property price to income (or rent) ratio is stationary or the property price is cointegrated with the fundamental price, the no-bubble hypothesis cannot be rejected. The first econometric tests for rational bubble detection were volatility tests such as Schiller’s [13] variance-bound and West’s two-step test [14]. The underlyingideaistocomparethevolatilitybetweentheassumedfundamental asset price and the actual asset price. An asset bubble is detected indirectly if the volatility of the actual assetprice is significantly largerthan that of the TitleSuppressedDuetoExcessiveLength 3 assumed fundamental asset price. However, Marsh and Merton [15] pointed evidence that variance bounds test fails when dividends and stock prices are non-stationary. Campbell and Shiller [16] and Diba and Grossman [17] introduced the most commonly used methods for detecting asset price bubbles in the liter- ature, namely the right-tailed unit root test and the cointegration test. The aimofacointegrationtestistoexaminewhetherornotvariablesaretrending together. If two series are cointegrated, that means the movements of these two variablesarehighly correlated.Inother words,there is anequilibriumre- lationshipbetweenthesetwoseries.Relatedtestsusingdatasetsthatcombine timeseriesandcross-sections(Panel-basedtests)havebeenappliedrecentlyin order to investigate the existence of real estate bubbles in Taiwan [18], China [19], as well USA and Europe [20]. These methods, however,suffer from a se- riouslimitation,firstpointed-outbyEvans[5],whoshowedthatcointegration tests of asset prices and dividends are not able to detect explosive bubbles when the sample data includes periodically collapsing bubbles. Anovelapproachtoidentifyinganddatingbubblesinrealtimehasrecently been introduced by Phillips and Yu [21]. Consideringthat the explosiveprop- erty of bubbles is very different from random walk behavior, they developed a recursive econometric methodology interpreting mildly explosive unit roots as a hint for bubbles. The method provides a supremum Dickey-Fuller (DF) test [22] that overcomes the problem identified with unit root and cointegra- tion tests. The supremum DF test improves power significantly with respect to the conventional unit root and cointegration tests, and has the advantage of allowing estimation of the origination date and final date of a bubble. The ideaistodetectspeculativebubblesastheyemerge,notjustaftertheirburst. This methodology was generalized in [23] for detecting multiple bubbles. Yiu etal[24]appliedthe latterfordetecting bubblesintheHongKongresidential property market, Chen and Funke [25] for the Chinese housing market and Gonz´alez et al. [26] for the Colombian housing market. A related approach wasemployedbyKideval[27]fordetectingrationalbubblesintheUShousing market. It is noteworthy to mention a few tests for bubbles not based on econo- metric approaches.Sornette et al.[28]intend to predictthe endofthe bubbles assumingthat a crashfollowsafter rapidgrowthofeconomic indicatorsfaster than an exponential function. Zhou and Sornette [29,30] examined whether the price bubble burst in the US, and predicted that the turning point of the bubblewouldoccuraroundmid-2006.Watanabeetal.[31,32]proposetoiden- tify bubbles and crashes by exponential behaviors detected in the systematic data analysis. More recently, Ohnishi et al. [33] observed that the land price distribution in Tokyo had a power law tail during the bubble period in the late 1980s,while it was very close to a lognormal before and after the bubble period. This led them to argue that a characteristic of real estate bubbles is not the rapid price hike itself but a rise in cross-sectionaldispersionof prices. Overthepastfew decades,therealestatemarkethasbeenatargetofgov- ernment fiscal and monetary policies aimed at achieving balanced economic 4 MarceloM.deOliveira,AlexandreC.L.Almeida growth,lowunemploymentandlowinflation.Whenthehousingmarketorthe overall economy is on a downturn, the governments tend to encourage banks to adopt a lenient mortgage policy, increasing the available credit as well to implement policies favorable to construction companies. Another usual gov- ernment policy consists on subsiding disadvantaged groups through preferred loan rates. As a consequence, the macroeconomic market is filled with specu- lative capital demand and supply, resulting in inefficiency in the operation of variousmarkets.This situationcreatesthe conditionsto theonsetofabubble [18]. Such situation is exemplified by the Brazilian real estate policies. At the end of 2007, the world was affected by the subprime mortgage crisis in the United States. In response, Brazilian government established various market stimulus policies [34], which includes: (i) Approval of a new law of fiduciary alienationthatminimizestheriskfortheBrazilianbanksincasebuyersdefault ontheir loans.This makethe banksmore willing to lendto potentially riskier buyers. (ii) Brazil Growth Acceleration Program (referred to as PAC) which included loans providedby government-ownedbanks,as well long-termcredit forinfrastructure,sanitationimprovements,andmoreunderanewinvestment fundthatbeganwith657,4billionBrazilianReals(BRL)1 inthe period2007- 2010 and more 955,1 billion BRL for the period 2011-2014 . (iii) Programs administered by government-owned banks with the aim of development of 1,000,000 houses and apartments with subside for poor families, resulting in a credit of 96 billion BRL in 2011, 18 times the amount of credit available in 2003. In fact, real estate prices in Brazil have raised rapidly in the last few years, and some analysts have been arguing the possibility that a bubble has been inflated and could potentially burst [35,36,37,38,39]. In contrast,others arguethatthe pricing growthis sustainableandbasedonfundamentals,since Brazil was one of the fastest-growing major economies in the world in recent years with an average annual Gross Domestic Product (GDP) growth rate of over 5 percent, which made Brazilian economy the world’s seventh largest by nominal GDP by the end of 2012. As property is a sizable component of household and corporate balance sheets, a sudden collapse in property prices mayhavenegativespillovereffectsontheoverallmacroeconomicsituationand may pose macroeconomic and financial stability risks. Therefore,theaimofthispaperistoinvestigatethebubble-likebehaviorof the recent real estate market prices in Brazil. Identifying speculative bubbles is not an easy task even in mature markets with long time series. Since in Brazil the time series for house prices are short, the recent developed test by Phillipsetal.[23],aimedatidentifyingexplosivebubblesinrealtime,provides an adequate tool for such analysis [40]. 1 Duringtheperiod2007-2012thevalueofUSdollar(USD)toBRLratewasintherange 1.55to2.46,withameanofabout2.00.Currently1.00BR∼2.30USD. TitleSuppressedDuetoExcessiveLength 5 2 Methodology Identifying speculativebubbles isa hardtaskevenindatasets withlongtime series. Recently, based on previous works of Shiller [42], Mikhed and Zemcik [44]regardedahouseasaninvestmentassetandusedastandardpresent-value formula to derive implications for the relationship between house prices and the cash flow associated with owning a property (rent). Thefundamentalpriceisderivedfromthestandardnoarbitragecondition: Et[Rt+1+Pt+1] P = (1) t 1+r whereP isthepropertypriceindexatperiodt,E [.]denotesthemathematical t t expectation conditional on information at time t, R is the rent, and r is a t constant risk-free discount rate. Since the formula above holds for all t, the property price index for the time t+1 is given by Et[Rt+2+Pt+2] Pt+1 = . (2) 1+r Therefore, the Equation 1, by repeated forward iteration, can be written as Rt+1 Rt+2 Rt+k Pt+k P =E + +...+ + . (3) t t(cid:20)1+r (1+r)2 (1+r)k (1+r)k(cid:21) Solving the Equation 3 yields the fundamental price: ∞ 1 Ptf = (1+r)jEt[Rt+j] (4) Xj=1 also called price reflecting fundamentals. This equation means that the fun- damental price contain all expected future rents. In absence of a bubble, one has the no-bubble condition [44]: Et[Pt+k] lim =0. (5) k→∞ (1+r)k This yields that the unique solution of Equation 1 is P = Pf under the t t hypothesis of non existence of a bubble. The spread S between the house price and rent can be defined [41,44] as t 1 S ≡P − R , (6) t t t r which, based in the no-bubbles condition (Equation 5), can be rewritten as ∞ 1 ∆Rt+j+1 1 St = rEt (1+r)j = rEt[∆Pt+1] (7) Xj=1   6 MarceloM.deOliveira,AlexandreC.L.Almeida where ∆Rt+j+1 = Rt+j+1 −Rt+j and ∆Pt+1 = Pt+1 −Pt. Note that the stationarity of S implies the series {P /R } is stationary in the absence of a t t t speculative bubble, since P /R =1/r if S =0. t t t In order to estimate the fundamental value of property prices, we will employ the price-rent ratio, PR. The PR ratio is defined as the average cost of ownership divided by the estimated rent that would be paid if renting: house price PR= . (8) annual rent The PRratiofollows the conceptof stocks’price-earningsratio (PER),which is defined as the ratio of the price of a share to the annual earnings of a company in the current year. The PER ratio contains information about if a given stock is over (or under) valuated [41,42]. Analogously, rents, as well as corporateandpersonalincomes,areusuallyconnectedveryclosetosupplyand demandfundamentals.Thisisthecauseonerarelyseesanunsustainable“rent bubble” or an unsustainable “income bubble”. Therefore, a rapid increase of housing prices combined with a flat or slow-increasing renting market can be a signal of the beginning of a bubble [43]. As mentioned previously, in the absence of bubble the series PR is stationary. The way to ascertain whether t ornotbubbles existis testing the stationarityofthe houseprice-to-rentratio. This leads us to seek methods to determine whether series are stationary or not. Unit root tests are commonly used to determine whether a time series is stationaryby using an autoregressivemodel. In its simplest form, the Dickey- Fuller test[22]estimatesthe followingfirstorderautoregressiveAR(1)regres- sion equation: ∆pt =α+(β)pt−1+ǫt,ǫt ∼iid(0,σ2). (9) where p is the real price of the asset, α is the drift and β is the coefficient t of the model. The error term ǫ is an uncorrelated white noise process. The t DFtestcomparesthet-statisticsofresidualswithDFcriticalvalues.Thenull hypothesis of the test is H0 : β = 0 which represents unit root versus the left-tailed alternative hypothesis H1 : β < 0 stable root. (If the residuals in first orderautoregressivemodel are still correlatedthe test canbe augmented by ∆P for higher level autoregressive processes). t−i Incontrast,thesupremumaugmentedDF(SADF)testproposedbyPhillips and Yu [21] is a right-sided test. The basic fundamental of this test is using recursiveregressiontechniquestotesttheunitroot.InthecontextofDFtest, the test is based on the follow regression: ∆pt =α+(β−1)pt−1+ǫt,ǫt ∼iid(0,σ2). (10) The null hypothesis still is unit root behavior, H0 : β = 1 , but the al- ternative hypothesis is explosive behavior, H1 : β > 1. The right-tailed ADF statistics is computed in multiple recursive regressions for each sub-sample whichstartwiththeinitialobservationbutthelastpointvaries.Letr1 andr2 be respectively the fractional starting and ending point of each sample. The TitleSuppressedDuetoExcessiveLength 7 sample window rw = r2−r1 therefore varies from the initial size window r0 to the total sample. The SADF statistic is based on the supremum value of the ADF statistics obtained, SADF(r0)= sup ADF0r2. (11) r0≤r2≤1 The explosiveness of the process is|t{ezs}ted by comparing with the right- tailed critical values of its limit distribution which is given by r2WdW sup ADFr2 → sup 0 (12) 0 Rr2W2dW 0 r0≤r2≤1 r0≤r2≤1R where W is a standar|d{zW}iener process a|n{zd}→ denotes convergence in distri- bution. Instead of fixing the starting point of the sample, the generalized SADF (GSADF)testextendsthesamplesequencebychangingboththestartingand the ending point of the sample, implementing the right-tailed unit root test repeatedly on a forwardexpanding sample sequence: GSADF(r0)= sup ADFrr12. (13) r0≤r2≤1 0≤r|1≤{zr}2−r0 TheGSADF statistics canbe definedasthe largestADFstatistic overthe feasible ranges of r1 and r2. It is then used to detect the presence of at least one bubble in the whole sample. Phillips et al.(2012) [23] demonstrate that themovingsampleGSADFdiagnosticoutperformstheSADFtestindetecting explosivebehaviorinmultiplebubbleepisodes,andworkswelleveninmodest sample sizes. In order to estimate the beginning and collapse dates of every bubble, Phillipset al.(2012)suggestusingbackwardexpandingsamplesequences.Let the fractional ending point fixed at r2 with the starting point r1 moving in the range 0≤r1 ≤r2−r0. These ADF statistic sequences are denoted by BADFr2 . (14) r1 0≤r1≤r2−r0 (cid:8) (cid:9) Hence the backward SADF statistic is defined as the sup value of the ADF statistic sequence: BSADFr2(r0)= sup BADFrr12 . (15) (cid:8) (cid:9) 0≤r1≤r2−r0 The beginning (end) date of a bubb|l{ez}corresponds to the first date whose the BSADF statistic becomes greater (smaller) than the critical values, esti- mated by Monte Carlo simulation. (These critical values are calculated from respective empirical distributions of each statistic, generated under the null hypothesis (Equation 10 with β =1) ) 8 MarceloM.deOliveira,AlexandreC.L.Almeida 3 Brazilian residential real estate market Prior to the econometric analysis, let us briefly describe the data set used. Untilrecently,Brazilhadnoreliableindicatorsfollowingthe pricebehaviorof residential properties. For this purpose, since 2008, Fipe (Brazilian Institute of Economic Research) developed an index, named Fipe-Zap, which use real estateadsasasourceofinformation.Themajordrawbackwiththissourceisa possible gapbetween the advertised price and the realized price. Nonetheless, ifoneassumesthatbothpriceshaveasimilartrend,atleastinthemediumand long run, an index for the advertised prices could be regarded as reliable real estate market information. The index is based on a database of approximate 200 thousands real estate ads per month, and its methodology is detailed in [45]. Figure 1 shows the price index for the seven biggest Brazilian cities (for each index it was set an arbitrary value of 100 on August 2010). Almost all the indices show high increases during the period, revealing that Brazilian properties prices rose rapidly in the last few years. Unfortunately, only the data for the two major cities, Sa˜o Paulo (SP) and Rio de Janeiro (RJ), is available since December 2007. The sample data is also larger for these both cities, therefore for a more precise statistical analysis, from now on we will concentrate our analysis on the SP and RJ real-estate market. 200 São Paulo Rio de Janeiro Belo Horizonte Recife 150 Fortaleza Brasília Salvador 100 60 Jan/08 Jan/09 Jan/10 Jan/11 Jan/12 Jan/13 Nov/13 Fig. 1 Fipe-ZapindexforthesevenbiggestBraziliancities.(Coloronline). Since Fipe also calculates the monthly rental yield from its rent and sale ads database, it is straightforward to obtain the PR ratio as the reciprocal of the annualy rental yield. The resulting time-series with the PR ratio for SP and RJ is shown in Fig. 2. In SP, we observe that the PR ratio grows from around 11 to 18, and in RJ from around 15 to 22. This is equivalent TitleSuppressedDuetoExcessiveLength 9 to a increase of approximately 64% and 47%, respectively. It should be noted that a rising PR ratio is only a necessary but not a sufficient condition for speculative misalignment from fundamentals. 24 Rio de Janeiro 22 São Paulo 20 o18 ati R r P16 14 12 2008 2009 2010 2011 2012 2013 2014 Fig. 2 Price-rentratioforS˜aoPauloandRiodeJaneiro.(Coloronline). 4 Empirical Results In order to test whether the movement of house prices in the Brazilian real- estate market reflects deviation from levels supported by fundamentals we performed more detailed analysis of the data shown in Fig. 2. Thus, we ap- plied the recursive SADF and GSADF tests to the PR dataset. In our anal- ysis, we choose the minimal window size r = 12 which ensures that there w are enough observations for initial estimation. The finite sample critical val- ues were obtained via Monte Carlo simulations with 10,000 iterations. The resultingSADFandGSADFstatisticsforthe RioandSa˜oPauloPRratioare shown in Table 1. The SADF statistics indicate the existence of at least one speculative realestate bubble in Rio de Janeiroduring the period with a 95% confidence interval and in Sa˜o Paulo with a 99% confidence interval. Similar conclusions canbe drawnfrom the GSADF test statistics, with bubble in Rio de Janeiro (at 90% level) and Sa˜o Paulo (at 99% level). Figures 3 and 4 show the results of the recursive SADF and GSADF tests for Rio de Janeiro, respectively. The associated critical values are shown as 10 MarceloM.deOliveira,AlexandreC.L.Almeida Table1 SADFandGASDFstatisticsforPRratioseriesandrespective90%,95%and99% criticalvalues. PRratio SADFt-statistics 90c.v. 95c.v. 99c.v. RiodeJaneiro 1.3203 1.0106 1.3144 1.9812 S˜aoPaulo 2.6529 1.0106 1.3144 1.9812 GSADFt-statistics 90c.v. 95c.v. 99c.v. RiodeJaneiro 1.9180 1.8312 2.1804 2.9606 S˜aoPaulo 4.1353 1.8312 2.1804 2.9606 1.5 1 0.5 0 −0.5 −1 Backward ADF sequence −1.5 90% critical value sequence 95% critical value sequence −2 2009 2010 2011 2012 2013 2014 Fig.3 RecursivecalculationoftheSADFtestforRiodeJaneiro.Thedotedlinesrepresents the95%andthedashed90%criticalvaluesequences (Coloronline). doted (95% level) and dashed (90% level) curves. The SADF test shows a statistically significant explosive period from mid-2010 to the end of 2012. The GSADF test identify a bubble beginning in mid-2010 from mid-2012. Figures 5 and 6 show the results of the recursive SADF and GSADF tests for Sa˜o Paulo, respectively. As before, doted (95% level) and dashed (90% level) curves represent the associated critical values. In this case, the SADF testshowsauniqueandlongexplosivebehaviorstartinginmid-2009.Onother handtheGSADFtestissuccessfulinidentifyingmultiplebubbleperiods,with the last one beginning in mid-2011. The overall picture of Brazilian house price valuation provided by Figs. 3,4, 5 and 6 corroborate the existence of rational speculative bubbles in its twomajorcities.Itisalsonoticeablethatthisconfirmsthepreliminaryresults from glancing at Figure 2. On the other hand, it is needed to emphasize that price-to-rent indices have obvious disadvantages and shortcomings. Although the indices provide information about the dynamics of the price-to-rent ratio over time, it can not provide information about the actual level of the price- to-rent ratio. Analysis of other indicators such as a household income index

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.