ebook img

Teaching Robots to Do Object Assembly using Multi-modal 3D Vision PDF

2.7 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Teaching Robots to Do Object Assembly using Multi-modal 3D Vision

Teaching Robots to Do Object Assembly using Multi-modal 3D Vision WeiweiWana,FengLub,ZepeiWua,KensukeHaradaa aNationalInstituteofAdvancedIndustrialScienceandEngineering,Japan bBeihangUniversity,China Abstract The motivation of this paper is to develop a smart system using multi-modal vision for next-generation mechanical assembly. It includestwophaseswhereinthefirstphasehumanbeingsteachtheassemblystructuretoarobotandinthesecondphasetherobot findsobjectsandgraspsandassemblesthemusingAIplanning.Thecrucialpartofthesystemistheprecisionof3Dvisualdetection 6andthepaperpresentsmulti-modalapproachestomeettherequirements: ARmarkersareusedintheteachingphasesincehuman 1beingscanactivelycontroltheprocess. Pointcloudmatchingandgeometricconstraintsareusedintherobotexecutionphaseto 0avoid unexpected noises. Experiments are performed to examine the precision and correctness of the approaches. The study is 2 practical: Thedevelopedapproachesareintegratedwithgraphmodel-basedmotionplanning,implementedonanindustrialrobots nandapplicabletoreal-worldscenarios. a JKeywords: 63DVisualDetection,RobotManipulation,MotionPlanning 2 ] O1. Introduction humanbeingswhoareintelligentenoughtoactivelyavoidoc- clusionsandshowgoodfeaturestovisionsystems. Themodal R employedinthisphaseisthemarkers(rgbimage)andthegeo- . Themotivationofthispaperistodevelopasmartsystemus- s metricrelationbetweenthemarkersandtheobjectmodels.The ingmulti-modalvisionfornext-generationmechanicalassem- c tag“AR(RGB)”isusedforrepresentation. [bly: Ahumanworkerassemblesmechanicalpartsinfrontofa visionsystem; Thesystemdetectsthepositionandorientation 2 vof the assembled parts and learns how to do assembly follow- Second, we use depth cameras and match the object model 3ingthehumanworkerfsdemonstration;Anindustrialrobotper- to the point cloud obtained using depth camera to roughly es- 7forms assembly tasks following the data learned from human timatetheobjectpose, andusethegeometricconstraintsfrom 4 demonstration; It finds the mechanical parts in its workspace, 6 planar table surface to reinforce the precision. For one thing, picks up them, and does assembly using motion planning and 0 therobotexecutionphaseisautomaticandisnotasflexibleas 1.assTehmebdlyiffiplcaunlntyinign.developing the smart system is precise vi- human teaching. Markerless approaches are used to avoid oc- 0 clusions. Fortheother,thepointcloudandextrinsicconstraints sualdetection. Twoproblemsexistwherethefirstoneisinthe 6 arefusedtomakeupthepartiallossandnoises. Theassump- 1humanteachingphase,namelyhowtopreciselydetecttheposi- tioniswhentheobjectisplacedonthesurfaceofatable,itsta- :tionandorientationofthepartsinhumanhandsduringmanual v bilizes at a limited number of poses inherent to the geometric idemonstration;Thesecondoneisintherobotexecutionphase, constraints. TheposeshelptofreezesomeDegreeofFreedom X namely how to precisely detect the position and orientation of andimproveprecision.Themodalemployedinthisphaseisthe rthepartsintheworkspaceandperformassembly. a cloudpointdataandthegeometricconstraintsfromtheplenary Lots of detecting and tracking studies are available in con- surface. Thetag“Depth+Geom”isusedforrepresentation. temporary publication, but none of them meets the require- mentsofthetwoproblems. TheapproachesusedincludeRGB images, markers, point cloud, extrinsic constraints, and multi- Moreover, we propose an improved graph model based on modalsolutionswheretheRGBimagesandmarkersareshort our previous work to perform assembly planning and motion inocclusions,thepointcloudandextrinsicconstraintsareshort planning. Experiments are performed to examine the preci- inpartiallossandnoises,andthemulti-modalsolutionsarenot sion and correctness of our approaches. We quantitatively clearlystatedandarestillbeingdeveloped. show the advantages of “AR(RGB)” and “Depth+Geom” in This paper solves the two problems using multi-modal vi- next-generation mechanical assembly and concretely demon- sion. First, we attach AR markers to the objects for assembly stratetheprocessofsearchingandplanningusingtheimprove andtrackthembydetectingandtransformingthemarkerposi- graphmodel. Wealsointegratethedevelopedapproacheswith tionsduringhumandemonstration. Wedon’tneedtoworryoc- KawadaNextageRobotsandshowtheapplicabilityofthemin clusionssincetheteachingphaseismanualandisperformedby real-worldscenarios. PreprintsubmittedtoNeurocomputing January27,2016 2. RelatedWork markersrequiresomemanualworkandtherearelimitationson markersizes,viewdirections,etc. Thispaperishighlyrelatedtostudiesin3Dobjectdetection [31]usescircularconcentricringfiducialmarkerswhichare forroboticmanipulationandassemblyandtheliteraturereview placed at known locations on a computer case to overlay the concentrates on the perception aspect. For general studies on hidden innards of the case on the camerafs video feed. [32] roboticgrasping,manipulation,andassembly,referto[1],[2], usesARmarkerstolocatethedisplaylotsduringvirtualconfer- and[3]. Theliteraturereviewemphasizesonmodel-basedap- ence.Itexplainstheunderneathcomputationwell.[33]doesnft proaches since the paper is motivated by next-generation me- directly use markers, but uses the offline matched keyframes, chanicalassemblyandisabouttheindustrialapplicationswhere which are essential the same thing, to correct online tracking. precisioniscrucialandobjectmodelsareavailable. Formodel- [34]usesARmarkerstorecognizeandcageobjects. [35]uses lessstudies,referto[4]and[5]. Forappearance-basedstudies, both balls (circles) and AR markers to estimate and track the referto[6][7],and[8]. Moreover,learningapproachesareno position of objects. More recently, [36] uses AR markers to reviewed since they are not precise. Refer to [9] and [10] if track the position of human hands and the operating tools and interested. uses the tracked motion to teach robots. The paper shares the We archive and review the related work according to the same assumption that human beings can actively avoid occlu- modals used for 3D detection, including RGB images, mark- sions.However,itdoesn’tneedanddidn’tanalyzetheprecision ers,pointcloud,hapticsensing,extrinsicconstraints,andmulti- sincethegoaloftrackingisintasklevel,insteadofthelowlevel modalfusion. trajectories. 2.1. RGBimages 2.3. Pointcloud RGBimagesarethemostcommonlyusedmodalofrobotic Point cloud can be acquired using a structured light camera perception. Using RGB images to solve the model-based 3D [37], stereovision camera [38], and LIDAR device [39], etc. positionandorientationdetectionproblemiswidelyknownas Therecentavailabilityoflowcostdepthsensorsandthehandy the “model-to-image registration problem” [11] and is under Point Cloud Library (PCL) [40] has widely disseminated 3D theframeworkofPOSIT(PosefromOrthographyandScaling sensing technology in research and commercial applications. withIterations)[12]. Whenlookingforobjectsinimages, the Thebasicflowofusingpointcloudfordetectionisthesameas POSIT-basedapproachesmatchthefeaturedescriptorsbycom- image-baseddetection: Thefirststepistoextractfeaturesfrom paringthemostrepresentativefeaturesofanimagetothefea- models and objects; The second step is to match the features tures of the object for detection. The features could either be anddetectthe3Dpose. values computed at pixel points or histograms computed on a [41] is one of the early studies that uses point cloud to de- regionofpixels. Usingmorethanthreematches,the3Dposi- tect the pose of an object. It is based on the Iterative Clos- tionandorientationofanobjectcanbefoundbysolvingpoly- estPoint(ICP)algorithm[42]whichiterativelyminimizesthe nomialequations[13,14,15].Agoodmaterialthatexplainsthe mean square distance of nearest neighbor points between the matchingprocesscanbefoundin[16].Thepaperstudiesmulti- model and the point cloud. Following work basically uses the viewimagematching. Itisnotdirectlyrelatedto3Ddetection, same technique, with improvements in feature extraction and butexplainswellhowtomatchthefeaturedescriptors. matching algorithms. The features used in point cloud detec- Someofthemostcommonchoicesoffeaturesincludecorner tionaremorevastthanthoseinimage-baseddetection,includ- features [17] applied in [18] and [12], line features applied in inglocaldescriptorslikesignatureofhistogramsoforientation [19], [20] and [21], cylinder features applied in [21] and [22], (SHOT)[43]andRadius-basedSurfaceDescriptor(RSD)[44], and SIFT features [23] applied in [24] and [25]. Especially, and global descriptors like Clustered Viewpoint Feature His- [24]statedclearlythetwostagesofmodel-baseddetectionus- togram(CVFH)[45]andEnsembleofShapeFunctions(ESF) ing RGB images: (1) The modeling stage where the textured [46]. Thematchingalgorithmsdidnftchangemuch,stickingto 3Dmodelisrecoveredfromasequenceofimages;(2)Thede- RandomSampleConsensus(RANSAC)[13]andICP.Acom- tectionstagewherefeaturesareextractedandmatchedagainst pletereviewandusageofthefeaturesandmatchingalgorithms those of the 3D models. The modeling stage is based on the algorithmsin[16]. Thedetectionstageisopentodifferentfea- canbefoundin[47]. tures, different polynomial solving algorithms, and some opti- mizationslikeLevenberg-Marquardt[26]andMean-shift[27], 2.4. Extrinsicconstraints etc. [28]comparedthedifferentalgorithmsinthesecondstage. Likethemarkers,extrinsicconstraintsareusedtoassistpoint cloud based detection. When the point cloud don’t provide 2.2. Markers enough features or when the point cloud are noisy and oc- Incaseswheretheobjectsdon’thaveenoughfeatures,mark- cluded, it is helpful to take into account the extrinsic con- ers are used to assist image-based detection. Possible marker straints. For example, the detection pipeline in [47] uses hy- typesinclude: ARmarkers,coloredmarkers,andshapemark- pothesis,whichisoneexampleofextrinsicconstraints,tover- ers, etc. The well known AR libraries [29, 30] provide robust ify the result of feature matching. [48] analyzes the functions librariesandtheOptitrackdeviceprovideseasy-to-usesystems of connected object parts and uses them to refine grasps. The for the different marker types. However, the applications with paper is not directly related to detection but is an example of 2 improving performance using extrinsic constraints caused by tioninthissection, anddescribeindetailthe“AR(RGB)”and adjacentfunctionalunits. “Depth+Geom”approachesinthesectionsfollowingit. Some other work uses geometric constraints to reduce am- biguityofICP.[49]and[50]segment3Dclutterusingthege- ometric constraints. They are not directly related to detection butareusedwidelyastheinitialstepsofmanydetectionalgo- rithms. [51]clusterspointcloudintopolygonpatchesanduses RANSACwiththemultiplepolygonconstraintstoimprovethe precisionofdetection.[52]usestableconstraintsforsegmenta- tionandusesHoughvotingtodetectobjectposes.[53]usesthe sliced2Dcontoursof3Dstableplacementstoreducethenoises ofestimation. Itislikeourapproachbutiscontour-basedand suffersfromambiguity. 2.5. Multi-modalfusion Multi-modalapproachesaremostlythecombinationorrep- etition of the previous five modals. For example, some work fuses repeated modals to improve object detection. [54] fuses colour, edge and texture cues predicted from a textured CAD modelofthetrackedobjecttorecoverthe3Dpose,andisopen Figure1: Theflowofthenext-generationmechanicalassembly. Theflowis toadditionalcues. composedofahumanteachingphaseandarobotexecutionphase.Inthehuman Some other work uses visual tracking to correct the noises teachingphase,ahumanworkerdemonstratesassemblywithmarkedobjectsin caused by fast motions and improve the precision of initial frontofanRGBcamera.Thecomputerdetectstherelationshipoftheassembly parts.Intherobotexecutionphase,therobotdetectsthepartsintheworkspace matches. ThefusedmodalsincludetheRGBimagemodaland usingdepthcameraandgeometricconstraints, picksupthem, andperforms themotionmodalwherethelateronecouldbeeitherestimated assembly. using image sequences or third-part sensors like Global Posi- tioningSystem(GPS)orgyros. [55]isonerepresentativework Fig.1 shows the flow of the next-generation mechanical as- which fuses model motion (model-based tracking) and model semblysystem. Itiscomposedofahumanteachingphaseand detectioninRGBimagestorefineobjectposes. [20]fusesgyro arobotexecutionphase. Inthehumanteachingphase,ahuman dataandlinefeaturesofRGBimagestoreinforcetheposees- workerdemonstrateshowtoassemblemechanicalpartsinfront timationforhead-mounteddisplays. [56]usesgyrodata,point ofa visionsystem. Thesystemrecordsthe relationshipofthe descriptors,andlinedescriptorstogethertoimprovetheperfor- twomechanicalpartsandsavesitasanintermediatevalue. manceofposeestimationforoutdoorapplications. In the robot execution phase, the robot uses another vision [57]usespointcloudtoclusterthesceneandfindtheRegion- systemtofindthemechanicalpartsintheworkspace,picksup of-Interests(ROIs),andusesimagemodaltoestimatetheobject them,andperformsassembly.Therelativepositionandorienta- pose at respective ROIs. The fused modals are RGB images tionoftheassemblypartsaretheintermediatevaluesperceived andPointcloud. [58]alsocombinesimageanddepthmodals. by the human teaching phase. The grasping configurations of Itusestheimagegradientsfoundonthecontourofimagesand the robotic hand and the motions to move the parts are com- thesurfacenormalsfoundonthebodyofpointcloudtoestimate putedonlineusingmotionplanningalgorithms. objectposes. The beneficial point of this system is it doesn’t need direct To our best knowledge, the contemporary object detection robot programming and is highly flexible. What the human studiesdonotmeetourrequirementsaboutprecision.Themost worker needs to do is to attach the markers and presave the demanding case is robotic grasping and simple manipulation, pose of the marker in the object’s local coordinate system so whichisfarlessstrictthanregraspandassembly. Wedevelop thatthevisionsystemcancomputetheposeoftheobjectfrom ourownapproachesinthispaperbyfusingdifferentmodalsto thedetectedmarkerposes. dealwiththeproblemsintheteachingphaseandtherobotex- The 3D detection in the two phases are denoted by the two ecutionphaserespectively. Foronething, weuseARmarkers “object detection” sub-boxes in Fig.1. The one in the human todetectthe3Dobjectpositionsandorientationsduringhuman teachingphaseusesARmarkerssincehumanbeingscaninten- teaching. Fortheother,weusethecloudpointdataandthege- tially avoid unexpected partial occlusions by human hands or ometricconstraintsfromplanartablesurfaceduringrobotexe- the other parts, and as well as ensure high precision. The one cution. Thedetailsarepresentedinfollowingsections. in the motion planning phase uses point cloud data to roughly detecttheobjectpose,andusesthegeometricconstraintsfrom 3. SystemOverview planartablesurfacetocorrectthenoisesandimproveprecision. Thedetailswillbeexplainedinfollowingsections.Beforethat, We present an overview of the next-generation mechanical welistthesymbolstofacilitatereaders. assemblysystemandmakeclearthepositionsofthe3Ddetec- p s ThepositionofobjectX onaplanerysurface. Weuse X 3 A and B to denote the two objects and consequently R a). Duringrobotexecution,the(p a,R a)issetto: B B B use p sand p stodenotetheirpositions. A B RXs TheorientationofobjectXonaplanerysurface. Like pBa = pBa− pAa, RBp =RBa·(RAa)(cid:48) (1) p s,XistobereplacedbyAorB. p a TXhepositionofobjectXintheassembledstructure. and pAaandRAaaresettozeroandidentitymatrixrespectively. X R a TheorientationofobjectXintheassembledstructure. Onlytherelativeposesbetweentheassemblypartsareused. X p p The pre-assembly positions of the two objects. The X robotwillplanamotiontomovetheobjectsfromthe 5. 3DDetectionduringRoboticExecution initialpositionstothepreassemblepositions. gXf The force-closure grasps of object X. The letter f in- Theobjectposedetectionduringrobotexecutionisdoneus- dicates the object is free, and is not in an assembled ingKinect,PointCloudLibrary,andgeometricconstraints.The structureorlayingonsomething. detection cannot be done using markers since: (1) What the gXs(cid:48) Theforce-closuregraspsofobjectXonaplanerysur- robotmanipulatesarethousandsofindustrialparts,itisimpos- face. Itisassociatedwith pXsandRXs. sible to attach markers to all of them. (2) The initial configu- gXs The collision-free and IK (Inverse Kinematics) feasi- ration of the object is unexpectable and the markers might be blegraspsofobjectX onaplanerysurface. Itisalso occludedfromtimetotimeduringroboticpick-and-place. The associatedwith pXsandRXs. detectionisalsonotapplicabletoimage-basedapproaches: In- gXa(cid:48) Theforce-closuregraspsofobjectX inanassembled dustrial parts are usually mono colored and textureless, image structure. Itisassociatedwith pXaandRXa. featuresarenotonlyhelplessbutevenharmful. gXa The collision-free and IK (Inverse Kinematics) feasi- UsingKinectisnottrivialduetoitslowresolutionandpre- blegraspsofobjectX intheassembledstructure. Itis cision. For example, the objects in industrial applications are associatedwith pXaandRXa. usuallyinclutteranditisdifficulttosegmentoneobjectfrom gXp(cid:48) The force-closure grasps of object X at the pre- anotherusingKinect’sresolution. Oursolutionistodividethe assemblypositions. difficultyinclutterintotwosubproblems. First,therobotcon- gXp Thecolllision-freeandIKfeasiblegraspsofobjectX sidershowtopickoutoneobjectfromtheclutter,andplacethe atthepre-assemblypositions. objectonanopenplenarysurface. Second, therobotestimate theposeofthesingleobjectontheopenplenarysurface. The first subproblem doesn’t care what the object is or the pose of 4. 3DDetectionduringHumanTeaching the object and its only goal is to pick something out. It is re- ferred as a pick-and-place problem in contemporary literature The object detection during human teaching is done using andisillustratedintheleftpartofFig.3. Thefirstsubproblem AR markers and a RGB camera. Fig.2 shows the flow of the iswellstudiedandinterestedreadersmayreferto[59]forthe detection and the poses of the markers in the object model’s solutions. localcoordinatesystem. Themarkersareattachedmanuallyby Thesecondsubproblemistodetecttheposeofasingleob- humanworkers. ject on an open plenary surface and is shown in the right part of Fig.3. It is much easier but still requires much proess to meet the precision requirements of assembly. We concentrate on precision and will discuss use point cloud algorithms and geometricconstraintstosolvethesecondproblem. Figure2: ObjectdetectionusingARmarkers. Beforehand,humanworkerat- tachesthemarkersandpresavestheposeofthemarkerintheobject’slocal coordinatesystem. Duringdetection,visionsystemcomputestheposeofthe objectfromthedetectedmarkerposes(thethreesubfigures).Theoutputisthe (pAa,RAa)and(pBa,RBa). Duringdemonstration,theworkerholdsthetwoobjectsand show the makers to the camera. We assume the workers have Figure3:Overcometheclutterproblembydividingtheposedetectionintotwo subproblems.Thefirstoneispickingoutfromclutterwherethesystemdoesn’t enough intelligence and can expose the markers to the vision carewhattheobjectisortheposeoftheobjectanditsonlygoalistopick system without occlusion. The detection process is conven- somethingout. Theproblemiswellstudied. Thesecondoneistodetectthe tionalandcanbefoundinmanyARliterature: Giventheposi- poseofasingleobjectonanopenplenarysurface. Itisnottrivialsincethe tionsofsomefeaturesinthemarkers’localcoordinatesystem, precisionofKinectisbad. findthetransformmatrixwhichconvertsthethemintothepo- sitionsonthecamerascreen.Inourimplementation,thehuman 5.1. Roughdetectionusingpointcloud teachingpartisdevelopedusingUnityandtheARrecognition isdoneusingtheVuforiaSDKforUnity. First, we roughly detect the pose of the object using CVFH In the example shown in Fig.2, there are two objects where and CRH features. In a preprocessing process before start- the detected results are represented by (p a, R a) and (p a, ing the detection, we put the camera to 42 positions on a unit A A B 4 sphere,savetheviewofthecamera,andprecomputetheCVFH thecandidatesurfaceortooneartoitsboundary)areremoved. andCRHfeaturesofeachview.Thisstepisvirtuallyperformed Anexampleofthestableplacementsforoneobjectisshownin using PCL and is shown in the dashed blue frame of Fig.4. thestableplacementsframeboxofFig.5. During the detection, we extract the plenary surface from the Given the raw detection result using CVFH and CRH fea- pointcloud,segmenttheremainingpointscloud,andcompute tures, the robot computes its distance to the stable placements the CVFH and CRH features of each segmentation. Then, we andcorrectitfollowingAlg.1. matchtheprecomputedfeatureswiththefeaturesofeachseg- ment and estimate the orientation of the segmentations. This Algorithm1:Noisecorrection step is shown in the dashed red frame of Fig.4. The matched Data: Rawresult: p,R ; segments are further refined using ICP to ensure good match- Stableplacemrentsr: {R (i), i=1,2,...} p ing. ThesegmentationthathashighestICPmatchesandsmall- Tableheight: h t est outlier points will be used as the output. An example is Result: Correctedresult: p ,R showninthe“Rawresult”frameboxofFig.4. 1 dmin ←+∞ c c 2 Rnear ←I 3 fori←1toRp.size()do 4 di ←||log(Rp(i)Rp(cid:48))|| 5 if di <dminthen 6 dmin ←di 7 Rnear ←Rp(i) 8 end 9 end 10 Ryaw ←rotFromRpy(0,0,rpyFromRot(Rr).y) Figure 4: Rawly detecting the pose of an object using model matching and 11 Rc ←Ryaw·Rnear CwVeFpHrecaonmdpCutReHthfeeaCtVurFeHs. aInndaCpRrHeprfoeacteusrseinsgofpr4o2cedsisffebreefnotrevitehwesdaentedctsiaovne, 12 pc ←[pr.x,pr.y,ht](cid:48) themasthetemplate. Thepreprocessingprocessisshowninthedashedblue frame.Duringthedetection,wesegmenttheremainingpointscloud,compute theCVFHandCRHfeaturesofeachsegmentation,andmatchthemtothepre- Inthispseudocode,Iindicatesa3×3identitymatrix. Func- computedviewsusingICP.Thebestmatchisusedastheoutput. tions rotFromRpy and rpyFromRot converts roll, pitch, yaw anglestorotationmatrixandviceverse. Thedistancebetween tworotationmatricesiscomputedinline4.Thecorrectedresult 5.2. Noisecorrectionusinggeomtericconstraints isupdatedatlines11and12. 6. GraspandMotionPlanning After finding the poses of the parts on the plenary surface, what the robot does next is to grasp the parts and assemble them.Itincludestwosteps:Agraspplanningstepandamotion planningstep. 6.1. Graspplanning In the grasp planning step, we set the object at free space Figure5: Correctingtherawresultusingthestableplacementsonaplenary surface(geometricconstraints). Inapreprocessingprocessbeforethecorrec- andcomputetheforce-closuredandcollision-freegrasps. Each tion,wecomputethestableplacementsoftheobjectonaplenarysurface. An graspisrepresentedusing g f={p ,p ,R}where p and p are X 0 1 0 1 exampleisshowninthestableplacementsframebox.Duringthecorrection,we the contact positions of the finger tips, R is the orientation of computethedistancebetweentherawresultsandeachofthestableplacements, thepalm. Thewholesetisrepresentedbyg f,whichincludes andcorrecttherawresultsusingthenearestpose. X many g f. Namely,g f ={g f}. X X X Theresultofroughdetectionisfurtherrefinedusingthegeo- Giventheposeofapartontheplenarysurface,say pXs and metric constraints. Since the object is on plenary surface, its RXs,theIK-feasibleandcollision-freegraspsthattherobotcan stable poses are limited [60] and can be used to correct the usetopickuptheobjectiscomputedfollowing noisesoftheroughlyestimatedresult. Theplacementplanning g s =IK(g s(cid:48) )∩CD(g s(cid:48), planerysurface) (2) includes two steps. First, we compute the convex hull of the X X X objectmeshandperformsurfaceclusteringontheconvexhull. where Eachclusterisonecandidatestandingsurfacewheretheobject g s(cid:48) =R s·g f + p s (3) maybeplacedon. Second,wecheckthestabilityoftheobjects X X X X standingonthesecandidatesurfaces. Theunstableplacements R s·g f+p stransformsthegraspsatfreespacetothepose X X X (theplacementwheretheprojectionofcenterofmassisoutside oftheobject. g s(cid:48) denotesthetransformedgraspset. IK()finds X 5 theIK-feasiblegraspsfromtheinputset.CD()checksthecolli- employ Transition-RRT to find the motion between the initial sionbetweenthetwoinputelementsandfindsthecollision-free configurationandgoalconfiguration. grasps. g s denotes the IK-feasible and collision-free grasps In practice, the flow in Fig.6 doesn’t work since the goal X thattherobotcanusetopickuptheobject. configuration is in the assembled structure and is in the nar- Likewise,giventheposeofobjectAintheassembledstruc- row passages or on the boundaries of the configuration space. ture,say p aandR a,theIK-feasibleandcollision-freegrasps Themotionplanningproblemisanarrow-passage[62]orpeg- A A thattherobotcanusetoassembleitiscomputedfollowing in-hole problem [63] which is not solvable. We overcome the difficultybyaddingapre-assembleconfiguration: Forthetwo gAa =IK(gAa(cid:48) )∩CD(gAa(cid:48),objB( pBa,RBa)) (4) objects A and B, we retract them from the structure following theapproachingdirectionvaofthetwoobjectsandgetthepre- where assembleposes p p,R p,and p p,R pwhere g a(cid:48) =R a·g f + p a (5) A A B B A A A A p p = p a+0.5va, R p =R a (6) R a · g f + p a transforms the grasps at free space to the A A A A poseAofthAeobjecAtintheassembledstructure. g a(cid:48) denotesthe pBp = pBa−0.5va, RBp =RBa (7) X transformed grasp set. IK() and CD() are the same as Eqn(2). Thegraspsassociatedwiththeretractedposesare objB( p a,R a )indicatesthemeshmodelofobjectBatpose B B p a,R a. g a denotestheIK-feasibleandcollision-freegrasps B B A thattherobotcanusetoassembletheobject. g p =IK(g p(cid:48) ), whereg p(cid:48) =g a+0.5va (8) A A A A g p =IK(g p(cid:48) ), whereg p(cid:48) =g a−0.5va (9) B B B B 6.2. Motionplanning Note that the poses in Eqn(6-9) are in the local coordinate In the motion planning step, we build a graph using the of object A where p a is a zero vector and R a is an identity elements in g s and g a, search the grasp to find high-level A A X X matrix. GiventheposeofobjectAinworldcoordinate, p a(g) keyframes, and perform Transition-based Rapidly-Exploring A and R a(g), the grasps in the world coordinate are computed RandomTree(Transition-RRT)[61]motionplanningbetween A using thekeyframestofindassemblemotions. g a(g) =g p(g) (10) A A g a(g) = p a(g)+R a(g)·g a (11) B A A B g p(g) = p a(g)+R a(g)·g p (12) A A A A g p(g) = p a(g)+R a(g)·g p (13) B A A B Themotonplanningisthentofindamotionbetweenoneini- tialconfigurationing stoagoalconfigurationing p(g)where X X X is either A or B. There is no motion between g p(g) and A g a(g)sincetheyareequaltoeachother. Themotionbetween A g p(g)andg a(g)ishardcodedalongva. B B Figure6: Theflowofthemotionplanning. Giveninitialandgoalposesofan object(leftimagesintheupperleftandlowerleftframeboxes), wesearchits availableinitialandgoalgraspsandusethecommongraspsandIKtogetthe initialandgoalconfigurationsoftherobotarm. Then,wedomotionplanning repeatedlybetweentheinitialandgoalconfigurationstofindasolutiontothe desiredtask. Fig.6showstheflow. TheobjectXinthisgraphisawooden blockshownintheleftimageoftheupper-leftframebox. The Figure7:ThegraspgraphbuiltusinggXsandgXp(g).Ithasthreelayerswhere imagealsoshowstheposeofthisobjectontheplenarysurface, thetoplayerencodesthegraspsassociatedwiththeinitialconfiguration,the p s andR s. Whentheobjectisassembledinthestructure,its middle layer encodes the grasps associated with placements on planery su- X X pose p a andR a isshownintheleftimageofthebottom-left faces, andthebottomlayerencodesthegraspsassociatedwiththeassemble framebXox. TheSgraspsassociatedwiththeposesareshownin pose. TheleftimageshowsonegXp(g)(thevirtualgraspillustratedincyan). Itcorrespondstoanodeinthebottomlayer. Thesubimagesintheframebox the right images of the two frame boxes. They are rendered illustratetheplacements(yellow)andtheirassociatedgrasps(green). usingthecoloredhandmodel. Green,blue,andreddenoteIK- feasible and collision free, IK-infeasible, and collided grasps Which initial and goal configuration to use is decided by respectively. Webuildagraphtofindthecommongraspsand building and searching a grasp graph which is built using g s X 6 andg p(g), andisshownintheframeboxofFig.7. Thegraph 7.2. Precisionoftheobjectdetectioninroboticexecution X isbasicallythesameas[60],buthasthreelayers. Thetoplayer Then,weexaminethepecisionoftheobjectdetectioninthe has only one circle and is mapped to the initial configuration. robotexecutionphase. Threeobjectswitheightplacementsare Thebottomlayeralsohasonlyonecircleandismappedtothe used during the process. They are shown in the top row of goalconfiguration. Themiddlelayersarecomposedofseveral Fig.9. The plenary surface is set in front of the robot and is circleswhereeachofthemmapsapossibleplacementonaple- dividedintofourquarters. Weplaceeachplacementintoeach narysurface. Eachnodeofthecirclesrepresentsagrasp: The quoter to get the average values. There are five data rows di- onesintheupperlayersarefromg s,andtheonesinthebot- X vided by dashed or solid lines in Fig.9 where the first four of tomlayersarefromg p(g)).Theonesfromthemiddlelayersare X themshowtheindividualdetectionprecisionateachquoterand thegraspsassociatedwiththeplacements. Theorientationsof thelastoneshowstheaveragedetectionprecision. Thedetec- theplacementsareevenlysampledonline. Theirpositionsare tionprecisionisthedifferencebetweenthedetectedvalueand fixedtotheinitialpositionp s. Ifthecirclessharesomegrasps A thegroundtruth. Sinceweknowtheexactmodeloftheobject (graspswiththesame p , p ,Rvaluesintheobject’slocalco- 0 1 andtheheightofthetable,thegroundtruthisknowbeforehand. ordinatesystem),weconnectthematthecorrespondentnodes. Theaveragedetectionprecisioninthelastrowarethemeanof We search the graph to find the initial and goal configurations theabsolutedifference. and a sequence of high-level keyframes, and perform motion Inside each data grid there are four triples where the upper planning between the keyframes to perform desired tasks. An two are the roughly detected position and orientation and the exemplaryresultwillbeshownintheexperimentsection. lower two are the corrected values. The roughly detected re- sultsaremarkedwithredshadowsandthecorrectedresultsare markedingreen. Thethreevaluesofthepositiontriplesarethe 7. ExperimentsandAnalysis x,y,zcoordinates,andtheirmetricsaremillimeters(mm). The three values of the orientation triples are the roll, pitch, yaw anglesandtheirmetricsaredegree(◦). We performed experiments to examine the precision of the Theresultsshowthatthemaximumerrorsofroughposition developedapproaches,analyzetheprocessofgraspandmotion detectionare-1.1mm,3.3mm,and2.3mmalongx,y,andzaxis. planning,anddemonstratetheapplicabilityofthestudyusinga TheyaremarkedwithredboxesinFig.9. Aftercorrection,the KawadaNextageRobot. Thecamerausedinthehumanteach- maximumpositionerrorschangeto-1.1mm,3.6mm,0.0mmre- ingphaseisalogicoolHDWebcamC615. Thecomputersys- spectively. Theyaremarkedwithgreenboxes. Themaximum tem is a Lenovo Thinkpad E550 laptop (Processor: Intel Core errors of rough orientation detection are -26.3◦, 26.1◦, and - i5-52002.20GHzClock,Memory: 4G1600MHzDDR3). The 19.5◦ inroll, pitch,andyawangles. Theyaremarkedwithred depthsensorusedintheroboticexecutionphaseisKinect. The boxes. Theerrorschangeto0.0,0.0,and-21.4aftercorrection. computer system used to compute the grasps and motions is Thecorrectionusinggeometricconstraintscompletelycorrects a Dell T7910 workstation (Processor: Intel Xeon E5-2630 v3 the erros along z axis and in roll and pitch angles. It might with 8CHT, 20MB Cache, and 2.4GHz Clock, Memory: 32G slightlyincreasetheerrorsalongxandyandinyawbuttheval- 2133MHzDDR4). uesareignorable. Theaverageperformancecanbefoundfrom the data under thee dual solid line. The performance is good enoughforroboticassembly. 7.1. Precisionoftheobjectdetectioninhumanteaching Inaddition,thesecondandthirdsubfigurerowsofFig.9plot someexamplesoftheroughlydetectedposesandthecorrected First,weexaminetheprecisionofobjectdetectionduringhu- poses. Readersmaycomparethemwiththedatarows. manteaching. Weusetwosetsofassemblypartsandexamine the precision of five assembly structures for each set. More- 7.3. Simulationandreal-worldresults over,foreachassemblystructure,weexaminethevaluesofat fivedifferentorientationstomaketheresultsconfident. Fig.10showsthecorrespondencebetweenthepathsfoundby The two sets and ten structures (five for each) are shown in thesearchingalgorithmsandtheconfigurationsoftherobotand the first row of Fig.8. Each structure is posed at five different theobject. Thestructuretobeassembledinthistaskisthefirst orientations to examine the precision. The five data rows un- one (upper-left one) shown in Fig.8. We do motion planning derthesubimagerowinFig.8aretheresultattheorientations. alongthepathsrepeatedlytoperformthedesiredtasks. Eachgridofthedatarowsisshownintheform∆d(∆r,∆p,∆y) Theassemblyprocessisdividedintotwostepwitheachstep where ∆d is the difference in the measured |p a − p a| and corresponds to one assembly part. In the first step, the robot A B the actual value. (∆r,∆p,∆y) are the difference in the mea- finds object A on the table and moves it to a goal pose using sured roll, pitch, and yaw angles. The last row of the figure the three-layer graph. The subfigures (1)-(4) of Fig.10 shows showstheaveragedetectionerrorofeachstructureintheform this step. In Fig.10(1), the robot computes the grasps associ- |∆d|(|∆r|,|∆p|,|∆y|)where|·|indicatestheabsolutevalue. The atedwiththeinitialposeandgoalposeofobjectA.Theasso- metricsaremillimeter(mm)fordistanceanddegree(◦)forori- ciated grasps are rendered in green, blue, and red colors like entation. The precision in position is less than 1mm and the Fig.1. They corresponds to the top and bottom layer of the precisioninorientationislessthan2◦onaverage. graspshowninFig.10(1’). InFig.10(2),therobotchoosesone 7 Figure8: Resultsoftheobjectdetectedduringhumanteaching. Theimagerowshowsthestructuretobeassembled. Eachstructureisposedatfivedifferent orientationstoexaminetheprecisionandthedetectederrorindistanceandorientationareshowninthefivedatarowsbelow.Eachgridofthedatarowsisshownin theform∆d(∆r,∆p,∆y)where∆disthedifferenceinthemeasured|p a−p a|andtheactualvalue.(∆r,∆p,∆y)arethedifferenceinthemeasuredroll,pitch,and A B yawangles.Thelastrowistheaveragedetectionerror.Themetricsaremillimeterfordistanceanddegreefororientation. Figure9: Resultsoftheobjectdetectedduringroboticexecution. Thefigureincludesthreesubfigurerowsandfivedatarowswherethefirstdatarowshowthe targetobjectpose,thesecondandthirdsubfigurerowsplotsomeexamplesoftheroughlydetectedposesandthecorrectedposes. Thefivedatarowsaredivided bydashedorsolidlineswherethefirstfourofthemshowtheindividualdetectionprecisionatfourdifferentpositionsandthelastoneshowstheaveragedetection precision. Eachdatagridofthedatarowsincludefourtripleswheretheuppertwo(underredshadow)aretheroughlydetectedpositionandorientationandthe lowertwo(undergreenshadow)arethecorrectedvalues.Thethreevaluesofthepositiontriplesarethex,y,zcoordinates,andtheirmetricsaremillimeters(mm). Thethreevaluesoftheorientationtriplesaretheroll, pitch,yawanglesandtheirmetricsaredegree(◦). Themaximumvaluesofeachdataelementaremarked withcoloredframeboxes. 8 Figure10: ThesnapshotsofassemblingthestructureshowninFig.8. Itisdividedintotwostepwiththefirststepshownin(1)-(4)andthesecondstepshownin (5)-(8). Inthefirststep,therobotpicksupobjectAandtransfersittothegoalpose. Inthesecondstep,therobotfindsobjectBonthetableandassemblesitto objectA.Thesubfigures(1’)-(8’)showscorrespondentpathedgesandnodesonthethree-layergraph. feasible(IK-feasibleandcollision-free)graspfromtheassoci- matchingtofindarawposeanduseextrinsicconstraintstocor- ated grasps and does motion planning to pick up the object. rectthenoises. Weexaminetheprecisionoftheapproachesin The selected grasp corresponds to one node in the top layer the experiment part and demonstrate that the precision fulfills ofthegraph, whichismarkedwithredcolorinFig.10(2’). In assemblytasksusingagraphmodelandanindustrialrobot. Fig.10(3),therobotpicksupobjectAandtransfersittothegoal The future work will be on the manipulation and assembly pose using a second motion planning. This corresponds to an aspect. The current result is position-based assembly. It will edgeinFig.10(3’)whichconnectsthenodeinonecircletothe beextendedtoforce-basedassemblytaskslikeinserting,snap- nodeinanother. Theedgedirectlyconnectstothegoalinthis ping,etc.,inthefuture. example and there is no intermediate placements. After that, the robot moves its arm back at Fig.10(4), which corresponds References toanodeinthebottomlayerofthegraphshowninFig.10(4’). Inthesecondstep, therobotfindsobjectBonthetableand [1] T.Lozano-Perez,J.L.Jones,E.Mazer,P.A.O’Donnell,HANDEY:A RobotTaskPlanner,TheMITPress,1992. assemblesittoobjectA.Thesubfigures(5)-(8)Fig.10(b)show [2] M.T.Mason,MechanicsofRoboticManipulation,TheMITPress,2001. it. InFig.10(5),therobotcomputesthegraspsassociatedwith [3] M.Dogar,A.Spielberg,S.Baker,D.Rus,Multi-robotgraspplanningfor theinitialposeandgoalposeofobjectB.Theyarerenderedin sequentialassemblyoperations,in:ProceedingsofInternationalConfer- green,blue,andredcolorslikeFig.10(1)andarecorrespondent eneonRoboticsandAutomation(ICRA),2015. [4] C.Goldfeder,Data-DrivenGrasping,Ph.D.thesis,ColumbiaUniversity tothetopandbottomlayerofthegraspshowninFig.10(5’). In (2002). Fig.10(6),therobotchoosesonefeasiblegraspanddoesmotion [5] I.Lenz,H.Lee,A.Saxena,DeepLearningforDetectingRoboticGrasps, planningtopickuptheobject. Theselectedgraspcorresponds InternationalJournalofRoboticsResearch(IJRR). tothemarkednodeinFig.10(6’). InFig.10(7),therobotpicks [6] H.Murase,S.K.Nayar,VisualLearningandRecognitionof3DObjects fromAppearance,InternationalJournalofComputerVision(IJCV). up object B and assembles it to the goal pose using a second [7] P.Mittrapiyanuruk,G.N.Desouza,A.C.Kak,Calculatingthe3D-Pose motion planning which corresponds to an edge in Fig.10(7’). ofRigid-ObjectsusingActiveAppearanceModels, in: Proceedingsof Finally,therobotmovesitsarmbackatFig.10(8)and(8’). InternationalConferenceonRoboticsandAutomation(ICRA),2004. [8] S.Zickler, M.Veloso, DetectionandLocalizationofMultipleObjects, Thesubfigures(1”)-(8”)inthethirdrowshowhowtherobot in: Proceedings of International Conference on Humand Robots (Hu- executes the planned motion. They correspond to (1)-(8) and manoids),2006. (1’)-(8’)inthefirsttworows. [9] M.Stark,M.Goesele,B.Schiele,BacktotheFuture: LearningShape Modelsfrom3DCADData,in: ProceedingsofBritishMachineVision Conference,2011. [10] J.Liebelt,C.Schmid,Multi-viewObjectClassDetectionwitha3DGeo- 8. ConclusionsandFutureWork metricModel,in:ProceedingsofComputerVisionandPatternRecogni- tion(CVPR),2010. Wepresentedprecise3Dvisualdetectionapproachesinthis [11] P.Wunsch,G.Hirzinger,RegistrationofCADModelstoImagesbyIter- ativeInversePerspectiveMatching,in:ProceedingsofInternationalCon- paper to meet the requirements of a smart mechanical assem- ferenceonPatternRecognition,1996. blysystem. In thehumanteaching phaseofthe systemwhere [12] P.David,D.DeMenthon,R.Duraiswami,H.Samet,SoftPOSIT:Simul- humanbeingscontroltheoperationandcanactivelyavoidoc- taneousPoseandCorrespondenceDetermination,in:ProceedingsofEu- clusion,weuseARmarkersandcomputetheposeoftheobject ropeanConferenceonComputerVision,2002. [13] M.A.Fischler,R.C.Bolles,RandomSampleConsensus: AParadigm by detecting the markers’ poses. In the robot execution phase for Model Fitting and Applications to Image Analysis and Automated where occlusions happen unexpectedly, we use point cloud Cartography,AssociationforComputingMachinery. 9 [14] D.DeMenthon, L. S. Davis, Model-Based Object Pose in 25 Lines of (ICRA),2011. Code,InternationalJournalofComputerVision. [41] C.Schutz,H.Hugli,AugmentedRealityusingRangeImages,in: SPIE [15] C.-P.Lu,G.D.Hager,E.Mjolsness,FastandGloballyConvergentPose PhotonicsWest,TheEngineeringRealityofVirtualReality,1997. EstimationfromVideoImages,TransactiononPatternAnalysisandMa- [42] P.J.Besl,N.D.McKay,AMethodforRegistrationof3-DShapes,Trans- chineIntelligence(PAMI). actionsonPatternAnalysisandMachineIntelligence(PAMI). [16] F.Schaffalitzky,A.Zisserman,Multi-viewMatchingforUnorderedIm- [43] F.Tombari,S.Salti,L.D.Stefano,UniqueSignaturesofHistogramsfor ageSets,or“HowdoIOrganizeMyHolidaySnaps?”,in:Proceedingsof LocalSurfaceDescription,in: ProceedingsofEuropeanConferenceon EuropeanConferenceonComputerVision,2002. ComputerVision(ECCV),2010. [17] C.J.Harris,ACombinedCornerandEdgeDetector,in: Proceedingsof [44] Z.C.Marton,D.Pangercic,N.Blodow,M.Beetz,Combined2D-3DCat- AlveyVisionConference,1988. egorizationandClassificationforMultimodalPerceptionSystems,Inter- [18] K.W.Chia,A.D.Cheok,S.J.Prince,Online6-DOFAugmentedReality nationalJournalofRoboticResearch(IJRR). RegistrationfromNaturalFeatures,in:ProceedingsofEuropeanConfer- [45] A.Aldoma, etal., CAD-modelrecognitionand6DOFposeestimation enceonComputerVision,2002. using3Dcues,in:ICCVWorkshops,2011. [19] P.David,D.DeMenthon,R.Duraiswami,H.Samet,SimultaneousPose [46] W.Wohlkinger,M.Vincze,EnsembleofShapeFunctionsfor3DObject andCorrespondenceDeterminationusingLineFeatures,in:Proceedings Classification,in: ProceedingsofInternationalConferenceonRobotics ofComputerVisionandPatternRecognition,2003. andBiomimetics(ROBIO),2011. [20] G.Klein,T.Drummond,RobustVisualTrackingforNon-instrumented [47] A.Aldoma,Z.C.Maron,F.Tombari,M.Vincze,Tutorial: PointCloud Augmented Reality, in: Proceedings of International Symposium on Library: Three-DimensionalObjectRecognitionand6DOFPoseEsti- MixedandAugmentedReality,2003. mation,IEEERoboticsandAutomationMagzine. [21] E.Marchand, F.Chaumette, Virtualvisualservoing: Aframeworkfor [48] Y.Shiraki,K.Nagata,N.Yamanobe,A.Nakamura,K.Harada,D.Sato, real-timeaugmentedreality,in:ProceedingsofEurographic,2002. D.N.Nenchev,ModelingofEverydayObjectsforSemanticGrasp,in: [22] K.Harada,K.Nagata,T.Tsuji,N.Yamanobe,A.Nakamura,Y.Kawai, ProceedingsofInternationalSymposiumonRobotandHumanInteractive ProbabilisticApproachforObjectBinPickingApproximatedbyCylin- Communication,2014. ders,in: ProceedingsofInternationalConferenceonRoboticsandAu- [49] M.J.Schuster,J.Okerman,H.Nguyen,J.M.Rehg,C.C.Kemp,Per- tomation(ICRA),2013. ceivingClutterandSurfaceforObjectPlacementinIndoorEnvironment, [23] D.G.Lowe,DistinctiveImageFeaturesfromScale-invariantKey-points, in: ProceedingsofInternationalConferenceonHumanoidRobots(Hu- InternationalJournalofComputerVision(IJCV). manoids),2010. [24] I.Gordon,D.G.Lowe,WhatandWhere: 3DObjectRecognitionwith [50] G.Smonath,M.Rohith,D.Metaxas,C.Kambhamettu,D-Clutter:Build- AccuratePose,LectureNotesinComputerScience. ingObjectModelLibraryfromUnsupervisedSegmentationofCluttered [25] A.Collet,D.Berenson,S.S.Srinivasa,D.Ferguson,ObjectRecognition Scenes, in: ProceedingsofComputerVisionandPatternRecognition), andFullPoseRegistrationfromaSingleImageforRoboticManipulation, 2010. in:ProceedingsofInternationalConferenceonRoboticsandAutomation [51] M.Saval-Calvo,J.Azorin-Lopez,A.Fuster-Guillo,J.Garcia-Rodriguez, (ICRA),2009. Three-dimensional Planar Model Estimation using Multi-constraint [26] W.Press,S.Teukolsky,W.Vetterling,NumericalRecipesinC:TheArt KnowledgebasedonK-meansandRANSAC,AppliedSoftComputing. ofScientificComputing,TheCambridgePress,1992. [52] L.Goron,Z.-C.Marton,G.Lazea,M.Beetz,RobustlySegmentingCylin- [27] Y.Cheng,Meanshift,Modeseeking,andClustering,TransactiononPat- dricalandBox-likeObjectsinClutteredScenesusingDepthCamera,in: ternAnalysisandMachineIntelligence(PAMI). ProceedingsofGermanConferenceonRobotik,2012. [28] A. Ramisa, D. Aldavert, S. Vasudevan, R. Toledo, R. L. de Mantaras, [53] E.C.Cheung,C.Cao,J.Pan,Multi-contourInitialPoseEstimationfor EvaluationofThreeVisionbasedObjectPerceptionMethodsforaMobile 3DRegistration,in: ProceedingsofInternationalConferenceonIntelli- Robot,JournalofIntelligentRoboticSystems(JIRS). gentRobotsandSystems(IROS),2015. [29] M.Fiala,ARTag: AFiducialMarkerSystemusingDigitalTechniques, [54] G.Taylor, L.Kleeman, FusionofMultimodalVisualCuesforModel- in: ProceedingsofComputerVisionandPatternRecognition(CVPR), basedObjectTracking, in: ProceedingsofAustralasianConferenceon 2005. RoboticsandAutomation(ACRA),2003. [30] D.Wagner,D.Schmalstieg,ARToolKitPlusforPoseTrackingonMobile [55] T. Kempter, A. Wendel, H. Bischof, Online Model-Based Multi-Scale Devices,in:ProceedingsofComputerVisionWinterWorkshop,2007. PoseEstimation,in:ProceedingsofComputerVisionWinterWorkshop, [31] V.Sundareswaran,R.Behringer,VisualServoing-basedAugmentedRe- 2012. ality,in: ProceedingsofInternationalWorkshoponAugmentedReality, [56] G.Reitmayr,T.Drummond,GoingOut: RobustModel-BasedTracking 1998. forOutdoorAugmentedReality,in:ProceedingsofInternationalSympo- [32] H.Kato,M.Billinghurst,MarkerTrackingandHMDCalibrationfora siumonMixedandAugmentedReality,2006. Video-basedAugmentedRealityConferencingSystem,in: Proceedings [57] D.Pangercic,V.Haltakov,M.Beetz,FastandRobustObjectDetectionin ofInternationalWorkshoponAugmentedReality,1999. HouseholdEnvironmentsusingVocabularyTreeswithSiftDescriptors, [33] L.Vacchetti,V.Lepetit,P.Fua,StableReal-time3DTrackingusingOn- in: InternationalConferenceonIntelligentRobotsandSystems(IROS), lineandOfflineInformation, TransactiononPatternAnalysisandMa- WorkshoponActiveSemanticPerceptionandObjectSearchintheReal chineIntelligence(PAMI). World,2011. [34] S.Makita, K.Okita, Y.Maeda, MotionPlanningfor3DMultifingered [58] S.Hinterstoisser,S.Holzer,C.Cagniart,S.Ilic,K.Konolige,N.Navab, CagingwithObjectRecognitionusingARPictureMarkers,in:Proceed- V.Lepetit, MultimodalTemplatesforReal-TimeDetectionofTexture- ingsofInternationalConferenceonMechatronicsandAutomation,2015. lessObjectsinHeavilyClutteredScenes,in:ProceedingsofInternational [35] F.Suligoj,B.Sekoranja,M.Svaco,bojanJerbic,ObjectTrackingwith ConferenceonComputerVision(ICCV),2011. aMultiagentRobotSystemandaStereoVisionCamera,ProcediaEngi- [59] Y.Domae, D.Okuda, Y.Taguchi, K.Sumi, T.Hirai, FastGraspability neering. EvaluationonSingleDepthMapsforBinPickingwithGeneralGrippers, [36] K.Ramirez-Amaro,M.Beetz,G.Cheng,TransferringSkillstoHuman in:ProceedingsofInternationalConferenceonRoboticsandAutomation Robots by Extracting Semantic Representations from Observations of (ICRA),2014. HumanActivities,ArtificialIntelligence. [60] W.Wan,K.Harada,DevelopingandComparingSingle-armandDual- [37] B.Freedman,A.Shpunt,M.Machline,Y.Arieli,DepthMappingusing armRegrasp,IEEERoboticsandAutomationLetters(RA-L). ProjectedPatterns(2012). [61] L.Jaillet,J.Cortes,T.Simeon,Transition-basedRRTforpathplanning [38] S.M.Choi,E.G.Lim,J.I.Cho,D.H.Hwang,StereoVisionSystemand incontinuouscostspaces,in:Proc.ofIROS,2008. StereoVisionProcessingMethod(2012). [62] H.Liu,D.Ding,W.Wan,PredictiveModelforPathPlanningusingK- [39] P.E.Bauhahn, B.S.Fritz, B.C.Krafthefer, SystemsandMethodsfor nearDynamicBrdigeBuilderandInnerParzenWindow,in:Proceedings SafeLaserImaging(2009). ofInternationalConferenceonIntelligentRobotsandSystems(IROS), [40] R. B. Rusu, S. Cousins, 3D is Here: Point Cloud Library (PCL), in: 2008. Proceedings of International Conference on Robotics and Automation [63] S.kookYun,CompliantManipulationforPeg-in-Hole: isPassiveCom- 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.