EconTheory(2012)49:371–409 DOI10.1007/s00199-010-0561-y SYMPOSIUM Taxes versus quantities for a stock pollutant with endogenous abatement costs and asymmetric information LarryKarp · JiangfengZhang Received:12September2008/Accepted:10August2010/Publishedonline:1September2010 ©TheAuthor(s)2010.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract Wecompareemissionstaxesandquotaswhena(strategic)regulatorand (non-strategic) firms have asymmetric information about abatement costs, and all agentsuseMarkovperfectdecisionrules.Firmsmakeinvestmentdecisionsthataffect theirfutureabatementcosts.Forgeneralfunctionalforms,firms’investmentpolicyis information-constrained efficient when the regulator uses a quota, but not when the regulator uses an emissions tax. This advantage of quotas over emissions taxes has notpreviouslybeenrecognized.Foraspecialfunctionalform(linear–quadratic)both policies are constrained efficient. Using numerical methods, we find that a tax has someadvantagesinthiscase. Keywords Pollution control · Investment · Asymmetric information · Rational expectations·Choiceofinstruments JELClassification C61·D8·H21·Q28·C72·H4·Q54 JiangfengZhang:TheopinionsexpressedinthispaperdonotnecessarilyreflecttheviewsoftheAsian DevelopmentBank. Webenefittedfromcommentsbytwoanonymousreferees.Theusualdisclaimerapplies. B L.Karp( ) DepartmentofAgriculturalandResourceEconomics,UniversityofCalifornia,Berkeley,USA e-mail:[email protected] J.Zhang AsianDevelopmentBank,Manila,Philippines e-mail:[email protected] 123 372 L.Karp,J.Zhang 1 Introduction Thedangerthatgreenhousegas(GHG)stockscauseenvironmentaldamagehasledto arenewedinterestintheproblemofcontrollingemissionswhenthereisasymmetric informationaboutabatementcosts.Althoughhybridpolicies,e.g.,capandtradewitha priceceiling,aremoreefficientthaneitherthetaxorquantityrestriction(Pizer1999), thecomparisonoftaxesandquotasremainsanimportantpolicyquestion.SinceGHGs areastockpollutant,theregulator’sproblemisdynamic.Mostofthecurrentlitera- tureonthisdynamicproblemassumesthatnon-strategicfirmssolveasuccessionof staticproblems.If,however,afirm’sabatementcostsdependonitsstockofabatement capital,thefirmmakesadynamicinvestmentdecisionaswellasthestaticemissions decision.Westudytheregulatoryproblemwithasymmetricinformationwhenfirms investinabatementcapital.Wefindthatforgeneralfunctionalforms,quotashavean advantageovertaxesthathadnotpreviouslybeenrecognized:quotas,butnottaxes, are“information-constrained”optimalwithrespecttoinvestment.Wethenconsidera specialfunctionalform(linear–quadratic)wherethatadvantagedisappears,andhere wefindthattaxescanincreaseabatementandwelfare. Earlierliterature,e.g.,ChichilniskyandHeal(1995),providedpolicymakerswith the economic framework needed to compare different types of policies, thereby contributingtothecreationofthecarbonmarketcurrentlyusedbysomeKyotosig- natoriesintheEuropeanTradingScheme.Ellerman(2010)discussesthecurrentstate ofthismarket.Ourpapercontributestopolicydiscussionsbyhelpingtoilluminatea difference between taxes and quotas when forward-looking firms make investments thatreduceabatementcosts.Inoursetting,investmentdecreasescostsbyincreasing thestockofabatementcapital.Wecanalsothinkofthefirms’activityasinvestment in(excludable)R&D. For a variety of pollution problems, capital costs comprise a large part of total abatement costs (Vogan 1991) and investment in abatement capital depends on the regulatory environment. In these cases, the endogeneity of investment is an impor- tant aspect of the regulatory problem. Several recent papers (Buonanno et al. 2001; GoulderandSchneider1999;GoulderandMathai2000;Norhaus1999)assumethat theregulatorcanchooseemissionsandalsoinducefirmstoprovidethefirst-bestlevel ofinvestment,e.g.,bymeansofaninvestmenttax/subsidy. Weconsiderthesituationwheretheregulatorhasasinglepolicyinstrument,either a sequence of emissions taxes or a sequence of quotas. This assumption is consis- tentwithmanyregulationsandproposalsthatinvolveanemissionspolicybutignore endogenous investment (e.g., the Kyoto Protocol). In virtually any real-world prob- lem, the regulator is likely to have fewer instruments than targets. Our model is an exampleofthisgeneraldisparitybetweenthenumberofinstrumentsandtargets,and therefore is empirically relevant. We identify a previously unrecognized difference betweentaxesandquantityrestrictions,andweprovideasimplemeansofsolvingthe regulatoryproblemwhenacertainconditionholds.1 1 Jaffe et al. (2003) and Requate (2005) survey the literature on pollution control and endogenous investment.Manypapersinthisliterature,includingBiglaiseretal.(1995),GersbachandGlazer(1999), Kennedy and Laplante (1999), Montero (2002), Fischer et al. (2003), Moledina et al. (2003), and 123 Taxesversusquantitiesforastockpollutant 373 We now describe the problem in more detail. In each period, the representative firmobservesanabatementcostshockthatisprivateinformation.Ifthiscostshockis seriallycorrelated,theregulatorlearnssomethingaboutitscurrentvaluebyobserving past behavior. The firm knows the current value of the cost shock and therefore is better informed than the regulator. Both the regulator and firms obtain information over time. We examine a subgame perfect equilibrium in which the regulator and firmsconditiontheirdecisionson“directlypayoff-relevant”information,asdistinct, forexamplefromtheentirehistoryofactions.Thatis,weconsideraMarkovperfect equilibrium(MPE). For the regulator, the payoff-relevant information consists of the aggregate stock ofabatementcapital(whichaffectstheindustry-widemarginalabatementcosts),the stock of pollution (which determines marginal damages) and the regulator’s beliefs about the current cost shock (which also affects the industry’s marginal abatement costs).Forthefirms,thepayoff-relevantinformationconsistsofthecurrentpolicylevel (thetaxorquota),thecurrentcostshock,theindividualfirm’slevelofabatementcap- ital,theaggregateindustrycapitalandthepollutionstock.Thelasttwostatevariables arepayoff-relevantforthefirmbecausethefirmunderstandsthatthesevariablesaffect theevolutionofaggregatecapitalstockandpollutionstock,andthefirmunderstands thattheregulatorconditionsfuturepolicylevelsonfuturevaluesofthosetwostocks. TheassumptionofMarkovperfectionmeansthattheregulatorcannotmakebinding commitmentsregardingfuturepolicies.Firmshaverationalexpectations;theytakethe currentemissionspolicyasgivenandtheyunderstandhowtheregulatorchoosesfuture policies. The non-atomic representative firm is not able to affect the economy-wide variables that determine future policies. The representative firm therefore behaves non-strategically,butnotmyopically,andalsousesMarkovpolicies. Theregulatorunderstandsthatfutureemissionspoliciesaffectthecurrentshadow value of abatement capital and thus affect current investment. For example, firms’ anticipation that future emissions policies will be strict would increase the shadow value of abatement capital, thereby increasing the current level of investment. The regulatoratthecurrenttime,t,mightwanttocommittoafuturepolicy,implemented att(cid:2) >t,asameansofaffectingcurrentinvestmentinabatementcapital.Thisincen- tive is the source of the familiar time-consistency problem. After time t, the time-t (cid:2) investmentispredetermined,sothemotivationforthetimet policychoicethatwas optimalattimet haschanged.Oursettinghastheusualingredientsthatleadtothis problem: the regulator with a second-best instrument (the emissions tax or quota) wantstoinfluenceforward-lookingagents. Subgameperfectionisstrongerthantime-consistency;theformerrequiresthatno agent wants to deviate from the equilibrium strategy at any possible subgame, and thelatterrequiresonlythatnoagentwantstodeviatefromtheequilibriumstrategyat Footnote1continued TaruiandPolasky(2005,2006)assumethatfirmsbehavestrategicallywithrespecttotheregulator:firms believethattheirinvestmentdecisionswillaffectfutureregulation.Severalpaper,includingMalueg(1989), MillimanandPrince(1989),Requate(1998),RequateandUnold(2003)andKarp(2008)treatfirmsas non-strategic.Papersthatdiscusstime-inconsistencyarisingbecauseofthedisparitybetweenthenumber oftargetsandthenumberofinstrumentsincludeAbregoandPerroni(2002)andMarsilianiandRenstrom (2002). 123 374 L.Karp,J.Zhang subgamesthatactuallyoccurinequilibrium.TheassumptionofMarkovperfection(a refinementofsubgameperfection)thereforeimpliestime-consistency. In order to understand an important difference between emissions taxes and quotas,itisusefultodeterminewhethertherestrictiontotime-consistencyisabind- ing constraint. To this end, we ask whether the solution to the regulator’s problem, in the absence of a time-consistency constraint, would in any case be time-consis- tent. If the private level of investment under the equilibrium emissions policy (the tax or quota) is socially optimal, then the regulator wants to use the emissions pol- icyexclusivelytoinfluenceemissions,withouthavingtoconsiderhowtheemissions policyaffectsinvestment.Inthiscase,theregulatorhasnoincentivetoalteraprevi- ouslyannouncedpolicyrule.Inthiscircumstancethereisnotime-consistencyprob- lem.HerewecanobtaintheMPEbysolvinganoptimizationproblemthatcontains elementsoftheregulator’sandthefirms’problems.If,incontrast,firms’investment decisions are not socially optimal given beliefs about the emissions trajectory, then the regulator would like to choose the emissions policy partly to influence invest- ment. In this case, the Markov perfect restriction, which implies time-consistency, actually constrains the regulator. Here, we need to solve an equilibrium problem (a dynamic game between the regulator and non-strategic firms) rather than a rel- atively simple dynamic optimization problem. In other words, the type of problem that we need to solve an equilibrium problem or an optimization problem depends onwhethertheequilibriumlevelofinvestmentissociallyoptimal,conditionalonthe emissionstrajectory. There is another way of thinking about the time-consistency problem. The only marketfailureisthatfirmsdonottakeintoaccountthesocialdamagesarisingfrom emissions. If there were no cost shock, or if the regulator and firms had symmetric information,eithertheemissionstaxorthequotawouldbesufficienttoinducefirms to emit at the optimal level. In that case, firms’ investment decisions would be first best.Therefore,ifinadditiontotheemissionspolicytheregulatorwereabletouse an investment tax, the optimal level of that tax would be identically zero. However, when there is asymmetric information about abatement costs, there is no assurance that either the emissions tax or the quota leads to the first best level of emissions. Therefore, with asymmetric information, the equilibrium level of investment under theemissionspolicymightnotbe(information-constrained)sociallyoptimal.Inthat case,theoptimallevelofaninvestmenttaxwouldbenon-zero. Wecanaskourbasicquestionintwoequivalentways.(1)Istheoptimalemissions taxorquotapolicytime-consistent?(2)Wouldaregulatorwhouseseithertheemis- sionstaxorthequotaincreasewelfarebyadditionallyusinganinvestmenttax/subsidy? (Inotherwords:istheoptimalinvestmenttax/subsidyidentically0?). Weprovideasimpleanswertothesequestions.Theoptimalquotapolicyistime- consistent;equivalently,whentheregulatorcanusebothanemissionsquotaandan investmenttax,thelatterisidentically0.However,theoptimalemissionstaxpolicyis time-inconsistent,unlessaparticular“separabilitycondition”holds;ifthiscondition does not hold, the optimal investment tax, when used with the emissions tax, is not identically0. This result is useful for two reasons. First, under plausible circumstances the separability condition does not hold. In these circumstances, an emissions tax cre- 123 Taxesversusquantitiesforastockpollutant 375 atesasecondaryinvestmentdistortion,whereastheemissionsquotadoesnot.Thus, we have identified a difference between taxes and quotas that has previously been unnoticed. Second,whentheseparabilityconditiondoeshold,wecansolvethedynamicgame by solving a much simpler dynamic optimization problem that combines elements of the regulator’s and the firms’ optimization problems. The separability condition holds for an important special case, the linear–quadratic model, which has been previouslyusedtostudytheproblemofregulatingbothaflowandastockpollutant underasymmetricinformation.Ourseparabilityresultmeansthatwecangeneralize thelinear–quadraticmodelbyincludingendogenousabatementcapital.Thisgeneral- izationenablesustolearnhowtheinclusionofendogenousabatementcostsaffects therankingofthetwopolicies.Ourprincipalnumericalfindingisthat,inthelinear– quadraticframework,includingabatementcostsincreasestheadvantageoftaxesover quotas. Insummary,explicittreatmentoftheinvestmentdecisionrendersthefirms’deci- sionproblemsdynamic.Ingeneral,thisfeaturefavorstheuseofquotas,becausethese, unlike taxes, introduce no distortion into firms’ investment decisions. However, in specialcasesthatincludethelinear–quadraticmodel,thisdistortiondisappearswith taxes.Forourcalibration,theexplicittreatmentoftheinvestmentdecisionfavorstaxes inthelinear–quadraticsetting. Thenextsectiondiscussesastaticproblemthatprovidestheintuitionforthesep- arability condition. Subsequent sections describe the dynamic model and show the roleoftheseparabilitycondition.Wethendiscussthelinear–quadraticspecialization, andexplainhowendogenousinvestmentaffectsthecomparisonoftaxesandquotas inthatsetting.Inclosingthepaper,wediscussotheraspectsofthetaxversusquantity debate,asitappliestoclimatechangepolicy. Other papers in this symposium discuss related aspects of the climate change problem. Asheim et al. (2011), Lauwers (2011), Figuieres and Tidball (2011) and Chichilnisky(2011)considertheethicalfoundationsofcriteriaforsustainability,and thepossibilityofimplementingsuchprograms.LecocqandHourcade(2011)examine therelationbetweenincomelevelsandabatementexpenditureinanefficientsolution. DuttaandRadner(2011)showthatcapitalaccumulationcanexacerbatethetragedy of the commons, and that income transfers can alleviate this problem. Rezai et al. (2011)explainwhymeaningfulclimatepolicymayrequiresmaller(orevenzero)sac- rificebythecurrentgeneration,contrarytotheconclusionsofmainstreamintegrated assessmentmodels.BurniauxandMartins(2011)useacomputablegeneralequilib- riummodeltoevaluatethekeyparametersindeterminingthemagnitudeof“carbon leakage”.Ostrom(2011)emphasizestheimportanceofclimatechangepolicyatsub- globallevels.ChipmanandTian(2011)elaborateontheroleoftheCoaseTheorem inclimatechangepolicy. 2 Theone-periodexample Thissectionusesaone-periodmodelthatdemonstrates,inasimplesetting,thediffer- encebetweentaxesandquotaswhenabatementcostsareendogenous.Weshowthat 123 376 L.Karp,J.Zhang the emissions quota is always time-consistent; equivalently, if the regulator uses an emissionsquotaandalsoisabletouseaninvestmenttax/subsidy,theoptimalinvest- menttaxis0.Incontrast,theemissionstaxisnottime-consistent;equivalently,ifthe regulatorusesanemissionstaxandalsoisabletouseaninvestmenttax/subsidy,the investmenttaxisnot0ingeneral.However,theoptimalemissionstaxistime-consistent ifandonlyiftheprimitivefunctionssatisfyaparticular“separabilitycondition”. There is a simple explanation for this difference between taxes and quotas. An emissionspolicychosenbeforeinvestmenthasa“directwelfareeffect”viaitsdirect effectonemissions,andan“indirectwelfareeffect”,viaitseffectoninvestment.When thepolicylevelischosenafterinvestment,theregulatortakesintoaccountonlythe directwelfareeffect,sinceinvestmentisfixed.Theoptimalityconditionforthepolicy chosenbeforeinvestmentrequiresthatthesumofthedirectandtheindirectwelfare effectsissetequalto0.Theoptimalityconditionforthepolicychosenafterinvestment requiresthatthedirectwelfareeffectissetequalto0.Thesetwooptimalityconditions areequivalentifandonlyiftheindirecteffectis0wheneverthedirecteffectis0.That equivalencedoesnotholdingeneralundertaxes,butitdoesholdwhentheseparability condition is satisfied. In contrast, the indirect welfare effect under quotas is always 0,sotheoptimalquotaisthesameregardlessofwhetheritischosenbeforeorafter taxes.Allofthisbecomesobviousoncewedevelopsomenotationandwritedownthe optimalityconditions. We normalize the initial level of abatement capital to 0. The non-strategic but forwardlookingrepresentativefirmcanbuyk unitsofabatementcapitalatcostc(k); thefirmobtainsbenefits B(x,k,θ)byemittingx unitsofemissionswhenitsstockof abatement capital is k and the cost shock isθ.We can think of the function B(·) as arestrictedprofitfunctioninwhichinputandoutputpricesaresuppressed.Alterna- tively,wecaninterpret B(·)astheamountofavoidedabatementcosts.Forthelatter interpretation,define xb astheBusiness-as-Usual(BAU)levelofemissions,i.e.,the level of emissions under the status quo. Define a = xb − x as the level of abate- ment,i.e.,thereductioninemissionsduetoanewregulatorypolicy.Theabatement costs associated with the new regulations are A = A(k,θ,a). If xb is a function of (k,θ), we can rewrite the abatement cost function as A(k,θ,a) = B(x,k,θ), with A (·)= B (·):marginalabatementcostsequalthemarginalbenefitofemissions. a x Thebenefitfunctionisincreasingandconcaveinxandkandincreasinginθ(B > k 0,Bθ > 0,Bx > 0,Bkk < 0,Bxx < 0).Moreabatementcapitaldecreasesthemar- ginal cost of abatement and, therefore, lowers the marginal benefit of pollution, so B <0.Ahighercostshockincreasesthemarginalbenefitsofabatementcapitaland xk emissions: Bkθ ≥0,Bxθ ≥0. Thedamagefromemissions(externaltothefirm)is D(x).Theregulatorchooses eitheranemissionstax poranemissionsquotax¯.Throughoutthispaper,weassume thattheemissionsquotaisbindingforallrealizationsofθ.Boththeregulatorandthe firmhavethesameinformationaboutthedistributionofθ beforethefirmobservesits value. Eachfirmhasmeasure0,andbychoiceofunitsthemassoffirmshasmeasure1. Withthisnormalization,inasymmetricequilibriumk and x representtheindustry- wide capital stock and aggregate emissions, as well as the firm level values. The non-strategic firm chooses its (possibly constrained) level of k and x but takes the 123 Taxesversusquantitiesforastockpollutant 377 industry-widelevelsasexogenous.Inthissectionitisclearfromthecontextwhether wemeanfirmoraggregatelevelvariables,butinalatersectionwemodifythenotation toavoidthepossibilityofmisunderstanding. Weconsiderthefollowingtwotime-lines: TimeLineA TimeLineB 1.Theregulatorchoosesthe 1.Thefirmchooses policylevel(porx¯). investment(k) 2.Thefirmchoosesinvestment(k) 2.Theregulatorchooses thepolicylevel(porx¯). 3.Naturerevealsthecostshock(θ) 3.Naturerevealsthecost shock(θ). 4.Thefirmmakesitsemissions 4.Thefirmmakesits decision(x) emissionsdecision(x). WithTimeLineA,theemissionspolicycaninfluenceboththelevelsofinvestment andemissions.WithTimeLineB,theemissionspolicydependsonthelevelofinvest- ment,andinfluencesonlytheemissionslevel.Intheone-periodgame,neitherofthe twotimelineshasagreaterclaimtoplausibility,butthecomparisonofthetwohelps tounderstandthetime-consistencyprobleminthedynamicsetting. Iftheoptimalpolicyfortheregulatoristhesameunderbothtimelines,thenitis obviousthattheregulatorusesthatpolicyonlytoaffecttheemissionsdecision,not toinfluencetheinvestmentdecision.Inthiscase,theemissionspolicydoesnotcreate a secondary distortion in the investment decision; if we were to add a period after stage2andbeforestage3(“stage2.5”)toTimeLineA,atwhichtheregulatorwere permittedtorevisethepolicyannouncedinstage1,theregulatorwouldnotwantto makearevisionwhenpoliciesaretime-consistent. Weshowthattheemissionsquotaisalwaystime-consistent,buttheemissionstax istime-consistentifandonlyifaparticularseparabilityconditionholds.Equivalently, if we were to add a “stage 0” to either time line, at which the regulator announces aninvestmenttax,theoptimalinvestmenttaxisalways0whentheregulatorusesan emissionsquota,butitis0whentheregulatorusesanemissionstaxifandonlyifthe separability condition holds. To establish this claim, we examine each policy under bothtimelines. EmissionstaxesUnderTimeLineA, pispredeterminedwhentheindividualfirm chooses k. Under Time Line B, p depends on aggregate capital, about which firms have rational point expectations. Since firms take aggregate capital as given when making their investment decision, and since they know the relation between p and aggregatecapital,itis“asif”theytake pasgivenunderTimeLineBaswell.Inshort Remark1 Underbothtimelines,theindividualfirmtakes pasgivenwhenchoosing itslevelofcapital. This remark simplifies comparison of the two time lines because we need only considerhowthechoiceoftimelinesaffectstheregulator’sstrategicincentives;firms donotbehavestrategically,sothechoiceoftimelinesobviouslydoesnotaffecttheir strategicincentives. 123 378 L.Karp,J.Zhang Consider Time Line A when the regulator uses a tax. The representative firm’s payoffinstage2is E[B(x,k,θ)− px −c(k)], wheretheexpectationiswithrespecttoθ.Thefirmchoosesx inthelaststage,con- ditionalonk,p,andθ.Itchooseskbeforeitlearnsθ.Thefirst-orderconditionsforx andk andthecorrespondingdecisionrules(denotedusing∗)instages4and2are B (x,k,θ)− p =0⇒ x = x∗(k,p,θ). (1) (cid:2) x(cid:3) (cid:4) (cid:5) E B x∗,k,θ −c(cid:2)(k) =0⇒k =k∗(p). (2) k Notethatk∗(p)isindependentofθ.Differentiatingthefirst-ordercondition(1)gives thecomparativestaticsresult ∂x∗ −1 ∂x∗ −B (x,k,θ) = and = xk . (3) ∂p B (x,k,θ) ∂k B (x,k,θ) xx xx Theregulator’sproblemunderTimeLineAis (cid:2) (cid:3) (cid:4) (cid:3) (cid:4) (cid:3) (cid:4)(cid:5) maxE B x∗,k∗,θ −c k∗ −D x∗ , p leadingtothefirst-ordercondition (cid:6) (cid:7) (cid:6)(cid:8) (cid:2) (cid:3) (cid:4)(cid:5)∂x∗ (cid:2) (cid:3) (cid:4)(cid:5)∂x∗ E B (∗,θ)−D(cid:2) x∗ +E B (∗,θ)−D(cid:2) x∗ x ∂p x ∂k (cid:9) (cid:7) (cid:3) (cid:4) ∗ dk +B (∗,θ)−c(cid:2) k∗ =0, (4) k dp (usingthenotation∗=(x∗,k∗)).Becausek∗(p)isindependentofθ,wecantake dk∗ dp outsidetheexpectationsoperatorandusethefirm’soptimalitycondition(2)towrite theregulator’soptimalityconditionas (cid:6) (cid:7) (cid:6) (cid:7) (cid:2) (cid:3) (cid:4)(cid:5)∂x∗ dk∗ (cid:2) (cid:3) (cid:4)(cid:5)∂x∗ E B (∗,θ)−D(cid:2) x∗ + E B (∗,θ)−D(cid:2) x∗ =0, (5) x ∂p dp x ∂k Thefirsttermontheleftsideisthedirectwelfareeffectofthetaxandthesecondterm istheindirectwelfareeffect,operatingthroughinvestment. The first-order condition for the firms’ emissions decision is the same under the twotimelines,sinceinbothcasesthefirmconditionsitsemissionsdecisiononpre- determinedvalues of p andk andtherealizedvalueofθ.InviewofRemark1,the first-orderconditiontotheindividualfirm’sinvestmentproblemunderTimeLineBis (apartfromaninessentialnotationaldifference)stillgivenbyEq.(2).Thisnotational differenceisthatinsteadoftreating p asapredeterminedvariable,underTimeLine Bthefirmtreats pasafunctionofaggregatecapital,whichthefirmtakesasgiven. 123 Taxesversusquantitiesforastockpollutant 379 Thefactthat(apartfromthenotationaldifference)thefirm’sfirst-orderconditions arethesameunderthetwotimelinesmeansthatthefunctionsx∗(k,p,θ),andk∗(p) arealsothesameunderthetwotimelines,althoughofcoursethevaluesof p inthe twoscenarios(therefore,theequilibriumvaluesofkandx)mightdiffer.Thispossible differenceisthekeytothetime-consistencyissue.UnderTimeLineB,theregulator takes(aggregate)k asgiven,soitsfirst-orderconditionforthetaxis (cid:6) (cid:7) (cid:2) (cid:3) (cid:4)(cid:5)∂x∗ E B (∗,θ)−D(cid:2) x∗ =0. (6) x ∂p Notethatthisoptimalityconditionequatestheexpectedmarginalbenefitsandcosts of the tax, not the expected marginal benefits and costs of emissions. The two need notbethesame,becauseingeneral ∂x∗ dependsonθ. ∂p Denote the optimal tax under Time Line B as pˆ. We assume that the regulator’s problemisconcaveunderbothtimelines,sothatthesolutiontotherespectivefirst- order condition is unique. Comparison of Eqs. (5) and (6) shows that the optimal emissiontaxisthesameunderthetwotimelinesifandonlyiftheindirecteffectof thetax,evaluatedat p = pˆ,iszero,i.e.,if (cid:6) (cid:7) (cid:2) (cid:3) (cid:4)(cid:5)∂x∗ E B (∗,θ)−D(cid:2) x∗ =0. (7) x ∂k |p=pˆ Werefertothefollowingasthe“separabilitycondition”: ∗ Condition1 (Separability)B andB ,evaluatedattheoptimalx ,areindependent xx xk ofθ. Remark2 Equation(7)holdsforallfunctionsB(x,k,θ)ifandonlyiftheseparability conditionholds. Proof InordertoestablishthesufficiencyofCondition1,notethatitimplies(using Eq.3)thatboth ∂x∗ and ∂x∗ areindependentofθ.Thisindependence,togetherwith ∂p ∂k Eq. (6) and the fact that ∂x∗ (cid:6)= 0 imply that pˆ (the optimal tax under Time line B) ∂p satisfies (cid:2) (cid:3) (cid:3) (cid:4) (cid:4) (cid:3) (cid:3) (cid:4)(cid:4)(cid:5) E B x∗ k∗,p,θ ,k∗,θ −D(cid:2) x∗ k∗,p,θ =0. (8) x That is, under Condition 1, the tax equates expected marginal benefits of emissions withmarginaldamages.Theindependenceof ∂x∗ andθ,andthefactthat ∂x∗ (cid:6)= 0, ∂k ∂k meanthatEq.(8)impliesEq.(7).Therefore,theoptimaltaxunderthetwolinesisthe same. Inordertoestablishnecessity,notethatifeither B orB arenotindependentof xx xk θ,itisstraightforwardtoconstructexamplesunderwhichtheregulator’sfirst-order conditionsfor pdifferunderthetwotimelines. (cid:7)(cid:8) 123 380 L.Karp,J.Zhang Itisalsoeasytoshow: Remark3 Supposethattheregulatorusesanemissionstax.Ifwemodifyeithertime linesbyaddingastage0atwhichtheregulatorisabletochooseaninvestmenttax/sub- sidy,theoptimallevelofthispolicyisidentically0forallfunctions B(x,k,θ)ifand onlyiftheseparabilityconditionholds. Weomittheproof,whichparallelstheproofofRemark2. We see that time-consistency requires that Eq. (6) implies Eq. (7). Equation (6) statesthatthefirst-orderchangeinwelfareduetoachangeinthetax,(holdinginvest- mentfixed),iszero.Equation(7)statesthatthefirst-orderchangeinwelfaredueto a change in investment (holding the tax fixed) is zero. In general, of course, there isnoreasonthatoneequationimpliestheother,soingeneralthetaxchosenbefore investment is not time-consistent. However, the separability condition implies two thingsabouttheproblem:(1) ∂x∗ isindependentofθ,sothatsettingtheexpectednet ∂p marginalbenefitofthetax(holdinginvestmentfixed)equalto0isequivalenttosetting theexpectednetmarginalbenefitofemissionsequalto0;and(2) ∂x∗ isindependent ∂k ofθ,sothatsettingtheexpectednetmarginalbenefitofinvestment(holdingthetax fixed) equal to 0 is equivalent to setting the expected marginal benefit of emissions equalto0.WhenbothEqs.(6)and(7)areequivalenttosettingexpectednetmarginal benefitofemissionsequalto0,thetwoareequivalenttoeachother. EmissionsquotasBasedonthesamereasoningthatledtoRemark1,wehave Remark4 Under both time lines, the individual firm takes the emissions quota as givenwhenchoosingitslevelofcapital. If the regulator uses quotas (that by assumption are binding for all θ) the firm’s emissionsdecisionequalsx¯,and ∂x∗ =1.InviewofRemark4,thefirm’sfirst-order ∂x¯ conditionforthechoiceofk (forbothofthetwotimelines)is (cid:2) (cid:5) E B (x¯,k,θ)−c(cid:2)(k) =0⇒k =k∗(x¯). (9) k Aswasthecasewithtaxes,thereisanunimportantnotationalissue:withTimeLine A,x¯ isliterallypredetermined,whilewithTimeLineB,thefirmtreatsx¯ asaknown functionofaggregateinvestment,andthefirmtakesaggregateinvestmentasgiven. UnderTimeLineA,theregulator’sfirst-orderconditionforx¯ is (cid:6) (cid:7) (cid:2) (cid:3) (cid:4) (cid:5) (cid:2) (cid:3) (cid:4) (cid:3) (cid:4)(cid:5) ∗ dk E B x¯,k∗,θ −D(cid:2)(x¯) + B x¯,k∗,θ −c(cid:2) k∗ x k dx¯ (cid:10)(cid:2) (cid:3) (cid:4) (cid:5)(cid:11) = E B x¯,k∗,θ −D(cid:2)(x¯) =0, (10) x wherethefirstequalityusesEq.(9),thefactthatk∗isindependentofθ,and dk∗ (cid:6)=0. dx¯ The first-order condition under Time Line B is identical to the second equality in Eq.(10).Thus,whennon-strategicfirmshaverationalexpectations,theoptimalquota isthesameunderthetwotimelines.Theregulatorusesthequotatotargetonlyemis- sions,andthefirm’sinvestmentdecisionisinformation-constrainedsociallyoptimal. 123
Description: