ebook img

Synthesis of Antifungal Agents from Xanthene and Thiazine Dyes and Analysis of Their Effects PDF

14 Pages·2016·3.99 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Synthesis of Antifungal Agents from Xanthene and Thiazine Dyes and Analysis of Their Effects

nanomaterials Article Synthesis of Antifungal Agents from Xanthene and Thiazine Dyes and Analysis of Their Effects JooRanKim1andStephenMichielsen2,* 1 FiberScience&ApparelDesign,CornellUniversity,Ithaca,NY14850,USA;[email protected] 2 TextileEngineering,ChemistryandScience,NorthCarolinaStateUniversity,2401ResearchDr.,Raleigh, NC27695,USA * Correspondence:[email protected];Tel.:+1-919-515-1414;Fax:+1-919-515-6532 AcademicEditor:ThomasNann Received:10November2016;Accepted:9December2016;Published:20December2016 Abstract: Indoorfungigrowthisanincreasinghomehealthproblemasourhomesaremoretightly sealed. Onethingthatlimitsdurabilityoftheantifungalagentsisthescarcityofreactivesiteson many surfaces to attach these agents. In order to increase graft yield of photosensitizers to the fabrics,poly(acrylicacid-co-styrenesulfonicacid-co-vinylbenzylrosebengalorphloxineB)were polymerizedandthengraftedtoelectrospunfabrics. Inanalternativeprocess,azureAortoluidine blueOweregraftedtopoly(acrylicacid),whichwassubsequentlygraftedtonanofiber-basedand microfiber-based fabrics. The fabrics grafted with photosensitizers induced antifungal effects on all seven types of fungi in the order of rose bengal > phloxine B > toluidine blue O > azure A, whichfollowsthequantumyieldproductionofsingletoxygenforthesephotoactivedyes. Their inhibitionratesforinactivatingfungalsporesdecreasedintheorderofP.cinnamomi,T.viride,A.niger, A.fumigatus,C.globosum,P.funiculosum,andM.grisea,whichisassociatedwithlipidcompositionin membraneandthemorphologyoffungalspores. Theantifungalactivitywasalsocorrelatedwiththe surfaceareaoffabrictypeswhichgraftedthephotosensitizercovalentlyonthesurfaceasdetermined bytheboundcolorstrength. Keywords: antifungalphotosensitizer;nanofiber;Aspergillus;Chaetomium;Magnaporthe 1. Introduction Antimicrobialfabricsbasedonnaturalorsyntheticpolymerstreatedwithsilverionsandcopper nanoparticlehavebeenusedoften[1,2]. Recently,4-amide-piperidine-C12hydrogelcoatedsilicone films exhibited antimicrobial effects on both Gram-negative, Gram-positive bacteria and fungi [3]. Poly(methylmethacrylate)coatedpoly(2-hydroxyethylmethacrylate)filmshadbeenreportedtohave anantimicrobialeffectonCandidaalbicansforupto28days[4]. However,thesegraftedchemicals havebeenreportedtoproduceadverseeffectsonhumans,resultinginanaccumulationinthehuman skin. Silvercandiffuseintotheskin,darkenuponexposuretosunlight,resultinginablueorgray discolorationoftheskin[5]. Hence,non-hazardousdyematerialssuchasphotosensitizers(PS)have been investigated intensively for the replacement of silver and copper, and hazardous chemicals. Inparticular, xanthenedyessuchasrosebengal, phloxineB,anderythrosinehavebeenshownto exhibit antimicrobial activity and are considered safe [6], since they are commonly used as dyes in the food, cosmetics and textiles where they are approved as safe color additives in the USA, theEuropeanUnion(EU)andJapan[7]. Furthermore,theyarelessexpensive,havebettercoloring, andareeasiertoproducethannaturaldyes[8]. MethyleneblueandtoluidineblueOhavealsobeen commonlyusedassafePS[9]. AzureAandAzureAeosinatehavebeenreportedtoinhibit60%of thegrowthinhibitionofC.albicans. Furthermore,variousPShavebeenshowntobeeffectiveagainst fungiandyeastsuchasAspergillusfumigatusandKluyveromycesfragilis,Kluyveromycesmarxianusand Nanomaterials2016,6,243;doi:10.3390/nano6120243 www.mdpi.com/journal/nanomaterials Nanomaterials2016,6,243 2of14 C.albicans[10]. HongandGanghavestudiedantimicrobialpropertiesusingrosebengalincorporated intopolyurethane-coatedleatherbyapaintingmethod[11]. However,therearefewerstudiesusing PSgraftedtopolymericmaterials. Theselimitationshaveaffectedtheutilizationofphotodynamic actionsinvariousapplications. Photodynamictherapy(PDT)isatreatmentwithPS,whichcanbeactivatedbyexposuretovisible lightinaspecificwavelengthrange. PShasastableelectronicconfiguration,whichisinasingletstate intheirlowestorgroundenergylevel,S whichmeansthattherearenounpairedelectronspins[12]. 0 Uponabsorptionofaphotonwithinaspecificwavelengthrange,amoleculeispromotedtoanexcited state,S orS ,withhigherenergy[13]. TheexitedsingletstateofPScanreturntothegroundstateby 1 2 emittingaphotonaslightenergy,i.e.,byfluorescence. Alternatively,themoleculemayconverttothe tripletstate,T orT ,viaintersystemcrossing,whichinvolvesachangeinthespinofanelectron[14]. 1 2 Thetripletgroundstateofoxygenexchangesspinwiththetripletexcitedstateofthedyetoreturnthe dyetoitssingletgroundstateandtoproducesingletoxygenatthesametime. Singletoxygen(1O )isthefirstexcitedelectronicenergystateofmolecularoxygenspecies. Itis 2 oneofthemostactiveintermediatesinvolvedinchemicalandbiochemicalreactions. Hence,1O can 2 reactwithmanykindsofbiologicalmolecules,suchasDNA,proteinsandlipids,resultinginchemical reactionsduetotheproductionofthisreactiveoxygenspecies[15]. Aspergillus niger, Aspergillus fumigatus, Trichoderma viride, Penicillium funiculosum, and Chaetomium globosum are the most common indoor fungal species that are opportunistic human pathogensresultinginaspergillosisandpneumocytosisinimmunosuppressedpatientsandallergy, rhinitisinhealthyhumans[16,17]. MagnaporthegriseaandPhytophthoracinnamomi(Oomycetes)are plantpathogensinducing,respectively,riceblastresultinginseriouscroplossglobally[18]androot rotandcankeronEucalyptus[19]. Inthisstudy,photosensitizersrosebengal(RB),phloxineB(PB),azureA(AA),andtoluidine blueO(TBO),wereeithercopolymerizedwithacrylicacidorgraftedtopoly(acrylicacid),andthen graftedtofabricsconsistingofnanofiber-basedfabricsormicrofiber-basedfabrics. Theantifungal effectsofthefabricswerethenevaluatedagainstseventypesoffungiandanalyzedantifungaleffect. 2. MaterialsandMethods 2.1. Materials Poly(acrylicacid)(PAA,averageM ~450,000),4-vinyl-benzylchloride,4-styrenesulfonicacid, V acrylic acid (AC), nylon 6,6 pellets, formic acid (reagent grade > 95%), phloxine B (PB), azure A (AA),toluidineblueO(TBO),potatodextroseagar(PDA),potatodextrosebroth,phosphatebuffer saline (pH 7.0), Tween® 20, RPMI 1640 medium, sterile water, 3-(N-morpholino)-propanesulfonic acid (MOPS), and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) were purchased from Sigma Aldrich Chemical Co. (St. Louis, MO, USA). RB and meltspun nylon6.6,CerexSpectramax®weredonatedbyLaamScience(Cary,NC,USA),while0.5McFarland standardforturbiditymeasurementswaspurchasedfromFisherScientificCo. (Pittsburgh,PA,USA). Aspergillusniger(ATCC6275),Trichidermaviride(ATCC28020),Penicilliumfuniculosum(ATCC10509), Aspergillus fumigatus (ATCC 13073) and Chaetomium globosum (ATCC 6205) were donated from the United States Department of Agriculture, Agricultural Research Service, Peoria, IL, USA. MagnaporthegriseaandPhytophthoracinnamomi(fungus-likeorganism)weredonatedfromtheNorth CarolinaStateUniversity,PlantPathogensDepartment,Raleigh,NC,USA. 2.2. PreparationofNanofiber-BasedFabrics Nanofiber-basedfabricwaspreparedusingelectrospinning,whichproducedfibersintherange from200nmto5µmindiameterasshownFigure1a. Ahighvoltage(20kV)wasappliedbetween needletipandrollercollector. First,18%w/vnylon6,6pelletsweredissolvedintoformicacidand Nanomaterials2016,6,243 3of14 agitatedat70◦Cfor8h. Thesolutionwasputintoa10-mLsyringeandthenplacedonthepump. Thefeedingrateofsolutionwas1mLperhour. Nanomaterials 2016, 6, 243  3 of 13  Nanomaterials 2016, 6, 243  3 of 13    Figure 1. Nanofibers using electrospinning using roller collector, (a) nylon 6,6 fabric consisting of  Figure 1. Nanofibers using electrospinning using roller collector, (a) nylon 6,6 fabric consisting nanofibers with average diameter 505 nm (σ = 152.5 nm); and (b) melt spun microfibers (Cerex  of nanofibers with average diameter 505 nm (σ = 152.5 nm); and (b) melt spun microfibers Spectramax® nylon 6,6) with diameter 17.3 μm (σ = 0.86 μm).  (CerexSpectramax®nylon6,6)withdiameter17.3µm(σ=0.86µm).   2.3. Preparation of Water‐Soluble Photosensitizers  Figure 1. Nanofibers using electrospinning using roller collector, (a) nylon 6,6 fabric consisting of  2.3. PreparationofWater-SolublePhotosensitizers The  xannatnhoefinbeer s wdiythe sa ve(rRagBe  doiarm etPerB 5)0 5 wnmer e(σ  =i n1c52o.5r pnomr)a; taendd  (bi)n mtoe lt pspoulny (maiccrroyflibice rs a(Cciedre)x   (PAA)  via  Spectramax® nylon 6,6) with diameter 17.3 μm (σ = 0.86 μm).  Tpholeyxmaenrtizhaetnioend. yBerisef(lRyB, 3o gr oPfB R)Bw oerr e2.i5n gc oorfp PoBr awteads sitnirtroedp oinly a( a7c0r‐ymliLc saocliudt)io(nP AofA 5)0v:5i0a vp/vo ldyimstiellreizda tion. Brieflwy,a3tegr/aocf2e.t3Ro. BPnreeo paranr2adt.i 5o0n.g 5o1f oW mfaPtLerB ‐oSfwo l4ua‐bvlsei nPsythiolrt‐orbseeendnsziityinzle racsh 7lo0r-imdeL ast o6l5u °tCio fnoro 3f 5h0. :T5h0e vp/rvecdipiisttaitlele, dvinwyal tbeern/zaycl‐etone and0x.a5n1thmeLneo dfy4Te- hv(eVi nBxyXanlD-thb weennhe zerdyeyl eXcs Dh(l RorBerf iedorres  taPoBt t)6h 5ew x◦erCaen tfihonceronr3ep ohdr.yateTe dhR eBin potorr  ePpcBoi)ply, i(wtaacartyse lfi,civl tieancrieydd)l  ab(nPeAdnA zw)y alvs-ihxaea dn.t Nheenxte dye (VBXtDhew VhBeXrepDoX lwyDmaesrr eidzfaiestrisosonlt.v oBerdtieh fileny, x 3wa gna ottefh rRe Ban noedr d2 a.y5c ege tRoofnB PeBo  awrta PtshB set)i ,rvrweodla uisnm fiae l7 t0re‐amrteiLod  sooalfnu 1tdi:o1nw  aoanf s5dh0 :pe50do vl.y/vNm deeisxrtiitzllteehdd e wVitBhX 4D‐ was styrene swualfteorn/aicce atocnide  a(nSdA 0A.5)1 a mnLd  oafc 4r‐yvlinicy la‐cbiedn z(yAl Cch)l oarti d1e:4 a0t :6154 °0C m foorl a3 rh r. aTthieo  porfe cVipBitXaDte,:  vSiSnAyl :bAeCnz tyol‐ increase  dissolvedinwaterandacetoneatthevolumeratioof1:1andpolymerizedwith4-styrenesulfonicacid water soxluanbtihlietnye  tdoy eth (Ve BpXoDly wmheerres  XaDn dre tfoer sc oton tfheer  xfaunnthcetnioen dayle g RrBo uorp PsB w), iwthas w filhteircehd  taon dg rwaafst hteod n. Nyleoxnt  [20,21].  (SAA)andactrhye lVicBaXcDi dwa(sA dCis)soalvte1d: 4in0 :w14at0erm anodl aarcertoantieo ato tfhVe vBoXluDm:e SrSatAio :oAf C1:1t oanidn pcorelyamseeriwzeadt weriths o4l‐ubilitytothe After copolymerization, poly(acrylic acid‐co‐styrene sulfonic acid‐co‐vinyl benzyl rose bengal or  polympehrlosxainneds tytorBenc) eo snuwflfeeornreifcu  ancoicdbt i(tSoaAninAae)l dagn. rdo auAcrp ysliccw oacniitddh (eAwnCshi) niacgt h1 :4t0oa:1gg4e0rn amtf,o tlatro4 r‐an(t4iyo,6l oo‐fdn VimB[2Xe0Dt,h:2 So1Sx]Ay.:‐AA1C,f3 tt,eo5r ‐intcrcioraepzasoinel ‐y2m‐yel)r‐i4z‐ation, water solubility to the polymers and to confer functional groups with which to graft to nylon [20,21].  poly(macertyhlyilcmAaocfrtiepdrh -cocoolpi-noslityuymmree rcnizhealtoisorunid,l fepo o(nDlyi(McacaTrycMliicdM -ac)c,oi dw-‐vcaois‐ns utyysrleebndee t nosu zplyfroolnmrico oastceeid cb‐hceoen‐vmginiacylal lob rerenapzcyhtl iloroonxssei  nbbeeetnwBga)ele wonre  –rCeOoObHta ined. Acongdroeunpsisn ogpfh PalogAxeiAnne ot ,f 4Bp-)o( 4ly,w6me-rdeeri imzoeebdtt ahdinoyexed ys. o-1lAu,3 t,i5oc-notn rtdoiae NnzsiHinng-2 2 e-nyadgl‐)eg-n4rt,-o mu4pe‐s(t4 ho,6yf‐ dlnmiymloeotrnhpo 6hx,y6o‐ 1lfia,3nb,5iru‐itcrmisa ztocinh p‐2lro‐oyrld)i‐du4‐ece( aDmMidTeM  M), wasulisnekdagtoesp maresot hsmhyloomwtoernpc hihnoe lFminiigiucumar lech r2leo.a ricdtei o(DnMsTbMeMtw), eweans u–sCedO toO pHromgortoe uchpesmoicfalP rAeaActioonfs pbeotwlyemene –rCiOzeOdH dyesolution groups of PAA of polymerized dye solution to NH2 end‐groups of nylon 6,6 fabrics to produce amide  toNH end-groupsofnylon6,6fabricstoproduceamidelinkagesasshowninFigure2. 2 linkages as shown in Figure 2.    Figure 2. The grafting scheme of poly(acrylic acid‐co‐styrene sulfonic acid‐co‐vinyl benzyl rose bengal  Figure2.Thegraftingschemeofpoly(acrylicacid-co-styrenesulfonicacid-co-vinylbenzylrosebengal or phloxine B) or thiazine dyes grafted with poly(acrylic acid) (PAA) to the nylon fiber forming    orphloxineBr)anodrotmh icaozili snheapdey. Des isg proalfytmederiwzeidt hdype omlyol(eaccurley sluiccha acsi dp)ol(yPmAerAiz)edto xatnhtehennye ldoynesfi obr ethriafzoirnme ingrandom Figure 2. The grafting scheme of poly(acrylic acid‐co‐styrene sulfonic acid‐co‐vinyl benzyl rose bengal  coilshape.Dispolymerizeddyemoleculesuchaspolymerizedxanthenedyesorthiazinedyesgrafted or p hloxine B) or thiazine dyes grafted with poly(acrylic acid) (PAA) to the nylon fiber forming  withPAA.ForRB,R andR areIandCl.ForPB,R andR areBrandClandTBOhasmethylgroup random coil shap1e. D is p2olymerized dye molecule1 such as2 polymerized xanthene dyes or thiazine  atR .RoseBengal=RB;phloxineB=PB;toluidineblueO=TBO. 8 Nanomaterials2016,6,243 4of14 The thiazine dyes were also grafted to PAA as follows. A 5% w/v PAA solution in distilled waterwaspreparedatroomtemperature;100µmol/LofAAorTBOwasaddedtothePAAsolution. Afterstirringfor1h, 0.3gDMTMMwasaddedtothemixture[22]. Afterstirringforanother3h, thethiazinedye-grafted-PAAsolutionwasproducedasshowninFigure2. 2.4. GraftingofPhotosensitizerstoFabrics Inordertograftthephotosensitizercontainingpolymerstothefabric,eachpolymerizedsolution was prepared at 100 µmol/L concentration in a flat-bottomed dish, which had been covered with aluminumfoiltoexcludelight. Electrospunnanofiber-basedfabricsandmicrofiber-basedfabricswere immersedintothesolutionbath. Thecondensingagent,0.3gDMTMM,wasdissolvedinthesolution bath. After12h,thefabricwasremovedfromthesolutionandplacedintoanoven(WernerMathis AGLTF134489,Concord,NC,USA)for1minatthetemperatureof170◦C. 2.5. PreparationofInoculum A.fumigatus,A.niger,T.viride,andP.funiculosum,C.globosum,P.cinnamomiandM.griseawere culturedat35◦Conpotatodextroseagar(PDA)platesforsevendays. Brothmedium,RPMI-1640 whichcontains0.2%glucoseand0.165mol/LMOPS(3-N-morpholinopropanesulfonicacid)atpH7.0, wasusedasmediumforfivefungi,whilethepotatodextrosebroth(PDB)wasusedasmediumfor P. cinnamomi and M. grisea. Next, 10 mL broth medium with 0.01% wetting agent Tween® 20 was addedtotheculturesandthenscrapedtoseparatespores. Thescrapedsolutionintheculturewas filteredthroughMillipore®polytetrafluoroethylenefilmtoremovehyphae. 2.6. InhibitionZoneTest The inhibition zone test of fabrics grafted with photosensitizers RB, PB, TBO and AA was performedasfollows. A100µLinoculumofeachstrainpreparedaboveat2 × 106 CFU/mLwas transferredtoaPDAplateandthena5×5cmpieceofthefabricspreparedabovewereplacedonto theinoculatedPDAplate. Theplateswereplacedintoatrayandthetraywasplacedunderthelamp. Awater-filledpyrexglassdishwasplacedbetweenthetrayandthelamptoabsorbinfraredlightfrom aphotofloodlamp(SmithVictor,Griffith,IN,USA)toavoidheatingthetray. Thelampwasplaced 35cmabovetheglassdishandtheinoculatedPDAplateswereplacedbelowtheglassdish. Thelight intensitywasmeasuredusingadigitalilluminancemeter(ModelLX1330B,UnionCity,CA,USA)at 15,500Lux. Theplateswerekeptunderthisexposurefor5hat24◦Candthenincubatedforseven daysinthedarkat35◦C. 2.7. MinimumInhibitoryConcentration—BrothMicrodilutionTest In order to test the effectiveness of the free photosensitizer dyes, minimum inhibitory concentration(MIC)wasconductedaccordingtotheCLSIM38-Astandard[23];100µLof500µmol/L aqueoussolutionsofRB,PB,AA,andTBOsolutionsweretransferredtothefirstwellsinthe96-well plates. Then each column was diluted by two-fold up to 0.98 µmol/L. The spore concentration was adjusted to lie in the range of 2 × 106 CFU/mL using 0.5 McFarland standard as a reference and a hemocytometer (Hausser Bright-Line and Hylite Counting Chambers, Horsham, PA, USA). Then100µLinoculumoffungalsporeswasdepositedintoeachwellcontainingthefreephotosensitizer solutionspreparedabove. The96-wellplateswerethenilluminatedfor3hat24◦C.Finally,a96-well platewasincubatedat35◦Cforallfungifor48h. AlltestswereconductedthreetimesandthenMIC wasselectedasthehighestconcentration. 2.8. QuantitativeAntifungalAssay A quantitative antifungal assay was also conducted following a modified ASTM E2149-01 method [24]. The inoculum was diluted into sterile phosphate buffer solution (pH 7.0) to obtain Nanomaterials2016,6,243 5of14 afinalconcentrationof2×105CFU/mL.Thepreparedinoculum(50mL)wasaddedintoeach125mL Erlenmeyerflaskandthentreatedoruntreatedcircularfabricsampleswith4.8cmindiameterwere immersedintheflask,whichwasthencoveredwithacapwithaholeinit. Theflaskswereplaced underthelightasabovefor3hat24◦Candtheflaskwasshakenat200strokes/minutethroughout the test. Then a100 µL aliquot of inoculum from each flask was transferred to individual wells of a96-welltrayevery30min;96-welltrayswereincubatedinthedarkat35◦Cfor48h. Theoptical density(OD)wasmeasuredat405nmusingBiotek® SynergyHTmulti-modereader. TheODsof thetreatedfabricwithinoculum(B)wassubtractedfromtheODsoftheuntreatedfabric(A)with inoculum[24,25]. Thefinalreductionpercentagewascalculatedasfollows: A−B ×100 (1) A where A is the OD at 405 nm of the solution in the well containing the inoculum exposed to the untreatedfabricsampleandBistheODofthesolutioninthewellcorrespondingtoeachtreatedfabric afterthespecifiedcontacttimebetweenthetreatedandilluminatedfabricsample. 2.9. Characteristics Thespecificsurfaceareasofuntreatednanofiber-basedfabricandmicrofiber-basedfabricswere obtained from the Brunauer-Emmett-Teller (BET) analysis using liquid nitrogen as the adsorbate and a Gemini VII 2390p physiosorption analyzer from Micrometrics coupled with SmartPrep 065 degassing unit (Micromeritics Instrument Co., Norcross, GA, USA). The chopped fabric sample (5×5cm) consisting of nanofibers (0.109 g) or microfibers (0.249 g) was used for BET analysis. Fieldemissionscanningelectronmicroscopy(JEOL6400)(JEOLUSAInc.,Peabody,MA,USA)was used to examine the morphology of spores from the seven pathogens and to examine the nylon fibers. The amounts of RB, PB, AA and TBO grafted to the nanofiber-based and microfiber-based fabrics were obtained from reflectance measurements over the spectral range 360–700 nm using aDatacolorSF600X(Lawrenceville,NJ,USA)spectrometer. Thefabricswerefoldedtoensureoptical opacity, whichrequiredatleast16layersthickformicrofiber-basedfabricsandatleastfivelayers for nanofiber-based fabrics. Each measurement was repeated two times in four different spots of thesamples. 3. ResultsandDiscussion Antifungal agents must be on the surface of fibers in order to be able to inhibit the microbes. However,typicaltreatmentswithantifungalagentsoftenwashoffeasily. Thus,itisadvantageousto permanentlyattachtheantifungalagents. Theaminogroupsofnylon6,6canreactwithcarboxylicacid groupsfromthepolymerized,PAA-basedphotosensitizerdyes. Thisenabledthepermanentgrafting ofthephotosensitizerdyesthathadbeeneithercopolymerizedwithAC-(xanthenedyes)orthathad beengraftedontoPAA-(thiazinedyes),thusproducingamidelinkages. 3.1. SpecificSurfaceAreaofFabricsandColorStrength Figure1a,bshowstheSEMimagesoftheelectrospunnanofibersandthemelt-blownmicrofibers. The diameters of the fibers were measured from the SEM images. The diameters of two types of fabricswerecalculatedbyrandomlyselecting30microfibersandmorethan100nanofibersunderthe SEMimages. Theaveragediameterofthenanofiberswas505nm(σ=152nm), whilemicrofibers hadanaveragediameterof17.3µm(σ=0.86µm). Thespecificsurfaceareawasmeasureddirectly usingBETanalysis,givingaspecificsurfaceareaof28.8m2/gforthenanofiber-basedfabric,whilethe microfiber-basedfabrichadaspecificsurfaceareaof1.41m2/g. Thus,theBETanalysisgivesaspecific surfacearearatioof20:1forthenanofiber-basedfabricstothemicrofiber-basedfabrics. Nanomaterials2016,6,243 6of14 The amount of photosensitizer dye on the fabric surface should be proportional to the color strengthofthefabric. ThefabriccolorstrengthwascalculatedusingreflectancepercentageandK/S valueasshowninEquation(2)[26]. K (1−R∞)2 = = F(R∞) (2) S 2R∞ whereKandSareabsorbanceandscatteringcoefficients(cm−1),andR∞ isthereflectanceforinfinite thickness. If the fabric is sufficiently thick so that it is opaque, Rλ = R∞, where the reflectance is measuredatthewavelengthofmaximumabsorbance[27]. TheK/Svalueswereconvertedtorelativecolorstrength(%)usingEquation(3)[28]. K/Softreatedfabric RelativeColorStrength(%) = ×100 (3) K/Sofuntreatedfabric Table1givesboththeK/Svalueandthecolorstrengthsforeachofthefabricsusedinthisstudy. TheresultsinTable1implythatthereis6.6to12timesmorerelativecolorstrengthormoreamountof dyeonthenanofiber-basedfabricsthanonthemicrofiber-basedfabrics. Table1.Reflectancepercentages,K/Svaluesandcolorstrength(%)ofnanoandmicrofabricsgrafted withRB,PB,TBO,andAA. Reflectance%atλmax F(R∞) ColorStrength(%) GraftingDye Nano Micro Nano Micro Nano Micro RB 2.93±0.13 21.2±0.86 0.16 0.015 60.1 5.0 PB 3.07±0.21 20.7±1.23 0.15 0.015 51.2 5.0 TBO 4.18±0.19 21.5±1.01 0.11 0.015 36.7 5.0 AA 4.94±0.16 22.8±0.97 0.09 0.014 30.7 4.7 3.2. AntifungalActivity—MinimumInhibitoryConcentration(MIC)Test Before testing the antifungal activities of fabrics with the photosensitizer dyes attached, theantifungaleffectivenessofthefreedyeswastestedusingtheMICtest. TheresultsshowninTable2 indicatethatforRBtherewasnovisibleturbidityorgrowthat62.5µmol/Lwhileconcentrationsbelow 62.5µmol/LshowedvisiblehyphalgrowthonA.nigerandA.fumigatus,P.funiculosum,andC.globosum. For T. viride, RB displayed the MIC of 31.2 µmol/L and 15.6 µmol/L for P. cinnamomi. For PB, P.funiculosum,andC.globosumshowedthelargestresistancewithMICat125µmol/L,whileA.niger andA.fumigatushadMICat62.5µmol/L.TBOandAAbothhadmuchhigherMICsthanRBorPB. TBOhasanMICof62.5µmol/LonA.niger,A.fumigatus,andT.viride. ForAA,below125µmol/L visiblegrowthandturbiditywasobservedforA.nigerandA.fumigatus,P.funiculosumandC.globosum, butnotT.viride,givingMICof62.5µmol/L.RB,PB,TBO.AAshowedthelowestMIConT.viride whileexhibitingthelargestMIConP.funiculosumorC.globosum. Table2.Theminimuminhibitionconcentration(MIC)ofRB,PB,AA,andTBOtopreventthefungal growthinbrothmicrodilutiontestsbyvisualobservation(thehighestconcentrationtoinhibitgrowth wasselectedamongthreetests). MIC(µM) GraftingDye M.grisea P.funiculosum C.globosum A.niger A.fumigatus T.viride P.cinnmomi RB 125 62.5 62.5 62.5 62.5 31.2 15.6 PB 250 125 62.5 62.5 125 31.2 31.2 AA 250 125 62.5 125 62.5 62.5 62.5 TBO 250 125 125 62.5 62.5 62.5 62.5 Nanomaterials2016,6,243 7of14 For P. cinnamomi, the MIC was very low, with an MIC of 15.6 (RB) and 31.25 (PB) µmol/L. However, M. grisea was quite resistant to inhibition with an MIC of 125 µmol/L for RB while PB Nanomaterials 2016, 6, 243  7 of 13  inhibitedM.griseaat250µmol/L.AAandTBOinhibitedfungalgrowthofM.griseaabove250µmol/L andP.cinnFaomr oPm. iciantn6am2.o5mµi,m thoel/ ML.ICM w.garsi sveearsyh loowwe, dwtithhe alanr gMeIsCt roefs i1s5t.a6n (cReBt)o apnhdo 3t1o.s2e5n (sPitBi)z eμrmsoshl/oLw.  ing thehiHghoewsetvMerI, CMa. tg2ri5s0eaµ wmaos l/quLi.te resistant to inhibition with an MIC of 125 μmol/L for RB while PB  inhibited M. grisea at 250 μmol/L. AA and TBO inhibited fungal growth of M. grisea above 250 μmol/L  3.3. Aanntdif uPn. gcianlnAamctoimviit ya—t 62In.5h μibmitoiol/nLZ. Mon. egrTiesesat showed the largest resistance to photosensitizers showing  the highest MIC at 250 μmol/L.  To evaluate the antifungal effectiveness of the surface-bond photosensitizers, two types of antifungalassayswereconductedagainstsevenfungitypes. Thefirstmethodexaminedvisiblegrowth 3.3. Antifungal Activity—Inhibition Zone Test  ofhyphaeandgerminationonthefabrictoidentifythezoneofinhibition. Thistestisaqualitativetest To evaluate the antifungal effectiveness of the surface‐bond photosensitizers, two types of  thatreliesontheabilityoftheantifungalagenttodiffuseawayfromthetreatedfabricincombination antifungal assays were conducted against seven fungi types. The first method examined visible  withtheantifungalactivityoftheagent. Largeinhibitionzonesindicatethattheagentisquitemobile growth of hyphae and germination on the fabric to identify the zone of inhibition. This test is a  whilesmallinhibitionzonesindicateeitherlittlemobilityoralackofeffectiveness. qualitative test that relies on the ability of the antifungal agent to diffuse away from the treated fabric  Finig cuormeb3inasthioonw wsithin thheib aintitoifnunzgoaln aecstivfiotyr o(fa t)heP a.gceinntn. Lamarogme iin;h(ibbi)tioTn. zvoinriedse i;ndaincadte (tch)at Mth.e aggreisneta  on nanofiisb qeur-itbea mseodbilaen wdhimle iscmroafillb inerh-ibbaitsioend zfoanbersi icnsd.icaInte egiethneerr laitlt,let hmeobfialibtyri ocsr ae lxahckib oift eedffelcetisvsengersosw.  th of P.cinnamoFmigiuarned 3 Tsh.ovwirsid inehoinbittihoen szuornfeasc feo,rc (oa)m Pp. acirnendamtoomthi; e(bg)r To.w vitrhidoe;f aMnd. (gcr)i Msea. .grTisheae onna nnaonfiobfiebre-rb‐ased fabricbsagserda fatnedd mwicitrhofiRbBer‐abnasdedP fBabsrhicosw. Ine dgennoeraglr, othwet fhaborficPs .exchinibniatemdo lmesis ogrroTw.tvhi roifd Pe. ocinnntahmeomfaib arnicd, but nanofiTb. veirr-ibdea soend thfea bsurircfascge,r caoftmedpawreidth toA thAe gshroowwthe dofP M.c. ignrnisaema. oTmhei gnaronwofitbhera‐rboausendd fathbreicesd ggreafotefdt hweitfha bric RB and PB showed no growth of P. cinnamomi or T. viride on the fabric, but nanofiber‐based fabrics  andsubstantialgrowthofT.virideonthefabric. Themicrofiber-basedfabricwithRBandPBshowed grafted with AA showed P. cinnamomi growth around the edge of the fabric and substantial growth  littleP.cinnamomiandT.viridecolonygrowthonthefabricwhilethecontrolwascompletelycovered of T. viride on the fabric. The microfiber‐based fabric with RB and PB showed little P. cinnamomi and  bygrowthandgermination. Mostmicrofiber-basedfabricsgraftedwithAAandTBOexhibitedno T. viride colony growth on the fabric while the control was completely covered by growth and  inhibitionoffungalgrowth(notshown). Ontheotherhand,M.griseaexhibitedsubstantialgrowth germination. Most microfiber‐based fabrics grafted with AA and TBO exhibited no inhibition of  onallfufanbgrailc gsreoxwctehp (tnfoot rshthoewRn)B. -Ognr atfhtee dothnearn hoafinbde, rM-b. agsreisdeaf eaxbhriibci.teFdig suurbest3anatlisaol gsrhoowwths otnh aatllt fhaebrziocsn eof inhibietxiocenpfto frora ltlhter ReaBt‐egdranftaendo nfiabneorfi-bbears‐ebdaseadn dfambriicc.r oFifigbuerre- 3b aaslseod sfhaobwrisc tshwata tshen ezgonlieg iobf lienhailbthitoioung fhort here wasvaelrl ytreliatttelde nfuannogfiibgerro‐bwasthedo anndth meicfarobfribicesr‐tbraesaetde dfabwriictsh wRaBs noergPligBi.bElev aeltnhothuoghu gthherTeB wOasa vnedryA liAttlew  ere lessefffuencgtii vgero,wthteh zoonn theeo ffaibnrhicisb tirteioatnedw waisths tRilBl nore gPlBig. Eibvleen. tThhoiusgihs TinBdOi raencdt AevAid weenrcee letshsa etfftehcetivaen,t tihfue ngal zone of inhibition was still negligible. This is indirect evidence that the antifungal photosensitizers  photosensitizerswereindeedgraftedtothefabricsurfaces. Theinhibitionzoneisexpectedtobenearly were indeed grafted to the fabric surfaces. The inhibition zone is expected to be nearly zero if the  zeroifthephotoactivepolymeriscovalentlyattachedtothefabricsincetheactiveantifungalagentis photoactive polymer is covalently attached to the fabric since the active antifungal agent is believed  believedtobesingletoxygen,whichhasashortlifetime,limitingdiffusiontoaround0.1mm[29]and to be singlet oxygen, which has a short lifetime, limiting diffusion to around 0.1 mm [29] and thus  thuslimitingantifungalactivitytocloseproximitytothepolymerizedphotosensitizers. limiting antifungal activity to close proximity to the polymerized photosensitizers.    FigureFig3u.rTe h3e. Tihneh iinbhitiibointiozno znoenete tsetsto off nnaannoo aanndd mmicircor ofabfaribcr gicragftreadf twedithw RiBth, PRBB, ,APAB a,nAdA TBaOn donT (Ba)O  on P. cinnamomi; (b) T. viride; and (c) M. grisea, The 1st column is the control, the 2nd is the nano fabric  (a)P.cinnamomi;(b)T.viride;and(c)M.grisea,The1stcolumnisthecontrol,the2ndisthenanofabric grafted with RB, the 3rd is the nano fabric grafted with PB, the 4th is the micro fabric grafted with RB,  graftedwithRB,the3rdisthenanofabricgraftedwithPB,the4thisthemicrofabricgraftedwithRB, the 5th is the micro fabric grafted PB, the 6th is the nano fabric grafted with TBO, the 7th is the nano  the5thisthemicrofabricgraftedPB,the6thisthenanofabricgraftedwithTBO,the7thisthenano fabric grafted with azure A (AA).  fabricgraftedwithazureA(AA). Nanomaterials2016,6,243 8of14 3.4. AntifungalActivity—QuantitativeAssessment The ability of the dyes RB, PB, TBO, and AA immobilized on the fabrics was investigated as functionsofthephoto-irradiationtime, uptoamaximumof180min. Allthefabricsgraftedwith RB,PB,AA,andTBOreducedgrowthofallseventypesofpathogensasillustratedbythereduction oftheODs. ThelargestinhibitionamongthehumanpathogenstestedinthisstudywasonT.viride, whiletheODreductionofC.globosumandP.funiculosumwasmuchlessthanfortheothers. Theplant pathogens,M.grisea,displayedthehighestresistancetoalltypesofphotosensitizers,whileP.cinnamomi showedtheleastresistancetofabricsgraftedwitheachofthedyes. Inordertocompareinhibition quantitatively among various variables, the four types of photosensitizers and all seven types of pathogens,weanalyzedtheinhibitionratesandfittedthemusingEquation(4)developedbyKimand Michielsen[30]. lnOD =lnOD -k [D ]texp(−k t) (4) t 0min S 0 D where OD is the optical density of the fungal suspensions at 405 nm. These fungal suspensions t wereobtainedbygrowingthefungithatsurvivedaftertminexposuretothetreatedfabricsunder illumination,asdescribedintheexperimentalsection;k istheinhibitionrateofthegrowth,D isthe s 0 initialdyeconcentration,tistheexposuretime,andk isthereductionrateofconcentrationofdye D byphotobleaching. Equation(4)wasusedtocomparetheinhibitionrateofeachfabricgraftedwithRB,PB,TBOand AAagainstsevenpathogensandthephotobleachingrateofthegrafteddyes. Thesignificanceofthe datawasevaluatedusingthestudentt-testandANOVA. Thenanofiber-basedfabricgraftedwithRBexhibitedthelargestODreductiononP.cinnamomi and T. viride with the inhibition rates of 3.7 × 10−2 and 3.5 × 10−2 L/µmol·min, respectively. M.griseahadthelowestinhibitionrateof1.4×10−2L/µmol·minfortheRB-treatedfabric. Thenext highestinhibitionrateswereseenwithPB,showing2.5×10−2and2.4×10−2L/µmol·minagainst P. cinnamomi and T. viride. In general, the inhibition rates for the treated fabrics decreased in the order RB>PB>TBO>AA. Likewise, the inhibition rates for the fungi decreased in the order P.cinnamomi>T.viride>A.niger>A.fumigatus>C.globosum>P.funiculosum>M.grisea. Theresults also show that the inhibition rate for the nanofiber-based fabrics was always higher than for the microfiber-basedfabrics,asshowninFigure4. Figure 5 shows the final inhibition percentage and compares the inhibition percentage of nanofiber-based fabrics with microfiber-based fabrics grafted with photosensitizers. All nanofiber-based fabrics grafted with photosensitizers showed higher inhibition than the microfiber-basedfabrics. Theaverageinhibition%innanofiber-basedfabricswasover70%inhibition, whilemicrofiber-basedfabricsgavelessthan50%inhibition. Finally,theresultsshowedtheincreasing inhibitionpercentageintheorderofAA<TBO<PB<RBonthegraftedfabrics. Thefabricsgrafted with AA and TBO showed similar effect but the fabrics grafted with TBO showed slightly higher inhibitionrates;however,thefabricsgraftedwithRBshowedmuchhigherinhibitionratesthanthe fabricsgraftedwithPB.Onaverage,theinhibitionrateforthenanofiber-basedfabricswas1.5times higherthanonthemicrofiber-basedfabricswiththesamephotosensitizer. Nanomaterials2016,6,243 9of14 Nanomaterials 2016, 6, 243  9 of 13    FFiigguurree 44.. TThhee oopptitcicaal lddenensistiyt y(O(ODD) r)erdeudcuticotino bnyb nyannaon aondan mdicmroic fraobfraicbsr gicrsafgtreadf twedithw RitBh, RPBB,, TPBBO,T, aBnOd,  aAnAd gArAapghreadp hase da afusnacftuionnc toiof ntimofet iumnedeurn idlleurmililnuamtiionna toionn (ao)n A(a. )nAig.ern;i g(ber); A(b. )fuAm.ifguamtuigs;a t(uc)s ;T(.c v)iTr.idvei;r i(dde);  (Cd.) gClo.bgolsoubomsu; (me;) (Pe.) fPu.nfuicnuilcousluomsu;m (f;)( fM)M. g.rgisreiase; aa;nadn d(g()g P).P .cicninnnaammoommi.i .NNootete: :aalll laaxxeess aarree ttoo tthhee ssaammee ssccaallee  ttoo aaiidd ccoommppaarriissoonnss bbeettwweeeenn mmaatteerriiaallss..   Figure 5 shows the final inhibition percentage and compares the inhibition percentage of  nanofiber‐based fabrics with microfiber‐based fabrics grafted with photosensitizers. All nanofiber‐ based fabrics grafted with photosensitizers showed higher inhibition than the microfiber‐based  fabrics.  The  average  inhibition  %  in  nanofiber‐based  fabrics  was  over  70%  inhibition,  while  microfiber‐based fabrics gave less than 50% inhibition. Finally, the results showed the increasing  inhibition percentage in the order of AA < TBO < PB < RB on the grafted fabrics. The fabrics grafted  with AA and TBO showed similar effect but the fabrics grafted with TBO showed slightly higher Nanomaterials 2016, 6, 243  10 of 13  inhibition rates; however, the fabrics grafted with RB showed much higher inhibition rates than the  fabrics grafted with PB. On average, the inhibition rate for the nanofiber‐based fabrics was 1.5 times  Nanomaterials2016,6,243 10of14 higher than on the microfiber‐based fabrics with the same photosensitizer.       FFiigguurree 55.. IInnhhiibbiittiioonn ppeercrceenntataggees sofo tfhteh neannaon aonadn mdimcrioc rfaobfraibcsr iwcsitwh iitmhmimobmiloizbeildiz ReBd, RPBB,, APBA,, AanAd, TaBnOd  TpBhOotopsheontsoistieznesrist iozne r(sa)o nA.( afu)mAi.gfautmusi;g (abtu) sA;.( bn)igAer.; n(icg)e Tr;. (vci)riTd.e;v (irdi)d eC;.( gdl)oCbo.sgulmob; o(seu)m P;. (feu)nPic.ufluonsuicmul;o (sfu) mP;.  (cfi)nPn.acminonmaim; aonmdi; (agn) dM(.g g)rMise.ag.r isea.

Description:
Keywords: antifungal photosensitizer; nanofiber; Aspergillus; Chaetomium; Magnaporthe. 1. Introduction effects of the fabrics were then evaluated against seven types of fungi and analyzed antifungal effect. 2. Nanofibers using electrospinning using roller collector, (a) nylon 6,6 fabric consistin
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.