ebook img

Symmetry and group theory in chemistry PDF

423 Pages·17.627 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Symmetry and group theory in chemistry

Symmetry and Group Theory in Chemistry “Talking of education, people have now a-days’’ (said he) “got a strange opinion that every thing should be taught by lectures. Now, I cannot see that lectures can do so much good as reading the books from which the lectures are taken. I know nothing that can be best taught by lectures. except where experiments are to be shewn. You may teach chymestry by lectures - You might teach makmg of shoes by lectures!’ ’ James Boswell: Life of Samuel Johnson, 1766 (1709-1784) “Every aspect of the world today - even politics and international relations - is affected by chemistry” Linus Pauling, Nobel Prize winner for Chemistry, 1954, and Nobel Peace Prize, 1962 ABOUT THE AUTHOR Mark Ladd hails from Porlock in Somerset, but subsequently, he and his parents moved to Bridgwater, Somerset, where his initial education was at Dr John Morgan’s School. He then worked for three years in the analytical chemistry laboratories of the Royal Ordnance Factory at Bridgwater, and afterwards served for three years in the Royal Army Ordnance Corps. He read chemistry at London University, obtaining a BSc (Special) in 1952. He then worked for three years in the ceramic and refractories division of the research laboratories of the General Electric Company in Wembley, Middlesex. During that time he obtained an MSc from London University for work in crystallography. In 1955 he moved to Battersea Polytechnic as a lecturer, later named Battersea College of Advanced Technology; and then to the University of Surrey. He was awarded the degree of PhD from London University for research in the crystallography of the triterpenoids, with particular reference to the crystal and molecular structure of euphadienol. In 1979, he was admitted to the degree of DSc in the Universeity of London for hs research contributions in the areas of crystallography and solid-state chemistry. Mark Ladd is the author, or co-author, of many books: Analytical Chemistry, Radiochemistry, Physical Chemistry, Direct Methods in Crystallography, Structure Determination by X-ray Crystallography (now in its third edition), Structure and Bonding in Solid-state Chemistry, Symmetry in Molecules and Crystals, and Chemical Bonding in Solids and Fluids, the last three with Ellis Horwood Limited. His Introduction to Physical Chemistry (Cambridge University Press) is now in its third edition. He has published over one hundred research papers in crystallography and in the energetics and solubility of ionic compounds, and he has recently retired from his position as Reader in the Department of Chemistry at Surrey University. His other activities include music: he plays the viola and the double bass in orchestral and chamber ensembles, and has performed the solo double bass parts in the Serenata Notturna by Mozart and the Carnival of Animals by Saint-Saens. He has been an exhibitor, breeder and judge of Dobermanns, and has trained Dobermanns in obedience. He has written the successful book Dobermanns: An Owner s Companion, published by the Crowood Press and, under licence, by Howell Book House, New York. Currently, he is engaged, in conjunction with the Torch Trust, in the computer transcription of Bibles into braille in several African languages, and has completed the whole of the Chichewa (Malawi) Bible. Mark Ladd is married with two sons, one is a Professor in the Department of Chemical Engineering at the University of Florida in Gainsville, and the other is the vicar of St Luke’s Anglican Church in Brickett Wood, St Albans. He lives in Farnham, Surrey, with his wife and one Dobermann. Symmetry and Group Theory in Chemistry Mark Ladd, DSc (Lond), FRSC, FInstP Department of Chemistry University of Surrey Guildford Foreword by Professor the Lord Lewis, FRS The Warden Robinson College Cambridge Horwood Publishing Chichester First published in 1998 by HORWOOD PUBLISHING LIMITED International Publishers Coll House, Westergate, Chichester, West Sussex, PO20 6QL England COPYRIGHT NOTICE All Rights Reserved. No part of h s p ublication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the permission of Horwood Publishing, International Publishers, Coll House, Westergate, Chichester, West Sussex, England 0M . Ladd, 1998 British Library Cataloguing in Publication Data A catalogue record of this book is available from the British Library ISBN 1-898563-39-X Printed in Great Britain by Martins Printing Group, Bodmin, Cornwall Table of contents Foreword .................................................................................. ................. v-VI Preface ................................................................................................ ... vii ..... List of symbols ............................................................................................ .~ii-mi 1 Symmetry everywhere ...................................................................................... 1 1.1 Introduction: Looking for symmetry. ............................................................. 1 1.1.1 Symmetry in finite bodies ................................... .................2 1.1.2 Symmetry in extended patterns .................................................................. 4 1.2 What do we mean by symmetry. .................................................................... 5 1.3 Symmetry throughout science ....................................................................... 6 1.4 How do we approach symmetry Problems 1 ................................................................. 2 Symmetry operations and symmetry elements ............................... 11 2.1 Introduction: The tools of symmetry 2.2 Defining symmetry operations, ele .................... 11 ...................... 13 Sign of rotation ............................ ....................................... 15 2.2.4 Reflection symmetry ................. 2.2.5 Roto-reflection symmetry... ....... 2.2.6 Inversion symmetry ................ 2.2.8 Roto-inversion symmetry ........ ....................................... 18 ...................................... 19 2.5.1 Sum, difference and scalar (do 2.5.2 Vector (cross) product of two 2.5.3 Manipulating determinants and matrices ..................................... Matrices and determinants; Cofactors; Addition and subtraction of matrices; Multiplication of matrices; Inversion of matrices; Orthogonality ............................... .............................. 2.5.4 Eigenvalues and eigenvectors... ................................................................ .28 Diagonalization; Similarity transformation; Jacobi diagonalization ..... 30-3 1 2.5.5 Blockdiagonal and other special matrices ....................................... 33 Adjoint and complex conjugate matrices; matrix; Unitary matrix ......................................................................... 34-35 ........................................ .................................. 35 3 Group theory and point groups ............. .................................. 38 3.1 Introduction: Groups and group the0 .................................. 38 3.2 What is group theory ......................... ..................................... ..38 3.2.1 Group postulates ............................................ ................................ 38 Closure; Laws of co Inverse member ........... .................................... ................. 38-39 3.2.2 General group definitions... ......................... ............................. 3.2.3 Group multiplication tables . ................................ 3.2.4 Subgroups and cos 3.2.5 Symmetry classes and conjugates ........ ............................... 3.3 Defining, deriving 3.3.1 Deriving point groups.. ............................ ................................... 46 Euler's construction ............................................... 3.3.2 Building up the ............................ 52 .......................................... ......................... 59 Problems 3 ................................................................ ............................... 67 4 Representations and character tables ......................................... 4.1 Introduction: What is a representation ............ ........................... 72 4.1.1 Representations on position vectors ....................................... 4.1.2 Representations on basis vectors ......................... ............................ 75 4.1.3 Representations on atom vectors.. ..... ............................................. 77 Unshifted-atom contributions to a re 4.1.4 Representations on functions... .............. ................................ 82 4.1.5 Representations on direct product functions ............................. 4.2 A first look at character tables.. .................... .......................... 86 4.2.1 Orthonormality ............. ........................................... 87 4.2.2 Notation for irreducible representations ........ ............................. 88 Complex characters ...................................................................... 89 4.3 The great orthogonality theorem ..................... ............................ 90 4.4 How to reduce a reducible representation ......................................... 94 4.5 Constructing a character table.. .......................... ................................ 96 4.6 How we have used the direct product .............. ............................ 103 Problems 4 ............................................................ ............................ 104 5 Group theory and wavefunctions. .......................... .............................. 108 5.1 Introduction: Using the Schrodinger equation ............................... 108 5.2 Wavefunctions and the Hamiltonian operator.. .......................................... ,109 5.2.1 Properties of wavefunctions ................................ ................. 110 5.3 A further excursion into function space.. ............................................ 5.3.1 Defining operators in function space ....................................................... 112 5.4 Using operators with direct products ......................................... 115 5.5 When do integrals vanish ................................ ............................... 117 5.6 Setting up symmetry-adapted linear combinati 5.6.1 Deriving and using projection operators.. ..... ............................... 119 5.6.2 Deriving symmetry-adapted orbitals for the carbonate ion Generating a second function for a degenerate representation 5.6.3 Handling complex characters ........................................... Problems 5 ................................................... ...................................... 128 6 Group theory and chemical bonding ............................................................. 130 6.1 Introduction: molecular orbitals ................................. Classlfylng molecular orbitals by symmetry ............... 6.2 Setting up LCAO approximations.. ........................................................... .13 1 Function of the Schrijdinger equation ........ ....................................... 132 Introducing the variation principle ....... 6.2.1 Defining overlap integrals... ............................ .............................. 134 6.2.2 Defining Coulomb and resonance inte .............................. 134 Continuing with the variation principle .............................. 6.2.3 Applying the LCAO method to the oqgen molecule... ........................... .137 6.2.4 Bonding and antibonding molecular orbitals and notation ....................... 140 Total bond order ................................................ ...........1 42 6.3 P-electron approximations ...... .............................................................. 142 6.3.1 Using the Huckel molecular- ............................. 143 Benzene. ................................................................................................. 144 6.3.2 Further features of the Huckel molecular-orbital theory.. ........................ .149 ll-Bond order ................................................ ........................ 149 Free valence .......................................................................................... .15 1 Charge distribution ................................................................ 152 6.3.3 Altemant and nonaltemant hydrocarbons ..... ..................................... 152 Methylenecyclobutene; methylenecyclopropene ...................................... 15 3 6 4 4 Huckel's 4n + 2 rule .......................................... .................1 56 6.3.4 Working with heteroatoms in the Huckel approximation157 Pyridine ........................................................... 6.3.5 More general applications of the LCAO appro Pentafluoroantimonate(II1) ion ............................ First look at methane ............... ......................................................... 165 6.4 Schemes for hybridization: water methane ............. ...... 167 6.4.1 Symmetrical hybrids ............................ ....................................... 169 Walsh diagrams ................................... Further study of methane ..................... ....................................... 173 6.5 Photoelectron spectroscopy .......................................................... Sulfur hexafluoride. ................................... ............................... 178 6.6 Cyclization and correlation .................... 6.7 Group theory and transition-metal compounds... ...... .................. 186 6.7.1 Electronic structure and term symbols. ....................................... Russell-Saunders coupling.. .. ..................................................... 188 6.7.2 How energy levels are split in a crystal field.. ..... .................... 192 Weak fields and strong fields ............... 6.7.3 Correlation diagrams in 0, and Tds ymmetry ......................................... .197 'Holes' in d orbitals ..................................... ........................... 203 6.7.4 Ligand-field theory .... ...................................................... .....2 05 Spectral properties ............................ ............................................... 211 Problems 6 .................................................................... ................... 217 7 Group theory, molecular vibrations and electron transitions... ................... .22 1 7.1 Introduction: How a molecule acquires vibrational energy... ........ 7.2 Normal modes of vibration ................................... .............................. 222 7.2.1 Symmetry ofthe normal modes ................................................... 7.3 Selection rules in vibrational spectra ................ 7.3.1 Infrared spectra. ..................................... Diatomic molecules .................................................................. 7.3.2 Raman spectra ............................................. ................................... 230 Polarization of Raman spectra .. ............................................. 7.4 Classlflmg vibrational modes ................... 7.4.1 Combination bands, overtone bands and Fermi resonance... ......... 7.4.2 Using correlation tables with vibrational spectra ..................................... 239 7.4.3 Carbon &oxide as an example of a linear molecule ........................ 7.5 Vibrations in gases and solids .................................... ...................... 241 7.6 Electron transitions in chemical species... ......................................... 7.6.1 Electron spin... ............................................................................... 7.6.2 Electron transitions among degenerate states ......................................... .243 7.6.3 Electron transitions in transition-metal compounds,.. .................. Problems 7 ....... .................................................................. 8 Group theory and crystal symmetry ............................................................. 248 8.1 Introduction: two levels of crystal symmetry ........... 8.2 Crystal systems and crystal classes. .................. ..................... 8.3 Why another symmetry notation ...................... ................................ .249 8.4 What is a lattice ........................................................................................ .25 2 8.4.1 Defining and choosing unit cells ............................ ................ 253 8.4.2 Why only fourteen Bravais lattices ......................................................... .256 8.4.3 Lattice rotational symmetry degrees are 1, 2, 3, 4 and 6 .... 8.4.4 Translation unit cells ...................................... ................................ 261 8.4.5 Wigner-Seitz cells. ............................................................ 8.5 Translation groups ......... ................. ............................... .263 8.6 Space groups ........................................................................ 8.6.1 Symmorphic space groups... ................................................................... ,265 Glide planes and screw axes ......................... ................................ 269 8.6.2 And nonsymmorphic space groups... .................................. ............. 272 Monoclinic nonsymmorphic space groups... ...... ............................... ,272 Orthorhombic nonsymmorphic space groups ............................. Some useful rules; Tetragonal nonsymmorp 8.7 Applications of space groups .......................... Naphthalene; Biphenyl; Two cubic structures 3 8.8 What is a factor group ................................. 8.8.1 Simple factor-group analysis of iron(I1) su 8.8.2 Site-group analysis... .................................... ...................... 284 Factor-group method for potassium chro Problems 8 ....................................................................................................... 285 Appendix 1 Stereoviews and models ................................................................. 288 Al.l Stereoviews. ............................................................................................ 288 A1.2 Model with S, symmetry ......................................................................... 289 Appendix 2 Direction cosines and transformation of axes .................................. 291 A2.1 Direction cosines. .................................................................................... 291 A2.2 Transformation of axes ........................................................................... 292 Appendix 3 Stereographic projection and spherical trigonometry ....................... 294 A3.1 Stereograms ............................................................................................ 294 A3.2 Spherical triangles .................................................................................. 297 A3.2.1 Formulae for spherical triangles ........................................................... 297 A3.2.2 Polar spherical triangles ....................................................................... 298 A3.2.3 Example stereograms ........................................................................... 299 A3.2.4 Stereogram notation ............................................................................. 300 Appendix 4 Matrix diagonalization by Jacobi's method ...................................... 302 Appendix 5 Spherical polar coordinates ............................................................. 305 A5.1 Coordinates. ............................................................................................ 305 A5.2 Volume element ...................................................................................... 305 A5.3 Laplacian operator305 Appendix 6 Unitary representations and orthonormal bases ............................... 307 A6.1 Deriving an unitary representation in C3". ............................................... 307 A6.2 Unitary representations from orthonormal bases ...................................... 310 Appendix 7 Gamma function ............................................................................. 312 Appendix 8 Overlap integrals ............................................................................ 313 Appendix 9 Calculating LCAO coefficients ....................................................... 314 Appendix 10 Hybrid orbitals in methane ............................................................ 316 Appendix 11 Character tables and correlation tables for point groups ................3 19 A1 1.1 Character tables .. .......................................................... ....3 19 Groups C,, (n = 1 oups C and C ; Groups S (n = 4. 6). Groups C (n = 24); Groups C (n = 2-6); Groups D (n = 26); Groups D (n = 2-6); Groups D (n = 2-4); Cubic Groups; Groups C and D .. A11.2 Correlation tables .............................................. .................3 37 Groups C (n = 2-4, 6). Groups C (n = 2 Groups D , T and 0 .............................. .................... 337 A1 1.3 Multiplication properties of irreducible r 337 General rules; Subscripts on A and B; Doubly-degenerate representations; Triply-degenerate representations; Linear groups; Direct products of spin multiplicities .......................................

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.