ebook img

Support Vector Machines for Antenna Array Processing and Electromagnetics PDF

121 Pages·2006·3.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Support Vector Machines for Antenna Array Processing and Electromagnetics

P1:IML/FFX P2:IML MOBK030-FM MOBK030-Cristodoulou.cls August21,2006 18:17 Support Vector Machines for Antenna Array Processing and Electromagnetics i P1:IML/FFX P2:IML MOBK030-FM MOBK030-Cristodoulou.cls August21,2006 18:17 Copyright©2006byMorgan&Claypool Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotations inprintedreviews,withoutthepriorpermissionofthepublisher. SupportVectorMachinesforAntennaArrayProcessingandElectromagnetics ManelMart´ınez-Ramo´nandChristosCristodoulou www.morganclaypool.com ISBN: 159829024X paperback 1598290258 ebook DOI:10.2200/S00020ED1V01Y200604CEM005 APublicationintheMorgan&ClaypoolPublishersseries SYNTHESISLECTURESONCOMPUTATIONALELECTROMAGNETICSLECTURE#5 SeriesEditor:ConstantineA.Balanis,ArizonaStateUniversity SeriesISSN: Print1932-1252 Electronic1932-1716 FirstEdition 10987654321 PrintedintheUnitedStatesofAmerica ii P1:IML/FFX P2:IML MOBK030-FM MOBK030-Cristodoulou.cls August21,2006 18:17 Support Vector Machines for Antenna Array Processing and Electromagnetics ManelMartı´nez-Ramo´n UniversidadCarlosIIIdeMadrid,Spain ChristosChristodoulou UniversityofNewMexico SYNTHESISLECTURESONCOMPUTATIONALELECTROMAGNETICS#5 M &C & Morgan Claypool Publishers iii P1:IML/FFX P2:IML MOBK030-FM MOBK030-Cristodoulou.cls August21,2006 18:17 iv ABSTRACT SupportVectorMachines(SVM)wereintroducedintheearly90’sasanovelnonlinearsolution for classification and regression tasks. These techniques have been proved to have superior performances in a large variety of real world applications due to their generalization abilities androbustnessagainstnoiseandinterferences. This book introduces a set of novel techniques based on SVM that are applied to an- tennaarrayprocessingandelectromagnetics.Inparticular,itintroducesmethodsforlinearand nonlinearbeamformingandparameterdesignforarraysandelectromagneticapplications. KEYWORDS SupportVectorMachines,Beamforming,AngleofArrival,Electromagnetics,AntennaArrays P1:IML/FFX P2:IML MOBK030-FM MOBK030-Cristodoulou.cls August21,2006 18:17 v Contents 1. Introduction..................................................................1 1.1 MotivationofthisBook...................................................1 1.2 LearningMachinesandGeneralization.....................................2 1.3 OrganizationofthisBook.................................................4 2. LinearSupportVectorMachines...............................................5 2.1 AnIntuitiveExplanationoftheSupportVectorClassifier....................5 2.1.1 TheLinearClassifier..............................................5 2.1.2 AClassicalProceduretoAdjusttheSeparatingHyperplane...........5 2.1.3 TheSVMApproach..............................................7 2.1.4 PracticalOptimizationoftheClassifier ............................. 8 2.1.5 Example:LinearSVCinMATLAB®...............................9 2.1.6 SummaryoftheSVCMATLAB®Code...........................11 2.2 AnIntuitiveExplanationoftheSupportVectorRegressor...................14 2.2.1 TheMainIdea..................................................14 2.2.2 FormulationoftheSVR..........................................14 2.2.3 PracticalOptimizationoftheSVR ................................ 16 2.2.4 Example:LinearSVRinMATLAB®..............................17 2.2.5 SummaryoftheSVRMATLAB®Code...........................19 3. NonlinearSupportVectorMachines...........................................23 3.1 TheKernelTrick........................................................23 3.2 ConstructionofaNonlinearSVC.........................................24 3.2.1 Example:NonlinearSVCinMATLAB®...........................26 3.2.2 SummaryoftheCode............................................29 3.3 ConstructionofaNonlinearSVR.........................................32 4. AdvancedTopics.............................................................33 4.1 SupportVectorMachinesintheComplexPlane............................33 4.2 LinearSupportVectorARx..............................................35 4.2.1 SupportVectorAuto-RegressiveModel............................37 4.2.2 SVM-ARMAComplexFormulation..............................37 P1:IML/FFX P2:IML MOBK030-FM MOBK030-Cristodoulou.cls August21,2006 18:17 vi CONTENTS 4.3 RobustCostFunctionofSupportVectorRegressors........................38 4.4 ParameterSelection ..................................................... 40 4.4.1 TheEvidenceFrameworkCriterion...............................41 4.4.2 Selectionofε forGaussianandExponentialNoises.................41 4.4.3 SelectionofCandε BasedonHeuristics...........................42 5. SupportVectorMachinesforBeamforming....................................43 5.1 ProblemStatement......................................................43 5.1.1 TemporalReference..............................................44 5.1.2 SpatialReference................................................45 5.2 LinearSVMBeamformerwithTemporalReference........................45 5.2.1 BitErrorRatePerformance.......................................46 5.2.2 RobustnessAgainstOverfitting...................................48 5.3 LinearSVMBeamformerwithSpatialReference...........................48 5.4 NonlinearParameterEstimationofLinearBeamformers....................49 5.4.1 GenerationoftheTrainingData..................................49 5.4.2 StructureoftheEstimator........................................50 5.4.3 Examples.......................................................53 5.5 NonlinearSVMBeamformerwithTemporalReference.....................56 5.5.1 StructureoftheEstimator........................................56 5.5.2 Examples.......................................................57 5.5.3 MatlabCode....................................................58 5.6 NonlinearSVMBeamformerwithSpatialReference ....................... 61 5.6.1 StructureoftheEstimator........................................61 5.6.2 Examples.......................................................63 5.6.3 MatlabCode....................................................64 6. DeterminationofAngleofArrival.............................................67 6.1 LinearSVMAOAEstimatorUsingRegression............................68 6.1.1 LinearSVMSpectrumEstimator.................................68 6.1.2 RobustnesswithRespecttoAdditiveNoise.........................69 6.1.3 MatlabCode....................................................72 6.2 NonlinearAOAEstimators..............................................74 6.2.1 StructureofanAOAProblemonNonlinearRegression ............. 74 6.3 NonlinearSVMEstimatorUsingMulticlassClassification..................76 6.3.1 StructureofanAOABasedonaMulticlassClassifier ............... 76 6.3.2 SimulationResults...............................................79 P1:IML/FFX P2:IML MOBK030-FM MOBK030-Cristodoulou.cls August21,2006 18:17 CONTENTS vii 7. OtherApplicationsinElectromagnetics.......................................81 7.1 BuriedObjectDetection.................................................81 7.2 SidelobeControl........................................................82 7.2.1 Example1 ...................................................... 83 7.2.2 Example2 ...................................................... 84 7.3 IntelligentAlignmentofWaveguideFilters................................86 P1:IML/FFX P2:IML MOBK030-FM MOBK030-Cristodoulou.cls August21,2006 18:17 viii P1:IML/FFX P2:IML MOBK030-FM MOBK030-Cristodoulou.cls August21,2006 18:17 ix Preface This book is intended to serve as an introduction to machine learning and support vector machines for students and practicing engineers in the field of electromagnetics. The idea is to show how this combination of optimization theory, statistical learning, and kernel theory, labeledas“SupportVectorMachines”canbeappliedtoelectromagneticproblems.Webelieve thattherearestillalotofproblemsinelectromagneticsthatcanbeoptimizedusingthe“machine learningapproach”. Thebasicmaterialonsupportvectormachines,Classifiers(SVCs)andRegressors(SVRs) are introduced in the first two chapters and then we slowly add to the their algorithmic complexity as we progress in terms of chapters. MATLAB files are provided so the readers canexperimentontheirownusingouralgorithmsbeforetheystartdevelopingtheirown. Animportanttopicthatwasincludedinthistextbookisthesubjectofnonlinearsupport vector machines. This is an important subject since it addresses solution to a number of op- timization problems that cannot be tackled using linear support vector machines only. The differencesbetweenlinearandnonlinearSVMalgorithmsarediscussedandtheirapplications in electromagnetic problems are presented. The material presented here is more than enough to provide the reader of this text with some serious expertise in the subject of Support Vector Machines from the computational point of view. In fact, although this text was written with theelectromagneticsengineersinmind,itcanbeeasilyusedbycolleaguesinthefieldsofcom- munications,radarandimageprocessing.Thealgorithmsareapplicabletoseveraloptimization problemsandtheMATLABfilesprovidedcanbealteredtofitthedataathand.Foraccesstothe electronicfilesoftheMatlabcode,pleasegotohttp://www.morganclaypool.com/page/matlab. Wehopethatthereaderfindsthebookenjoyableandhelpfulintriggeringfurtherresearch inthisarea.

Description:
Since the 1990s there has been significant activity in the theoretical development and applications of Support Vector Machines (SVMs). The theory of SVMs is based on the cross-pollenization of optimization theory, statistical learning, kernel theory, and algorithmics. So far, machine learning has la
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.