Superfluidity in atomic Fermi gases YiYua,QijinChenb,∗ aCenterforMeasurementandAnalysis,ZhejiangUniversityofTechnology,18ChaowangRd.,Hangzhou310014,China bZhejiangInstituteofModernPhysicsandDepartmentofPhysics,ZhejiangUniversity,38ZhedaRd.,Hangzhou310027,China 1 1Abstract 0 In a trapped atomic Fermi gas, one can tune continuouslyvia a Feshbach resonance the effective pairing interaction between 2 fermionicatomsfromveryweaktoverystrong. Asa consequence,thelowtemperaturesuperfluidityevolvescontinuouslyfrom n the BCS type in the weak interaction limit to that of Bose-Einstein condensation in the strong pairing limit, exhibiting a BCS- a JBEC crossover. In this paper, we review recent experimentalprogressin atomic Fermi gases which elucidates the nature of the 4superfluidphaseastheinteractioniscontinuouslytuned. Ofparticularinterestistheintermediateorcrossoverregimewherethe 1s-wavescatteringlengthdiverges.Wewillpresentanintuitivepairingfluctuationtheory,andshowthatthistheoryisinquantitative agreementwithexistingexperimentsincoldatomicFermigases. ] s Keywords: a gAtomicFermigases,superfluidity,BCS-BECcrossover,pairingfluctuations -PACS:03.75.Hh,03.75.Ss,74.20.-z t n a u 1. Introduction temperature[4]. ThediscoveryofhighTcsuperconductivityin q 1986gaveastrongboosttotheinterestinBCS-BECcrossover . t Ultracold atomic Fermi gases have been a very exciting, a [6, 7, 8, 9, 10, 1]. It was suggested that the unusual pseudo- rapidly developing field, which has emerged within the past m gap phenomena in the cuprate superconductorsmight have to severalyears,bridgingcondensedmatterandatomic,molecular dowithBCS-BECcrossover. Experimentaleffortsinthisarea - dandopticalphysics[1]. UsingaFeshbachresonanceinamag- fell far behind, because it had been difficult to find a system nneticfield,onecantunetheeffectivepairinginteractionstrength where the attractive pairing interaction is tunable. Thanks to obetween fermionic atoms from very weak to very strong [2]. thelasercoolingandtrappingtechniquein1990’s,oneisable c Astheinteractionstrengthvaries,thenatureofthelowtemper- [ tocreate“artificial”many-bodysystemsoffermionicatomsin ature superfluidity of these Fermi gases evolves continuously a laboratory. The existence of a Feshbach resonance in these 1fromtheBCStypeintheweakcouplinglimittoBose-Einstein Fermigasesmakesitpossibletotunetheinteractionstrength. v condensation (BEC) in the strong pairing limit, exhibiting a 6 For ease of control, the Feshbach resonances for the two BCS-BECcrossover,whichhasbeenofgreattheoreticalinter- 4 widely studied species, 6Li and 40K, are both very wide. The 8estsince1960’s[3,4,5,1]. Ofparticularinterestistheunitary interaction in both cases are of the short-range, s-wave type. 2regime,wherethe s-wave scatteringlengthdiverges. Thisisa They are often taken to be a contact potential in theoretical .strongly correlated regime where no small parameter is avail- 1 treatments. 0ableforperturbativeexpansions. Ithasbeenexpectedthatthis 1regime provides a prototype for studying both high T super- The first experimental realization of BCS-BEC crossover c 1conductorsandstronglyinteractingFermigaseswhicharealso wasachievedin2004byJinandcoworkers,[11,12]andalmost v:ofinteresttonuclearandastro-physicists. thesametimebytheGrimmgroup[13]andtheKetterlegroup i Inthispaper,wefirstreviewexperimentalprogressinatomic [14]. Due to the difficulty in tuningtemperatureT, the Fermi X Fermigases,withanemphasisonrecentradiofrequencyspec- gaseswereeitherinthesuperfluidornormalstateatgiveninter- artroscopymeasurements.Thenwewillpresentapairingfluctua- action strength (or the magnetic detuning). Continuousvaria- tiontheorycomparewithexperiment.Weshowthatthistheory tionofthesystemasafunctionoftemperaturewasfirstrealized successfullyexplainexperimentalmeasurements. bytheThomasgroup[15]atunitarity.Incollaborationwiththe theory groupat Chicago [16], Thomaset al [17] observedfor thefirsttimecontinuousphasetransitionfromthenormaltosu- 2. Experimentalprogress perfluidstateinaunitary6Ligas. Onecouldargue,ofcourse, ThefirsttheoreticalstudyofBCS-BECcrossoverdatesback thatthevortexmeasurementoftheKetterlegroupprovidedthe to1960’s,althoughitdidnotgetmuchattentionuntilthesem- mostdefinitivesmokinggunforasuperfluidstate. [18] inal work of Leggett in 1980 on BCS-BEC crossover at zero Besides the interaction strength, another great tunability is populationimbalancebetweenthetwofermionicspeciestobe ∗Correspondingauthor:[email protected] paired [19]. It adds a whole new dimension to the phase dia- PreprintsubmittedtoPhysicaC:SuperconductivityanditsApplications January17,2011 gramandmakesthephysicsmuchricher. Italso generatesin- terest[20]inpossibleobservationofthe Larkin-Ovchinnikov- Fulde-Ferrell(LOFF)state[21]. Experimentalworkinpopula- tionimbalancedFermigaseswaspioneeredbytheHuletgroup [22] and the Ketterle group [23]. Experiment in the extreme Figure1: Schematicdiagramsforthefermionicself-energyΣ(K). Thedotted population imbalancedlimit by the Ketterle groupmanifested and (red) double lines represent the condensate and finite momentum pairs, [24] the importance of Hartree-like correlationeffects besides respectively. BCS-typeofpairing. Unlikeanelectronsystem,ithasbeendifficulttomeasurethe mation,givenbythegrandcanonicalHamiltonian excitation gap in the Fermi gas superfluid. Amongall experi- mentaltechniques,Radio frequency(RF) spectroscopy[13] is H− µ N = (ǫ −µ )a† a σ σ k σ k,σ k,σ arguablythemostdirectprobe. UsingatunableRFfieldtoex- Xσ Xk,σ cite oneofthetwo pairingatomsfromalowerhyperfinestate + U(k,k′)a† a† a a , (1) q,k,k′ q/2+k,↑ q/2−k,↓ q/2−k′,↓ q/2+k′,↑ (level2)toahigherhyperfinelevel3whichdonotparticipate P in pairing, a higher frequency will be needed if the atoms in whereǫ =~2k2/2misthefreeatomdispersion.Thedifference k level2arepaired. Suchafrequencyshift(detuning)providesa betweenEq.(1)anditsBCScounterpartisthatBCSkeepsonly goodmeasureoftheexcitationgap. Previousmeasurementby the q = 0 term in the interactions. The inclusion of finite q Grimm and coworkers[13], and later repeatedby the Ketterle termsallowsincoherent,finite momentumpairing. Forclarity group [24], was done in a momentum integrated fashion. At ofpresentation,wewilltakeacontactpotential,U(k,k′) = 1, low T, the RF spectra displayeddouble-peakstructure, with a and use a 4-momentum notation, K = (k,iω ), Q = (q,iΩ), n l sharppeakatzerodetuningandabroadpeakatpositivedetun- = T , and set ~ = 1. Population imbalance can be K k n ing. This double-peakfeature was nicely interpreted [25, 26] PdescribedPbyPµ↑ , µ↓. However,herewewillonlypresentthe as transitionsfrom unpairedatoms the trap edge (correspond- equationsforthecaseofequalspinmixture. Generalizationto ing to the sharp peak)andfroma distributionof pairedatoms populationimbalancecanbefoundinRef.[33]. intheinnerpartofthetrap(broadpeak). However,doubtwas Weassumethat(i)thefermionicselfenergyΣhasapairing castabouttheoriginofthetwopeaksastowhethertheyreflect origin,(ii)pairscanbeeithercondensedorfluctuatingwithafi- pairingofboundstateeffects[24]orsimplyaresultoftrapin- nitemomentum,and(iii)condensedandnoncondensedpairsdo homogeneity[27]. Recently, attentionwasalso drawnto final notmixatthelevelofT-matrixapproximation.Figure1shows stateeffectsboththeoretically[28,29]andexperimentally[24]. diagrammaticallythecontributionstotheself-energy,wherethe A big step in the RF technique was the recent momentum- double(red)linesindicatefinitemomentumpairsandthedot- resolved RF spectroscopy experiment in 40K by the Jin tedlineindicatesthecondensate. Thesubscripts“sc”and“pg” group [30]. With momentum resolution, RF spectroscopy is stand for superfluid condensate and pseudogap contributions, equivalent to the angle-resolved photoemission spectroscopy respectively. (ARPES) for an electron system, In fact, it is cleaner than To tackle this problem, we use a Green’s function method. ARPESinthatARPESisonlyatwo-dimensionalprobe,which We derive the equations of motion for one- and two-particle isoftenplaguedbytheexistenceofsurfacestates,surfacecon- Green’s functionsG and G , which will involve higher order, 2 taminations, work function, and the complication of energy three particle Green’s functions G : iG˙ = [H,G] ∼ G,G , 3 2 dispersion in the third dimension. In comparison, of course, iG˙ = [H,G ] ∼ G,G ,G . We then truncate the equations 2 2 2 3 the signal-to-noise ratio in a Fermi gas experiment is much of motion at the level ofG , factorizeG into a sum of prod- 3 3 lower, as limited by the (low) total number of atoms in the ucts of G and G , and treat G and G on equal footing. For 2 2 gas. although the trap inhomogeneity adds complication to G , we focus on the particle-particle channel, neglecting the 2 the interpretation of the spectrum. Like ARPES, momentum- particle-hole channel which normally only provides a chemi- resolvedRFspectroscopymeasuresthefermionspectralfunc- calpotentialshift. Weemphasizethatitistheparticle-particle tion, A(k,ω), which is of central importancein characterizing channelthatgivesrisetosuperfluidity. Aftersomelengthybut thesystem. straightforwardderivation,weobtaintheselfenergy: Σ(K) = Σ (K)+Σ (K), (2) sc pg 3. TheoreticalFormalism Σ (K) = −∆2G (−K), (3) sc sc 0 Σ (K) = t (Q)G (Q−K), (4) pg pg 0 In this section, we now presenta simple pairingfluctuation X Q theory, which was first developed [10] to explain the pseudo- gapphenomenainhighTcsuperconductors.Fermigasesinthe where presenceofaFeshbachresonancecanbeeffectivelydescribed U t (Q)= (5) by a two-channelmodel [2]. It has now been known that the pg X1+Uχ(Q) closed-channelfraction[31,32]isverysmallforboth6Liand Q 40K,throughouttheBCS-BEC crossover. Therefore,forthese is the (pseudogap)T-matrix,and χ(Q) = G (Q−K)G(K) K 0 systems,aone-channelmodelisoftenusedasagoodapproxi- isthepairsusceptibility. HereG0 isthebaPreGreen’sfunction. 2 40 0.5 Equations(9)and(7),alongwiththenumberequation V) (a) ∆ (b) B E C n=2 G(K), (10) me TF XK s ( /c p ∆ T formaclosedsetofequationsforthehomogeneouscase,which Ga ∆pg sc CS can be used to solve for µ, Tc, and the gaps at T ≤ Tc. Tc is B determinedby setting ∆ = 0. Typicalbehaviorsof the gaps sc 0 0 0 0.5 1 1.5 -2 0 2 4 areshowninFig.2(a). T/T 1/k a To address Fermi gases in a trap, we use the local density F F approximation,byreplacingµ → µ−V (r). Thenthenum- trap Figure2: Typicalbehaviorof(a)thetemperaturedependenceofthegapsina ber equation becomes N = d3rn(r). In Fig. 2(b) we show pseudogappedsuperfluid,andof(b)Tcasafunctionof1/kFainatrap,where the BCS-BEC crossoverbehaRviorof Tc in a trap. Here 1/kFa kFisthenoninteractingFermimomentum,andaisthes-wavescatteringlength. parametrizestheinteractionstrength. The RF response can be derived using the linear response theory.TheRFinteractionisdescribedby A detailed derivation of this result can be found in Ref. [34]. NotethattheT-matrixiseffectivelyarenormalizedpairingin- teraction. Itsharesexactlythesamepolestructureasthetwo- Hrf =eiΩtZ d3xψ†3ψ2+h.c., (11) particle Green’s function,G . Througha Taylor expansionof 2 itsdenominator,onecanextractthepairdispersion: andtheresponseKernelby t−pg1(Q)≈Z(iΩl−Ωq+µpair). (6) D(iΩl)=XG(2)(K)G(3)(K+Q). (12) K The superfluid instability is given by 1+Uχ(0) = 0 ∝ µ , pair We assume hyperfine level 3 was initially empty. In the ab- whichistheBECconditionforpairs. Notethatχ(Q)involvesa sence of final state interactions, as in 40K, we obtain [35] the mixofbareandfullGreen’sfunctions. Weemphasizethatthis RFcurrent is a natural consequence of the equation of motion technique sleinacdesibtainckvotlovethsethBeCoSp-eforartmoroGfˆ−0g1a.pIteiqsutahtiisonG0inGtfhoermabosfenχctehaotf I(k,ν) = −π1ImDR(ν+µ−µ3) finitemomentumpairs. 1 QW=e0.fDoceufisnoinngthe superfluid phase where tpg(Q) diverges at = 2πXk A(k,ω)f(ω)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)ω=ǫk−µ−ν. (13) (cid:12) InordertoaddressA(k,ω)= −2ImG(cid:12)(k,ω+i0+)properly,we ∆2pg ≡− tpg(Q), (7) need to include the lifetime effects of finite momentum pairs XQ,0 andaddanincoherenttermiΣ in(andonlyin)Σ , reflecting 0 pg the residuetermδΣ whichwe dropin solvingthe setof equa- wehave tions,i.e., Σ (K) = − t (Q) G (−K)+δΣ ∆2 pg pg 0 Σ (k,ω)= pg −iΣ . (14) = −∆XQ2 G (−K)+δΣ. (8) pg ω+ǫk−µ+iγ 0 pg 0 WhileaboveT thespectralfunctionwithapseudogapconsti- c tuteadoublepeakstructurewithsuppressedspectralweightat NeglectingtheresiduetermδΣ,Σ takesthesameformasΣ . pg sc theFermilevel,belowT ,thereisazeroatω = −(ǫ −µ). As Thus we have immediately the BCS form of total self energy, c k ∆ increases with decreasing T below T , the spectral peaks Σ(K) = −∆2G (−K), with ∆2 = ∆2 +∆2 . Thisthenleadsto sc c 0 sc pg sharpenrapidly. Thisisaphasecoherenceeffect. Theparame- theBCSformofgapequation, tersγandΣ canbeestimatedfromexperimentalRFspectra. 0 1−2f(E ) 1+U k =0, (9) Xk 2Ek 4. Comparisonbetweentheoryandexperiment where E = (ǫ −µ)2+∆2 is the quasiparticle dispersion. In Fig. 3, we compare between theory (curves) and experi- k k Different frompthe BCS mean-field theory, we emphasize that ment(symbols)(a)the densityprofile[36] and(b)system en- here ∆2 containscontributionsfrom both condensedandnon- ergy [17] for 6Li in the unitary limit. Both experimental and condensed pairs so that it in general does not vanish at T . theoreticaldensityprofilesareverysmooth,ingoodagreement c Note thatthefiniteqpairsaredifferentfromthe orderparam- witheachother.Alternativetheoriespredictseitherakinkatthe etercollectivemodes;thelatterrepresentacoherentmotionof edgeofthesuperfluidcoreornonmonotonicradialandtemper- the condensate. Here ∆2 and ∆2 are loosely proportionalto aturedependence. Theenergycomparisonalsorevealsaquan- sc pg thedensityofcondensedandnoncondensedpairs,respectively. titativeagreement. Thefactthattheunitaryandnoninteracting 3 1.5 Theory, noninteracting 20 2 T/T =0.19 F 4 Theory, unitary noninteracting 10 1 1 n(x)0.5 (a) E/EF2 unitary (b) ω (kHz) −100 ωµ+)/EF−01 ( −20 −2 T=0.29 0 -1 x (1000µm) 1 00 c 0.5 T/TF 1 1.5 −300 5 10 15 −30 0.5 1 1.5 k (µm−1) k/k F Figure3:Comparisonof(a)densityprofileand(b)energyE/EF foraunitary 6Ligasbetweentheory(curves)andexperiment(symbols). Alsoshownin(b) Figure4:ComparisonofspectralintensitymapI(k,ν)k2/(2π2)betweenexper- iscomparisonforthenoninteractingenergy. HereEF =kBTF isthenoninter- iment(left)fromRef.[30]andtheory(right). Thewhitedashedcurveisan actingFermienergy. experimentalextractedquasiparticledispersion,andthewhitesolidlineisob- tainedtheoreticallyfollowingthesameexperimentaldataanalysisprocedure. curvesmergeatT ≈ 0.6T ≫ T manifeststhe presenceof a F c pseudogap.Itshouldbenotedthatthereisnofittingparameter [5] P.Nozie`resandS.Schmitt-Rink,J.LowTemp.Phys.59,195(1985). inourtheoreticalcalculations. [6] Y.J.Uemura,PhysicaC282-287,194(1997). ShowninFig.4isacomparisonofthespectralintensitymap [7] R.FriedbergandT.D.Lee,Phys.Lett.A138,423(1989). [8] Randeria,PhysicaB198,373(1994). as a function of k and single-particle energy ω + µ between [9] B.Janko´,J.Maly,andK.Levin,Phys.Rev.B56,R11407(1997). experiment[30]andtheory[35]foraunitary40Kgasatatem- [10] Q.J.Chen,I.Kosztin,B.Janko´,andK.Levin,Phys.Rev.Lett.81,4708 peratureslightlyaboveT . Thewhitedashedcurveistheexper- (1998). c imentally extractedquasiparticledispersion, whereasthe solid [11] C.A.Regal,M.Greiner,andD.S.Jin,Phys.Rev.Lett.92,040403(2004). [12] Q.J.Chen,C.A.Regal,M.Greiner,D.S.Jin,andK.Levin,Phys.Rev. curveisobtainedtheoreticallyfollowingtheexperimentalpro- A73,041601(2006). cedure.Itisevidentthattheoreticalandexperimentalresultsare [13] C. Chin, M.Bartenstein, A.Altmeyer, S.Riedl, S.Jochim, J.Hecker- rather close to each other. Indeed, as T decreasesfrom above Denschlag,andR.Grimm,Science305,1128(2004). [14] M.W.Zwierlein, C.A.Stan, C. H.Schunck, S.M.F.Raupach, A.J. to below T , the spectral intensity map evolves [35] from an c Kerman,andW.Ketterle,Phys.Rev.Lett.92,120403(2004). upwarddispersingbranchathighT toabifurcationaroundT , c [15] J.Kinast,A.Turlapov,andJ.E.Thomas,arXiv:cond-mat/0409283. and finallyto a downwarddispersingbranchat T ≪ Tc. This [16] Q.J.Chen,J.Stajic,andK.Levin,Phys.Rev.Lett.95,260405(2005). result establishes the actual single particle dispersions which [17] J. Kinast, A. Turlapov, J. E. Thomas, Q. J. Chen, J. Stajic, and K. Levin, Science 307, 1296 (2005), published online 27 January 2005; contribute to the RF current, revealing that the broad peak in doi:10.1126/science.1109220. previous momentum-integrated RF spectra [13] indeed has a [18] M.W.Zwierlein,J.R.Abo-Shaeer,A.Schirotzek,andW.Ketterle,Na- pairingorigin. Furthermore,italsoshowsthat,despitethetrap ture435,170404(2005). inhomogeneity,momentumresolvedRFspectroscopycanstill [19] Q.J.Chen,Y.He,C.-C.Chien,andK.Levin,Phys.Rev.A74,063603 (2006). provideaquantitativemeasureofthespectralfunctionandsin- [20] Y.He,C.-C.Chien,Q.J.Chen,andK.Levin,Phys.Rev.A75,021602(R) gleparticledispersion.ItalsolendssupportforthepresentG0G (2007). schemesincealternativeNSR-basedtheoriesdonot[37]seem [21] P.FuldeandR.A.Ferrell,Phys.Rev.135,A550(1964);A.I.Larkinand to generate the two-branch-like feature observed in Ref. [30]. Y.N.Ovchinnikov,Zh.Eksp.Teor.Fiz.47,1136(1964)[Sov.Phys.JETP 20,762(1965)]. The downwarddispersion around (and above)T providesdi- c [22] G.B.Partridge,W.Li,R.I.Kamar,Y.A.Liao,andR.G.Hulet,Science rectevidencefortheexistenceofapseudogapaboveTc atuni- 311,503(2006). tarity. Ourtheoryservesasabasisformomentum-resolvedRF [23] M.W.Zwierlein,C.H.Schunck,A.Schirotzek,andW.Ketterle,Nature spectroscopyanalysis. (London)442,54(2006). [24] C.H.Schunck,Y.Shin,A.Schirotzek,M.W.Zwierlein,andW.Ketterle, In summary, we have presenteda pairingfluctuationtheory Science316,867(2007). wherefinitemomentumpairingplaysaprogressivelymoreim- [25] J.Kinnunen,M.Rodriguez,andP.To¨rma¨,Science305,1131(2004). portantroleasthepairingstrengthincreases,leadingtoapseu- [26] Y.He,Q.J.Chen,andK.Levin,Phys.Rev.A72,011602(R)(2005). [27] E.J.Mueller,arXiv:0711.0182(unpublished). dogap in the single particle excitation spectrum. This theory [28] S.BasuandE.Mueller,Phys.Rev.Lett.101,060405(2008). hasbeensuccessfullyappliedtomultipleexperimentsinatomic [29] Y.He,C.C.Chien,Q.J.Chen,andK.Levin,Phys.Rev.Lett.102,020402 Fermigases. (2009). ThisworkwassupportedbyZhejiangUniversityandNSFof [30] J. T. Stewart, J. P. Gaebler, and D. S. Jin, Nature (London) 454, 744 (2008). ChinaGrantNo.10974173. [31] G.B.Partridge,K.E.Strecker,R.I.Kamar,M.W.Jack,andR.G.Hulet, Phys.Rev.Lett.95,020404(2005). [32] Q.J.ChenandK.Levin,Phys.Rev.Lett.95,260406(2005). References [33] C.-C.Chien,Q.J.Chen,Y.He,andK.Levin,Phys.Rev.Lett.97,090402 (2006). [1] Q.J.Chen,J.Stajic,S.N.Tan,andK.Levin,Phys.Rep.412,1(2005). [34] Q.J.Chen,Ph.D.thesis,UniversityofChicago, 2000,(available inthe [2] J.N.Milstein,S.J.J.M.F.Kokkelmans,andM.J.Holland,Phys.Rev. ProQuestDissertations&ThesesDatabaseonline). A66,043604(2002). [35] Q.J.ChenandK.Levin,Phys.Rev.Lett.102,190402(2009). [3] D.M.Eagles,Phys.Rev.186,456(1969). [36] J.Stajic,Q.J.Chen,andK.Levin,Phys.Rev.Lett.94,060401(2005). [4] A. J. Leggett, in Modern Trends in the Theory of Condensed Matter [37] E.Mueller,privatecommunication. (Springer-Verlag,Berlin,1980),pp.13–27. 4