Springer Monographs in Mathematics Sourav Chatterjee Superconcentration and Related Topics Springer Monographs in Mathematics Forfurthervolumes: www.springer.com/series/3733 Sourav Chatterjee Superconcentration and Related Topics SouravChatterjee DepartmentofStatistics StanfordUniversity Stanford,CA,USA ISSN1439-7382 ISSN2196-9922(electronic) SpringerMonographsinMathematics ISBN978-3-319-03885-8 ISBN978-3-319-03886-5(eBook) DOI10.1007/978-3-319-03886-5 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014930163 MathematicsSubjectClassification(2010): 60E15,60K35,60G15,82B44,60G60,60G70 ©SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Understandingthefluctuationsofrandomobjectsisoneofthemajorgoalsofproba- bilitytheory.Thereisawholesubfieldofprobabilityandanalysis,calledconcentra- tionofmeasure,devotedtounderstandingfluctuationsofrandomobjects.Measure concentrationhasseentremendousprogressinthelastfortyyears.Andyet,thereis alargeclassofproblemsinwhichclassicalconcentrationofmeasuregivessubop- timalboundsontheorderoffluctuations. In2008and2009,IpostedtwopreprintsonarXivwhereitwasshownthatthe suboptimality of classical concentration, when it occurs, is not simply a question ofmathematicalinadequacy.Thesuboptimalityisinfactequivalenttoanumberof veryinterestingthingsgoingoninthestructureoftherandomobjectunderinves- tigation.Indeed,theconsequencesarepossiblyinterestingenoughforthesubopti- mality of classical concentration to deserve a name of its own; I call it ‘supercon- centration’. Thismonographisacombinationofthesetwopreprints(whichwillnotbepub- lishedindividually),togetherwithsomenewmaterialandnewinsights.Themajor- ity of the results are the same as in the preprints, but the presentation is radically different.Inparticular,IthinkIachievedasubstantialdegreeofsimplificationand claritythroughtheuseofthespectralapproach.Thisisquitestandardinthenoise- sensitivity literature (which is intimately connected with the topic of this mono- graph),butitisnotthewayIderivedtheresultsinthepreprints. Inadditiontothetheoremsandproofs,Ihaveinterspersedthedocumentwitha sizablenumberofopenproblemsforprofessionalmathematiciansandexercisesfor graduatestudents. I spent many hours deliberating over whether to keep the book in its present form,orexpandittoaround250pagesbyincludingadditionalmaterialfromclas- sicalconcentrationofmeasureandotherrelatedtopics.IntheendIdecidednotto expand.Therationalebehindthisdecisionistwo-fold:Thefirstreasonisthatthere areseveralcomprehensivetextsonconcentrationofmeasurealreadyavailableinthe market,andIdidnotwishtoencroachonthatterritory.Ihadoriginallyintendedthis booktobeashortandsuccinctexpositionofthesuperconcentrationphenomenon, andintheendIdecidedtokeepitthatway.ThesecondreasonisthatIamdeeply v vi Preface familiarwithmyprocrastinatingtendencies,whichmademeconfidentthatIwould never have finished this project if I had planned a major overhaul. However I did expanda little bit; the original version that I submitted to Springer was even thin- ner. On the advice of one of the reviewers, I decided to include several additional examplesthatIhadomittedinthefirstdraft. ThemainbodyofthismonographgrewoutofasetofsixlecturesIgaveatthe CornellProbabilitySummerSchoolinJuly2012.Thetaskofexplainingtheresults and proofs to graduate students forced me to organize the material in a manner suitable for exposition in a monograph. I thank the organizers of CPSS 2012 for giving me this opportunity, and one of the students attending the summer school, MihaiNica,fordoingaterrificjobintakingnotesandtypingthemup. I am grateful to Persi Diaconis for suggesting that I write this monograph, and for his constant encouragement and advice. I thank the reviewers for many useful comments,andChristopheGarban,SusanHolmes,DmitryPanchenkoandMichel Talagrandforlookingattheearlydrafts,givingsuggestionsforimprovements,and pointingoutmisattributionsanderrors.Dr.CatrionaByrneofSpringerandheredi- torialteamhasmygratitudeforbeingexceptionallyhelpfulandresponsiveinevery stepofthepreparationofthemanuscript. IwouldliketoacknowledgetheroleplayedbytheNationalScienceFoundation, the Courant Institute, and UC Berkeley in funding, at various stages, the research relatedtothisbook. Andfinally,Imustthankonepersonwhoisoutsidetherealmofmathematicsand yetplayedanindispensableroleinthecompletionofthisproject:Iwouldhavenever finished writing the monographwithout the sustained urging, care and patienceof mywife,Esha.Ithankherforallthatandmuchmore. Stanford,CA,USA SouravChatterjee Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Superconcentration . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 MultipleValleys . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 MarkovSemigroups . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1 SemigroupBasics . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 TheOrnstein-UhlenbeckSemigroup . . . . . . . . . . . . . . . 17 3 ConnectionwithMalliavinCalculus . . . . . . . . . . . . . . . 18 4 PoincaréInequalities . . . . . . . . . . . . . . . . . . . . . . . . 18 5 SomeApplicationsoftheGaussianPoincaréInequality . . . . . 19 6 FourierExpansion . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 SuperconcentrationandChaos . . . . . . . . . . . . . . . . . . . . 23 1 DefinitionofSuperconcentration . . . . . . . . . . . . . . . . . 23 2 SuperconcentrationandNoise-Sensitivity . . . . . . . . . . . . . 25 3 DefinitionofChaos . . . . . . . . . . . . . . . . . . . . . . . . 25 4 EquivalenceofSuperconcentrationandChaos . . . . . . . . . . 27 5 SomeApplicationsoftheEquivalenceTheorem . . . . . . . . . 28 6 ChaoticNatureoftheFirstEigenvector . . . . . . . . . . . . . . 29 4 MultipleValleys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1 ChaosImpliesMultipleValleys:TheGeneralIdea . . . . . . . . 33 2 MultipleValleysinGaussianPolymers . . . . . . . . . . . . . . 34 3 MultipleValleysintheSKModel . . . . . . . . . . . . . . . . . 36 4 MultiplePeaksinGaussianFields . . . . . . . . . . . . . . . . . 38 5 MultiplePeaksintheNK FitnessLandscape . . . . . . . . . . . 40 5 Talagrand’sMethodforProvingSuperconcentration . . . . . . . . 45 1 Hypercontractivity . . . . . . . . . . . . . . . . . . . . . . . . . 45 2 Talagrand’sL1–L2 Bound . . . . . . . . . . . . . . . . . . . . . 47 3 Talagrand’sMethodAlwaysWorksforMonotoneFunctions . . . 49 vii viii Contents 4 TheBenjamini-Kalai-SchrammTrick . . . . . . . . . . . . . . . 51 5 SuperconcentrationinGaussianPolymers. . . . . . . . . . . . . 54 6 SharpnessoftheLogarithmicImprovement . . . . . . . . . . . . 56 6 TheSpectralMethodforProvingSuperconcentration . . . . . . . 57 1 SpectralDecompositionoftheOUSemigroup . . . . . . . . . . 58 2 AnImprovedPoincaréInequality . . . . . . . . . . . . . . . . . 60 3 SuperconcentrationintheSKModel . . . . . . . . . . . . . . . 60 7 IndependentFlips . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 1 TheIndependentFlipsSemigroup . . . . . . . . . . . . . . . . . 63 2 HypercontractivityforIndependentFlips . . . . . . . . . . . . . 65 3 ChaosUnderIndependentFlips . . . . . . . . . . . . . . . . . . 66 8 ExtremalFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 1 SuperconcentrationinExtremalFields . . . . . . . . . . . . . . 73 2 ASufficientConditionforExtremality . . . . . . . . . . . . . . 78 3 ApplicationtoSpinGlasses . . . . . . . . . . . . . . . . . . . . 79 4 ApplicationtotheDiscreteGaussianFreeField . . . . . . . . . 83 9 FurtherApplicationsofHypercontractivity . . . . . . . . . . . . . 87 1 SuperconcentrationoftheLargestEigenvalue. . . . . . . . . . . 87 2 ADifferentHypercontractiveTool . . . . . . . . . . . . . . . . 90 3 SuperconcentrationinLowCorrelationFields . . . . . . . . . . 92 4 SuperconcentrationinSubfields . . . . . . . . . . . . . . . . . . 93 5 DiscreteGaussianFreeFieldonaTorus . . . . . . . . . . . . . 94 6 GaussianFieldsonEuclideanSpaces . . . . . . . . . . . . . . . 99 10 TheInterpolationMethodforProvingChaos . . . . . . . . . . . . 105 1 AGeneralTheorem . . . . . . . . . . . . . . . . . . . . . . . . 105 2 ApplicationtotheSherrington-KirkpatrickModel . . . . . . . . 111 3 SharpnessoftheInterpolationMethod . . . . . . . . . . . . . . 112 11 VarianceLowerBounds . . . . . . . . . . . . . . . . . . . . . . . . 115 1 SomeGeneralTools . . . . . . . . . . . . . . . . . . . . . . . . 115 2 ApplicationtotheEdwards-AndersonModel . . . . . . . . . . . 118 3 ChaosintheEdwards-AndersonModel . . . . . . . . . . . . . . 119 12 DimensionsofLevelSets . . . . . . . . . . . . . . . . . . . . . . . . 125 1 LevelSetsofExtremalFields . . . . . . . . . . . . . . . . . . . 125 2 InducedDimension . . . . . . . . . . . . . . . . . . . . . . . . 128 3 DimensionofNear-MaximalSets . . . . . . . . . . . . . . . . . 131 4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 AppendixA GaussianRandomVariables . . . . . . . . . . . . . . . . 137 1 TailBounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 2 SizeoftheMaximum . . . . . . . . . . . . . . . . . . . . . . . 137 3 IntegrationbyParts . . . . . . . . . . . . . . . . . . . . . . . . 139 4 TheGaussianConcentrationInequality . . . . . . . . . . . . . . 139 5 ConcentrationoftheMaximum . . . . . . . . . . . . . . . . . . 140 Contents ix AppendixB Hypercontractivity. . . . . . . . . . . . . . . . . . . . . . 143 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 AuthorIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 SubjectIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Chapter 1 Introduction ThismonographisaboutacertaincuriousfeatureofrandomobjectsthatIcall‘su- perconcentration’,andtworelatedtopics,‘chaos’and‘multiplevalleys’.Although superconcentration has been a recognized feature in a number of areas of proba- bility theory in the last twenty years (under a variety of names), its connections with chaos and multiple valleys were discovered and explored for the first time in Chatterjee(2008b).Thisintroductorychaptersketchesthebasicideasbehindthese threeconceptsthroughsomeexamples.Precisedefinitionsaregiveninlaterchap- ters. 1 Superconcentration The theory of concentration of measure gives probability theory a range of tools to compute upper bounds on the orders of fluctuations of complicated random variables. Usually, the general techniques of measure concentration are required when more direct problem-specific approaches do not work. The essential tech- niques of this theory are adequately summarized in the classic monograph of Ledoux (2001) and the recent book by Boucheron et al. (2013). Roughly speak- ing, superconcentration happens when the classical measure concentration tech- niques give suboptimal bounds on the order of fluctuations. The techniques avail- able for proving superconcentration are rather inadequate at this point of time. They give only small improvements on the upper bounds from classical theory. Onemaywonderwhatissointerestingaboutsuchminorimprovements.Themain point of this monograph is to demonstrate how any improvement over a classi- cal upper bound is equivalent to a number of strange and interesting phenom- ena, such as chaos under small perturbations and the emergence of multiple val- leys. Aformaldefinitionofsuperconcentrationwillbegivenlater.Rightnow,thesit- uationisbestexplainedthroughexamples. S.Chatterjee,SuperconcentrationandRelatedTopics, 1 SpringerMonographsinMathematics,DOI10.1007/978-3-319-03886-5_1, ©SpringerInternationalPublishingSwitzerland2014