Table Of ContentSpringer Series in Materials Science
Volume 192
SeriesEditors
RobertHull,Charlottesville,VA,USA
ChennupatiJagadish,Canberra,ACT,Australia
RichardM.Osgood,NewYork,NY,USA
JürgenParisi,Oldenburg,Germany
ZhimingM.Wang,Chengdu,P.R.China
Forfurthervolumes:
www.springer.com/series/856
TheSpringerSeriesinMaterialsSciencecoversthecompletespectrumofmaterialsphysics,
including fundamental principles, physical properties, materials theory and design. Recog-
nizingtheincreasingimportanceofmaterialsscienceinfuturedevicetechnologies,thebook
titlesinthisseriesreflectthestate-of-the-artinunderstandingandcontrollingthestructure
andpropertiesofallimportantclassesofmaterials.
Wolfgang Skorupa (cid:2) Heidemarie Schmidt
Editors
Subsecond
Annealing
of Advanced
Materials
Annealing by Lasers, Flash Lamps
and Swift Heavy Ions
Editors
WolfgangSkorupa HeidemarieSchmidt
InstituteofIonBeamPhysicsandMaterials MaterialsystemederNanoelektronik
Research Nano-SpintronicsGroup
Helmholtz-ZentrumDresden-Rossendorf ChemnitzUniversityofTechnology
Dresden,Saxony,Germany Chemnitz,Saxony,Germany
ISSN0933-033X ISSN2196-2812(electronic)
SpringerSeriesinMaterialsScience
ISBN978-3-319-03130-9 ISBN978-3-319-03131-6(eBook)
DOI10.1007/978-3-319-03131-6
SpringerChamHeidelbergNewYorkDordrechtLondon
LibraryofCongressControlNumber:2013957144
©SpringerInternationalPublishingSwitzerland2014
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof
thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.
PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations
areliabletoprosecutionundertherespectiveCopyrightLaw.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub-
lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany
errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect
tothematerialcontainedherein.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Preface
Annealingofmaterialsisoneoftheoldesttechniquesusedbythemankindtopre-
parematerialsforthedailyandnondailylife.Ofcourse,thecookingoffoodisthe
most important and famous/beloved one. The processing of materials like metals
andtheiralloysdrovethistypeofworkovermillenniatomoreandmoresophisti-
cation.Oneofthemaindrivingforcesforthatinthesecondhalfofthe20thcentury
was the development of electronic materials technology for semiconductors, thin
films,etc.Allkindoffurnaceswerethemaintoolovercenturies.Itwasfinallythe
useoflightflashestosimulateandstudytheimpactofnuclearweaponexplosions
onthedegradationofsolidmaterialsinthe50sandtheinventionthelaserin1960
whichaffectedthedevelopmentofannealingtechniquesonmuchshortertimescales
thanbefore.Thesenewdevelopmentsstartedinthemid-70sintheleadingscientific
semiconductor laboratories and comprised energy sources like lasers, flash lamps,
halogenlamps,electronbeams,andevenflames.Thefirstindustrialtechnologyused
inthechipindustrywasRapidThermalAnnealing/Processing(RTA/RTP).Halogen
lamps were used to perform annealing processes in the range of several seconds
endingin2000withtheMoore’sLaw-drivenshrinkageofdevicedimensionsatone
secondasthelowertimelimitofthistechnology.Finally,flashlampannealingusing
Xenonfilledlampswithamaximumofthelightspectruminthebluerangeandlaser
annealingintheinfraredrangemadetheleapintoindustrialapplications.Thefirst
need to perform annealing in the range of only one millisecond was driven by the
factthattheborondiffusionofthesourceanddraindopingareasofthep-MOStran-
sistorsofmicroprocessorshadtobesuppressed.Thisismeanwhilestate-of-the-art
andmillisecond—orsubsecond—annealinghasarrivedinmanyotherareasofsci-
enceandtechnology.TherenownedIEEEConferenceseriesonAdvancedThermal
ProcessingofSemiconductorsendedin2010afterabout20yearsofsuccess,partly
because of growing competition pressure regarding industrial developments. It is
thecompetitionbetweendifferentcompanies,countries,evenculturesasamoreand
moregrowingissue.So,ourgoalwasfinallytojump—atleastonetimein2011—
intothisgapandtobringtogethernotonlychiptechnologistsbutalsopeoplefrom
other branches with interest in various aspects of Subsecond Thermal Processing
ofAdvancedMaterials(subtherm2011).Thisbookistheoutcomeofthesubtherm
v
vi Preface
2011meetingbyhavingaskedseveralcolleaguestopresenttheircontributions.The
contributions ranged from an historical excursus (Chap. 1) over selected contribu-
tions on fundamental and applied aspects of short time annealing to recent laser
equipmentdevelopments.Inthefollowingtabletheeditorshavetriedtocategorize
Chaps.2–15:
IV’s III–V’s Others
Si SiGe Ge Ga(As,P) (In,Ga)As SiO2:Ni Organics
Solidphase 3,8,10,12, 5 4 14
13,14
Liquidphase 2,8,10,13 2 15 11 6
Modeling 7,12 2 15
(Over)doping 3,13 4
Nanostructures 5 7 11 6
Lowcost 10,14 14
Magnetism 2 15 6
Superconductivity 4
Segregation 5 11
Devices 3,7,9,13, 14
14
Processing 8,9,12
WeexpressoursincerethankstotheSpringercompanyforhavinginvitedustopub-
lishthisuniquecollectionofcontributions.Andwegreatlyacknowledgethediligent
anddedicatedworkofallauthorsandhopefinallyforaninterestedreadership.
Dresden,Germany WolfgangSkorupa
Chemnitz,Germany HeidemarieSchmidt
Contents
1 HistoricalAspectsofSubsecondThermalProcessing . . . . . . . . 1
MatthiasVoelskow,RossenA.Yankov,andWolfgangSkorupa
1.1 TheVeryEarlyTime . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 PulsedLaserAnnealingintheNanosecondRange . . . . 2
1.1.2 FlashLampHeatingintheMicrosecondtoMillisecond
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 IsothermalShortTimeAnnealingintheRangeofSeconds 3
1.2 AnnealingofIonImplantedSemiconductor
Layers—thePioneeringAction . . . . . . . . . . . . . . . . . . 4
1.2.1 RapidLiquidPhaseEpitaxy . . . . . . . . . . . . . . . . 4
1.2.2 RapidSolidPhaseEpitaxy/HighTemperatureShortTime
Annealing . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 RecrystallisationofDepositedSemiconductorLayers . . . . . . 8
1.3.1 GrainSizeEnlargement . . . . . . . . . . . . . . . . . . 8
1.3.2 GeneralRulesfortheCrystallisationofa-SiLayers
onAmorphousSubstrates . . . . . . . . . . . . . . . . . 8
1.3.3 ExplosiveCrystallisationUsingLasersandFlashLamps . 9
1.3.4 DendriticGrainGrowthinThinSiliconLayers
onAmorphousSubstratesbyFlashLampIrradiation . . . 10
1.3.5 StripHeaterCrystallisation . . . . . . . . . . . . . . . . 11
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 NanonetFormation by ConstitutionalSupercoolingof Pulsed
LaserAnnealed,Mn-ImplantedGermanium . . . . . . . . . . . . 15
DaniloBürger,ShengqiangZhou,MarcelHöwler,XinOu,
GyörgyJ.Kovacs,HelfriedReuther,ArndtMücklich,
WolfgangSkorupa,andHeidemarieSchmidt
2.1 FerromagnetisminDilutedGaAs:Mn . . . . . . . . . . . . . . . 16
2.2 FerromagnetisminGe:MnNanonets . . . . . . . . . . . . . . . 18
2.2.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . 18
vii
viii Contents
2.2.2 EtchingforFurtherInvestigations . . . . . . . . . . . . . 22
2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 Metastable Activation of Dopants by Solid Phase Epitaxial
Recrystallisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
R.Duffy
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.1 OverviewofChapter. . . . . . . . . . . . . . . . . . . . 36
3.1.2 AmorphisationofaSiliconSubstrate . . . . . . . . . . . 36
3.1.3 RecrystallisationfromaTemplate . . . . . . . . . . . . . 37
3.2 MetastableAbove-EquilibriumSolubility . . . . . . . . . . . . . 38
3.3 ThermalStability . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 CrystalDefects. . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 DopantDeactivation . . . . . . . . . . . . . . . . . . . . 42
3.3.3 DopantRedistributionBefore/During/After
Recrystallisation . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Co-implants . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 VacancyEngineering . . . . . . . . . . . . . . . . . . . 48
3.4.3 Low-TemperatureImplants . . . . . . . . . . . . . . . . 49
3.5 FutureTrends—EmergingMaterialsandDevices . . . . . . . . . 50
3.5.1 EmergingMaterials . . . . . . . . . . . . . . . . . . . . 50
3.5.2 EmergingDeviceArchitectures . . . . . . . . . . . . . . 50
3.5.3 EmergingDopingMethods . . . . . . . . . . . . . . . . 51
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 SuperconductingGalliumImplantedGermanium . . . . . . . . . . 57
J.FiedlerandV.Heera
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 SuperconductivityinSemiconductors . . . . . . . . . . . . . . . 59
4.3 GalliumImplantedGermanium . . . . . . . . . . . . . . . . . . 61
4.3.1 HighFluenceGaImplantation—TheAs-ImplantedState 61
4.3.2 MicrostructureAfterFlashLampAnnealing . . . . . . . 65
4.3.3 ElectricalPropertiesintheNormal-State . . . . . . . . . 67
4.3.4 SuperconductingState . . . . . . . . . . . . . . . . . . . 69
4.3.5 PropertiesofGa-RichInterfaces—SegregationVersus
Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5 Structural Changes in SiGe/Si Layers Induced by Fast
Crystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
P.I.GaidukandS.L.Prakopyeu
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Contents ix
5.2 SegregationinCz-GrownSiGe . . . . . . . . . . . . . . . . . . 80
5.3 FastCrystallizationofSiGeAlloyLayersandFormation
ofCellularStructures . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.1 Laser-InducedSegregationofLowSolubleDopants
inSilicon . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.2 FastSegregationinEpitaxialSi1−xGex Layers . . . . . . 85
5.3.3 Laser-InducedMeltingofCVDDeposited
PolycrystallineGe . . . . . . . . . . . . . . . . . . . . . 91
5.4 PulsedLaserModificationofGeandGeSnNanodots . . . . . . 92
5.4.1 LiquidShellNucleationModel . . . . . . . . . . . . . . 96
5.4.2 LiquidNucleationandGrowthModel . . . . . . . . . . . 97
5.5 SiGeAlloyDecompositionintheTracksofSwiftHeavyIons . . 97
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6 Sub-nanosecondThermalSpikeInducedNanostructuringofThin
SolidFilmsUnderSwiftHeavyIon(SHI)Irradiation . . . . . . . . 107
S.Ghosh,H.Kumar,S.P.Singh,P.Srivastava,D.Kabiraj,
D.K.Avasthi,D.Bürger,S.Zhou,A.Mücklich,H.Schmidt,and
J.P.Stouquert
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1.1 SHI-MatterInteractionandThermalSpike . . . . . . . . 108
6.1.2 BriefObjectives . . . . . . . . . . . . . . . . . . . . . . 110
6.2 ElongationofMetalNanoparticlesEmbeddedinThinSilica
Matrix[9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2.1 MaterialsImportance . . . . . . . . . . . . . . . . . . . 110
6.2.2 SimulationforNiNPsEmbeddedinSilicaMatrix . . . . 111
6.2.3 SynthesisofNiNPsEmbeddedinSilicaMatrix
andIonIrradiationExperiments . . . . . . . . . . . . . . 112
6.3 EvolutionofSi-NanostructuresonSiliconRichSiliconNitride
(SRSN)Matrix[22] . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.1 MaterialsImportance . . . . . . . . . . . . . . . . . . . 116
6.3.2 DissolutionandRe-precipitationofSiNanostructures
inSRSNMatrix . . . . . . . . . . . . . . . . . . . . . . 116
6.3.3 ExplanationBasedonThermalSpikeModel . . . . . . . 117
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7 Pulsed-Laser-Induced Epitaxial Growth of Silicon for Three-
DimensionalIntegratedCircuits . . . . . . . . . . . . . . . . . . . 123
RyoichiIshihara,M.R.TajariMofrad,MingHe,andC.I.M.Beenakker
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2.1 Thermal(Enthalpy)Model . . . . . . . . . . . . . . . . 125
7.2.2 Phase-FieldModel . . . . . . . . . . . . . . . . . . . . . 127
7.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Description:The thermal processing of materials ranges from few fem to seconds by Swift Heavy Ion Implantation to about one second using advanced Rapid Thermal Annealing. This book offers after an historical excursus selected contributions on fundamental and applied aspects of thermal processing of classical el