ebook img

Study of optimization for vibration absorbing devices applied on airplane structural elements PDF

114 Pages·2014·5.99 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Study of optimization for vibration absorbing devices applied on airplane structural elements

Grau en Enginyeria en Tecnologies Aeroespacials Title: Study of optimization for vibration absorbing devices applied on airplane structural elements Document content: REPORT Delivery date: 27/06/2014 Author: Edgar Matas Hidalgo Director: Meritxell Cusido´ Roura Codirector: Robert Arcos Villamar´ın Mais la voix me console et dit: (cid:28)Garde tes songes: Les sages n’en ont pas d’aussi beaux que les fous!(cid:29) Charles Baudelaire Acknowledgements I would like to thank all the people who have support this study. First, I want to thank the directors of this study Meritxell Cusido´ and Robert Arcos who have perform a really good follow-up work assisting me whenever I needed it. I cannot forget the active role that Pierre Huguenet and Emiliano Tolosa from SENER Ingenier´ıa y Sistemas had, without their advice and knowledge transfer this would have not been possible. I also want to recognize the paper of Vicenc¸ Puig who has been the main advisor in the optimization field. Especial thanks to my colleague D´ıdac Selle´s who has work hand in hand with me. With the development of his own final degree study he has help this one to success. Finally,Iwouldliketoshowgratitudetomyfamilyandfriends,theyhavestoodbymyside for years until arriving here. REPORT Contents List of figures v List of tables vi 1 Aim of the study 1 2 Scope of the study 2 3 Requirements 3 4 Justification 4 5 State of the art 5 6 Introduction to the problem and theoretical basis 6 6.1 Theoretical basis of the DVAs in a plate problem . . . . . . . . . . . . . . . 7 6.2 Theoretical basis of the DVAs in a fuselage problem . . . . . . . . . . . . . 8 6.3 Theoretical basis of the beams in a fuselage problem . . . . . . . . . . . . 10 6.4 Objective discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 Theoretical introduction to optimization 17 7.1 Mixed-Integer Quadratic Programming . . . . . . . . . . . . . . . . . . . . . 18 7.2 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8 Software and programming languages 20 8.1 MATLAB 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8.2 CPLEX Python API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.3 Python 2.7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.4 MD Nastran 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9 DVAs in a plate 23 9.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 9.1.1 Genetic algorithm approach . . . . . . . . . . . . . . . . . . . . . . . 25 9.1.2 MIQP formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 9.2 Implementation of the genetic algorithm . . . . . . . . . . . . . . . . . . . . 31 9.2.1 Data reading, previous computations and setting up . . . . . . . . . 32 9.2.2 Genetic algorithm function . . . . . . . . . . . . . . . . . . . . . . . . 33 9.2.3 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.2.3.1 Elitism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.2.3.2 Procreation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Edgar Matas Hidalgo iii CONTENTS 9.2.3.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9.2.3.4 Random generation . . . . . . . . . . . . . . . . . . . . . . 44 9.2.3.5 Uniqueness function . . . . . . . . . . . . . . . . . . . . . . 44 9.2.4 Auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.2.4.1 Printdata function . . . . . . . . . . . . . . . . . . . . . . . 45 9.2.5 Fitness function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.2.6 Validation of the genetic algorithm . . . . . . . . . . . . . . . . . . . 48 9.3 Implementation of the problem in CPLEX . . . . . . . . . . . . . . . . . . . 48 9.3.1 Data reading, previous computations and setting up . . . . . . . . . 49 9.3.2 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 50 9.3.3 Solution and results processing . . . . . . . . . . . . . . . . . . . . . 53 9.3.4 Validation of the model. . . . . . . . . . . . . . . . . . . . . . . . . . 53 9.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.4.1 Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 9.4.2 Optimization by the genetic algorithm . . . . . . . . . . . . . . . . . 56 9.4.3 Optimization by MIQP . . . . . . . . . . . . . . . . . . . . . . . . . . 58 9.4.4 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10 DVAs in a 3D structure 61 10.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 10.1.1 Genetic algorithm approach . . . . . . . . . . . . . . . . . . . . . . . 62 10.1.2 MIQP approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 10.2 Implementation of the genetic algorithm . . . . . . . . . . . . . . . . . . . . 65 10.2.1 Data reading, previous computations and setting up . . . . . . . . . 65 10.2.2 Genetic algorithm function . . . . . . . . . . . . . . . . . . . . . . . . 66 10.2.3 Fitness function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 10.3 Implementation of the problem in CPLEX . . . . . . . . . . . . . . . . . . . 66 10.3.1 Data reading, previous computations and setting up . . . . . . . . . 67 10.3.2 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 67 10.3.3 Solution and results processing . . . . . . . . . . . . . . . . . . . . . 69 10.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 10.4.1 Model characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 70 10.4.2 Nodes of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.4.3 Devices characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.4.4 Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.4.5 Optimization by the genetic algorithm . . . . . . . . . . . . . . . . . 72 10.4.6 Optimization by MIQP . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.4.7 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 11 Stiffeners and DVAs in a 3D structure 78 11.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 11.1.1 Genetic algorithm approach . . . . . . . . . . . . . . . . . . . . . . . 80 11.2 Implementation of the genetic algorithm . . . . . . . . . . . . . . . . . . . . 80 11.2.1 Data reading, previous computations and setting up . . . . . . . . . 81 11.2.2 Genetic algorithm function . . . . . . . . . . . . . . . . . . . . . . . . 81 Edgar Matas Hidalgo iv REPORT 11.2.3 Auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 11.2.3.1 Mass and stiffness matrices function . . . . . . . . . . . . 82 11.2.4 Fitness function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 11.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 11.3.1 Beam characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 85 11.3.2 Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 11.3.3 Optimization by the genetic algorithm . . . . . . . . . . . . . . . . . 85 11.3.4 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 12 Safety 89 13 Environmental implication 90 13.1 Fuel emissions reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 13.2 Acoustic pollution reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 13.3 Reduction of simulation energetic cost . . . . . . . . . . . . . . . . . . . . . 91 14 Limitations and future lines of investigation 92 15 Planning and scheduling 94 15.1 Planning and scheduling followed . . . . . . . . . . . . . . . . . . . . . . . . 94 15.1.1 Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 15.2 Future planning and scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 97 15.2.1 Propose schedule for future work . . . . . . . . . . . . . . . . . . . 99 16 Budget 100 17 Economic viability 101 18 Conclusions 102 19 Bibliography 104 Edgar Matas Hidalgo v LIST OF FIGURES List of Figures 6.1 Objective value computed with the modulus function for all the possible combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.2 Objective value computed with the quadratic function for all the possible combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.3 Zoomintotheminimumobjectivevaluecomputedwiththemodulusfunction. 16 6.4 Zoomintotheminimumobjectivevaluecomputedwiththequadraticfunction. 16 9.1 Genetic algorithm diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.2 Procreation function diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.3 Mutation function diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.4 Sample of the data format generated by the printdata function. . . . . . . 46 9.5 Fitness function diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9.6 Case Geometry and Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 9.7 Significant points in the plate: objective points in green, possible points in red and the point where the force is applied in yellow. . . . . . . . . . . . . 56 10.1 Floor section of the fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.2 Longitudinal view of the structure with possible countermeasure allocation points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.1 Fitness function diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 15.1 Gantt chart followed to develop the study. . . . . . . . . . . . . . . . . . . . 96 15.2 Gantt chart proposed to continue with the study. . . . . . . . . . . . . . . . 99 Edgar Matas Hidalgo vi REPORT List of Tables 9.1 Physical properties of the plane plate studied. . . . . . . . . . . . . . . . . . 54 9.2 Physical properties of the available DVAs. . . . . . . . . . . . . . . . . . . . 54 9.3 GA constants of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 57 9.4 GA parameters set up for the case. . . . . . . . . . . . . . . . . . . . . . . . 57 9.5 Best individual achieved with the GA. . . . . . . . . . . . . . . . . . . . . . . 58 9.6 Variables of problem introduced to MIQP application. . . . . . . . . . . . . . 58 9.7 Optimal solution achieved by MIQP.. . . . . . . . . . . . . . . . . . . . . . . 59 9.8 Time comparison between optimization options. . . . . . . . . . . . . . . . 59 10.1 Aluminum properties for the fuselage model . . . . . . . . . . . . . . . . . . 70 10.2 Fuselage model dimensions in meters . . . . . . . . . . . . . . . . . . . . . 71 10.3 Properties of the DVAs and the point mass used in the problem. . . . . . . 72 10.4 GA constants of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.5 Best individual achieved with the GA. . . . . . . . . . . . . . . . . . . . . . . 74 10.6 Variables of problem introduced to MIQP application. . . . . . . . . . . . . . 75 10.7 Solution achieved by MIQP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 10.8 Time comparison between optimization options. . . . . . . . . . . . . . . . 77 11.1 Physical properties of the types of beams. . . . . . . . . . . . . . . . . . . . 85 11.2 GA constants of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.3 Best individual achieved with the GA. . . . . . . . . . . . . . . . . . . . . . . 87 11.4 Time comparison between optimization options. . . . . . . . . . . . . . . . 88 Edgar Matas Hidalgo vii REPORT 1. Aim of the study Theaimofthisstudyistodevelopaprocesswhichallowstooptimizethenumber,position or dynamic characteristics of the vibration absorbing devices that will be placed airplane structural elements in order to achieve a vibration reduction. Edgar Matas Hidalgo 1

Description:
8.2 CPLEX Python API 21. 8.3 Python 2.7.6 17 Economic viability . This text studies a methodology to optimize the vibration absorber devices in a structure . single degree of freedom (DOF).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.