Grau en Enginyeria en Tecnologies Aeroespacials Title: Study of optimization for vibration absorbing devices applied on airplane structural elements Document content: REPORT Delivery date: 27/06/2014 Author: Edgar Matas Hidalgo Director: Meritxell Cusido´ Roura Codirector: Robert Arcos Villamar´ın Mais la voix me console et dit: (cid:28)Garde tes songes: Les sages n’en ont pas d’aussi beaux que les fous!(cid:29) Charles Baudelaire Acknowledgements I would like to thank all the people who have support this study. First, I want to thank the directors of this study Meritxell Cusido´ and Robert Arcos who have perform a really good follow-up work assisting me whenever I needed it. I cannot forget the active role that Pierre Huguenet and Emiliano Tolosa from SENER Ingenier´ıa y Sistemas had, without their advice and knowledge transfer this would have not been possible. I also want to recognize the paper of Vicenc¸ Puig who has been the main advisor in the optimization field. Especial thanks to my colleague D´ıdac Selle´s who has work hand in hand with me. With the development of his own final degree study he has help this one to success. Finally,Iwouldliketoshowgratitudetomyfamilyandfriends,theyhavestoodbymyside for years until arriving here. REPORT Contents List of figures v List of tables vi 1 Aim of the study 1 2 Scope of the study 2 3 Requirements 3 4 Justification 4 5 State of the art 5 6 Introduction to the problem and theoretical basis 6 6.1 Theoretical basis of the DVAs in a plate problem . . . . . . . . . . . . . . . 7 6.2 Theoretical basis of the DVAs in a fuselage problem . . . . . . . . . . . . . 8 6.3 Theoretical basis of the beams in a fuselage problem . . . . . . . . . . . . 10 6.4 Objective discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 Theoretical introduction to optimization 17 7.1 Mixed-Integer Quadratic Programming . . . . . . . . . . . . . . . . . . . . . 18 7.2 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8 Software and programming languages 20 8.1 MATLAB 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8.2 CPLEX Python API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.3 Python 2.7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.4 MD Nastran 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9 DVAs in a plate 23 9.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 9.1.1 Genetic algorithm approach . . . . . . . . . . . . . . . . . . . . . . . 25 9.1.2 MIQP formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 9.2 Implementation of the genetic algorithm . . . . . . . . . . . . . . . . . . . . 31 9.2.1 Data reading, previous computations and setting up . . . . . . . . . 32 9.2.2 Genetic algorithm function . . . . . . . . . . . . . . . . . . . . . . . . 33 9.2.3 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.2.3.1 Elitism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.2.3.2 Procreation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Edgar Matas Hidalgo iii CONTENTS 9.2.3.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9.2.3.4 Random generation . . . . . . . . . . . . . . . . . . . . . . 44 9.2.3.5 Uniqueness function . . . . . . . . . . . . . . . . . . . . . . 44 9.2.4 Auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.2.4.1 Printdata function . . . . . . . . . . . . . . . . . . . . . . . 45 9.2.5 Fitness function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.2.6 Validation of the genetic algorithm . . . . . . . . . . . . . . . . . . . 48 9.3 Implementation of the problem in CPLEX . . . . . . . . . . . . . . . . . . . 48 9.3.1 Data reading, previous computations and setting up . . . . . . . . . 49 9.3.2 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 50 9.3.3 Solution and results processing . . . . . . . . . . . . . . . . . . . . . 53 9.3.4 Validation of the model. . . . . . . . . . . . . . . . . . . . . . . . . . 53 9.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.4.1 Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 9.4.2 Optimization by the genetic algorithm . . . . . . . . . . . . . . . . . 56 9.4.3 Optimization by MIQP . . . . . . . . . . . . . . . . . . . . . . . . . . 58 9.4.4 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10 DVAs in a 3D structure 61 10.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 10.1.1 Genetic algorithm approach . . . . . . . . . . . . . . . . . . . . . . . 62 10.1.2 MIQP approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 10.2 Implementation of the genetic algorithm . . . . . . . . . . . . . . . . . . . . 65 10.2.1 Data reading, previous computations and setting up . . . . . . . . . 65 10.2.2 Genetic algorithm function . . . . . . . . . . . . . . . . . . . . . . . . 66 10.2.3 Fitness function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 10.3 Implementation of the problem in CPLEX . . . . . . . . . . . . . . . . . . . 66 10.3.1 Data reading, previous computations and setting up . . . . . . . . . 67 10.3.2 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 67 10.3.3 Solution and results processing . . . . . . . . . . . . . . . . . . . . . 69 10.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 10.4.1 Model characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 70 10.4.2 Nodes of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.4.3 Devices characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.4.4 Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.4.5 Optimization by the genetic algorithm . . . . . . . . . . . . . . . . . 72 10.4.6 Optimization by MIQP . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.4.7 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 11 Stiffeners and DVAs in a 3D structure 78 11.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 11.1.1 Genetic algorithm approach . . . . . . . . . . . . . . . . . . . . . . . 80 11.2 Implementation of the genetic algorithm . . . . . . . . . . . . . . . . . . . . 80 11.2.1 Data reading, previous computations and setting up . . . . . . . . . 81 11.2.2 Genetic algorithm function . . . . . . . . . . . . . . . . . . . . . . . . 81 Edgar Matas Hidalgo iv REPORT 11.2.3 Auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 11.2.3.1 Mass and stiffness matrices function . . . . . . . . . . . . 82 11.2.4 Fitness function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 11.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 11.3.1 Beam characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 85 11.3.2 Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 11.3.3 Optimization by the genetic algorithm . . . . . . . . . . . . . . . . . 85 11.3.4 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 12 Safety 89 13 Environmental implication 90 13.1 Fuel emissions reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 13.2 Acoustic pollution reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 13.3 Reduction of simulation energetic cost . . . . . . . . . . . . . . . . . . . . . 91 14 Limitations and future lines of investigation 92 15 Planning and scheduling 94 15.1 Planning and scheduling followed . . . . . . . . . . . . . . . . . . . . . . . . 94 15.1.1 Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 15.2 Future planning and scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 97 15.2.1 Propose schedule for future work . . . . . . . . . . . . . . . . . . . 99 16 Budget 100 17 Economic viability 101 18 Conclusions 102 19 Bibliography 104 Edgar Matas Hidalgo v LIST OF FIGURES List of Figures 6.1 Objective value computed with the modulus function for all the possible combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.2 Objective value computed with the quadratic function for all the possible combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.3 Zoomintotheminimumobjectivevaluecomputedwiththemodulusfunction. 16 6.4 Zoomintotheminimumobjectivevaluecomputedwiththequadraticfunction. 16 9.1 Genetic algorithm diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.2 Procreation function diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.3 Mutation function diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.4 Sample of the data format generated by the printdata function. . . . . . . 46 9.5 Fitness function diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9.6 Case Geometry and Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 9.7 Significant points in the plate: objective points in green, possible points in red and the point where the force is applied in yellow. . . . . . . . . . . . . 56 10.1 Floor section of the fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . 71 10.2 Longitudinal view of the structure with possible countermeasure allocation points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.1 Fitness function diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 15.1 Gantt chart followed to develop the study. . . . . . . . . . . . . . . . . . . . 96 15.2 Gantt chart proposed to continue with the study. . . . . . . . . . . . . . . . 99 Edgar Matas Hidalgo vi REPORT List of Tables 9.1 Physical properties of the plane plate studied. . . . . . . . . . . . . . . . . . 54 9.2 Physical properties of the available DVAs. . . . . . . . . . . . . . . . . . . . 54 9.3 GA constants of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 57 9.4 GA parameters set up for the case. . . . . . . . . . . . . . . . . . . . . . . . 57 9.5 Best individual achieved with the GA. . . . . . . . . . . . . . . . . . . . . . . 58 9.6 Variables of problem introduced to MIQP application. . . . . . . . . . . . . . 58 9.7 Optimal solution achieved by MIQP.. . . . . . . . . . . . . . . . . . . . . . . 59 9.8 Time comparison between optimization options. . . . . . . . . . . . . . . . 59 10.1 Aluminum properties for the fuselage model . . . . . . . . . . . . . . . . . . 70 10.2 Fuselage model dimensions in meters . . . . . . . . . . . . . . . . . . . . . 71 10.3 Properties of the DVAs and the point mass used in the problem. . . . . . . 72 10.4 GA constants of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10.5 Best individual achieved with the GA. . . . . . . . . . . . . . . . . . . . . . . 74 10.6 Variables of problem introduced to MIQP application. . . . . . . . . . . . . . 75 10.7 Solution achieved by MIQP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 10.8 Time comparison between optimization options. . . . . . . . . . . . . . . . 77 11.1 Physical properties of the types of beams. . . . . . . . . . . . . . . . . . . . 85 11.2 GA constants of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11.3 Best individual achieved with the GA. . . . . . . . . . . . . . . . . . . . . . . 87 11.4 Time comparison between optimization options. . . . . . . . . . . . . . . . 88 Edgar Matas Hidalgo vii REPORT 1. Aim of the study Theaimofthisstudyistodevelopaprocesswhichallowstooptimizethenumber,position or dynamic characteristics of the vibration absorbing devices that will be placed airplane structural elements in order to achieve a vibration reduction. Edgar Matas Hidalgo 1
Description: