Study of angular distribution for 0 ∗0 B → φK decays at LHCb July 1, 2011 Laureline Josset Date: July 1, 2011 Master EPFL Section Physique Master thesis Prof. T. Tatsuya Dr. F. Blanc Contents 1 Introduction 5 2 Angular distribution formalism and calculation 7 2.1 B0 →φK∗0 decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Helicity basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Transversity basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Angular distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Angular distribution analysis on Monte Carlo simulated data 11 3.1 Implementation of the angles calculation . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Validation studies on generated data . . . . . . . . . . . . . . . . . . . 12 3.2 B0 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Selection cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Angular distribution for MC reconstructed data . . . . . . . . . . . . . . . . . 16 3.3.1 Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.2 Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.3 Background subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.4 Results after acceptance parametrization and background subtraction 20 3.4 Conclusion on MC reconstructed data . . . . . . . . . . . . . . . . . . . . . . 22 4 Angular distribution analysis on real data 23 4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 1-D Angular distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 Conclusions 27 6 Appendix A: angular distribution calculation 29 6.1 Angular distribution - General case . . . . . . . . . . . . . . . . . . . . . . . . 29 6.1.1 Calculation of (cid:104)θ,φ,λ ,λ |J,M,λ ,λ (cid:105) . . . . . . . . . . . . . . . . . . 29 1 2 1 2 6.2 Angular distribution for a scalar decaying in two vector mesons . . . . . . . . 30 6.2.1 g functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 m 6.2.2 Calculation of the distribution . . . . . . . . . . . . . . . . . . . . . . 31 6.3 B0 →K∗0φ - transversity basis . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7 Appendix B: additional figures for MC and real data 33 7.1 MC generated data for validation . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.2 MC reconstructed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.3 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 CONTENTS 4 Chapter 1 Introduction The goal of this project is to study angular distribution of B0 → φK∗0 decays at LHCb, and to derive information on polarization fractions. Motivation WhenB mesonsdecayintwovectorparticles,B daughterparticlescanhavedifferentstates of helicities. The longitudinal fraction f =Γ /Γ, the fraction of states with a null helicity, L L is expected, in the limit of helicity conservation, to have a value close to 1. However, experimental values measured at Belle or BABAR are twice smaller for B0 → φK∗0. This difference between experimental and theoretical (“theoretical” may not be the right term, the PDG refers to it as “naive expectation”) values does not concern only this decay, but most of B0 → VV decays as shown in figure 1.1. Several ideas have been suggested to explain this phenomena, such as non-factorizable contributions to the B-decay amplitudes [1]. In order to clarify this problem, further studies are needed, in particularly at the LHCb. The present report focuses on determining f and other polarization parameters for the L decay B0 →φK∗0 using the LHCb 2011 data. Figure 1.1: Longitudinalpolarizationfractionf fordifferentB decaysintwovectorparticles[2] L Work This project is conducted within the work of LHCb, the detector dedicated to the study of the beauty quark and violation of CP symmetry. LHCb is one of the 4 main experiments at the Large Hadron Collider (LHC) at the CERN. 5 1Introduction The LHCb detector LHCb, shown in figure 1.2, is a single-arm spectrometer, composed of a vertex locator system, a tracking system made of a Trigger Tracker and three tracking stations placed on both sides of a dipole magnet, two Ring Imaging Cherenkov counters, a calorimeter system and a muon detection system1. The present study especially exploits information from the vertex locator and tracking system. TheRICHarealsousedastheyareparticularlyefficienttodifferentiatekaonsfrom pions. Figure 1.2: LHCb detector, scheme from [3] Report structure This report is structured in the following way: The first part introduces the helicity formalism and establishes the angular distribution for the present decay. The second step consists in the angular study on Monte Carlo simulated data. Acceptance and resolution effects are evaluated to prepare analysis on real data. The third part presents preliminary measurements on real data. 1Reference[3]givesacompletedescriptionofthedetectoranditsspecification. 6 Chapter 2 Angular distribution formalism and calculation 2.1 B0 → φK∗0 decay B0 is a pseudo-scalar meson composed of a quark and an antiquark ¯bd. The φ and K∗0 particles are also mesons but of spin 1. The decay B0 →φK∗0 is predominantly generated by a¯b→s¯gluonic penguin diagram. Figure 2.1: B0 →φK∗0 Feynman diagram Followed by the decays of φ and K∗0. In the present study, the channel K+K− for φ and Kπ for K∗0 are chosen. The branching fractions[4] are: B0 → φK∗0 (9.8±0.6)·10−6 φ → K+K− (48.9±0.5)% K∗0 → K+π− 2/3 (→ K0π0 1/3) 2.2 Formalism This section details the formalism for the calculation of angular distribution. First, the concept of helicity is introduced, along with the transversity basis. After a summarized explanation on how to obtain them, the angular distributions and their integrated forms for the two basis are given. 2.2.1 Helicity basis WhenaparticleM decaysintwodaughterparticlesP andP ,theangularmomentumcon- 1 2 servationstatesthatthespinofthemotherparticleisequaltothetotalangularmomentum 7 2Angulardistributionformalismandcalculation J = L+S of the daughter particles, where L is the orbital angular momentum, and S 12 12 the spin of the two daughter particles system. In the present case, the mother particle is the pseudo-scalar meson B, its spin is then S = 0 = J. The two daughter particles have a spin S = S = 1. The spin system S M 1 2 12 can take the value 0, 1 or 2, leaving L equal to 0, 1 or 2. Invoking the symmetry of wave functions under bosons exchange and parity conserva- tion, only S = L = 0 is left. Only three combinations of spin remains: |S ,S (cid:105) = |1,−1(cid:105), 1 2 |0,0(cid:105) and |−1,1(cid:105). This can be expressed in terms of helicity. The helicity operator is the projection of the spin in the direction of its momentum: hˆ = →−S · →−p , where →−S is the spin of the particle →− ||p|| →− and p the momentum of the particle. The authorized spin combinations correspond to the helicities (λ ,λ ) = (+1,+1), φ K∗0 (0,0) and (−1,−1). The available state can therefore be written |f (cid:105) = |J,M,+1,+1(cid:105), + |f (cid:105) = |J,M,0,0(cid:105) or |f (cid:105) = |J,M,−1,−1(cid:105), and form the helicity basis states (J = M = 0 0 − in the present case). Accordingly, the amplitude of the decay are labelled : H = (cid:104)f |H |B(cid:105), where H λ λ eff eff (cid:80) is the effective Hamiltonian. The final state is therefore written |Ψ(cid:105) = H |f (cid:105), where λ λ λ=+1,0,−1. 2.2.2 Transversity basis Angular distributions are mainly studied to identify CP eigenvalues of final states with differentangularmomentumconfigurations. Itistheninterestingtoexpressthedistribution intermsofparityeigenstates. Fromthedefinitionofthethreehelicitystates,itfollowsthat: |f (cid:105)+|f (cid:105) |f (cid:105)= + √ − P|f (cid:105)=|f (cid:105) P|f+(cid:105)=|f−(cid:105) || 2 || || P|f (cid:105)=|f (cid:105) P|f0(cid:105)=|f0(cid:105) |f (cid:105)= |f+(cid:105)√−|f−(cid:105) 0 0 ⊥ P|f (cid:105)=−|f (cid:105) (2.3) P|f (cid:105)=|f (cid:105) (2.1) 2 ⊥ ⊥ − + |f (cid:105)=|f (cid:105) (2.2) 0 0 Parity operator on Parity operator on Definition of the transversity basis helicity basis vectors transversity basis vectors The final state is then given by: (cid:88) |Ψ(cid:105)= A |f (cid:105) λ λ where λ=||,0,⊥ and A|| = H+√+2H−, A⊥ = H+√−2H−, A0 =H0. 2.3 Angular distribution The angular distribution d3Γ(χ,θ ,θ ) is proportional to the square of the amplitude. The 1 2 first step is thus to calculate the amplitude of the decay as a function of the angles of the daughter particles. Initscenter-of-mass(CM)frame,theinitialparticleisdescribedbyitsspinconfiguration |i(cid:105) = |J,M(cid:105). The two final particles are characterized by their momentum and helicities →− →− →− →− |p ,p ,λ ,λ (cid:105). As we are in the CM frame, p = −p and we can express the final state 1 2 1 2 1 2 by the two angles (θ,φ) giving the direction of particle 1 and the helicities of the particles 8 2Angulardistributionformalismandcalculation |f(cid:105)=|θ,φ,λ ,λ (cid:105). Their momentum are determined by energy conservation. 1 2 The amplitude of the decay is thus A = (cid:104)f|H |i(cid:105) = (cid:104)θ,φ,λ ,λ |H |JM(cid:105) and the eff 1 2 eff probabilityfortheparticlestoemergeattheangles(θ,φ)isgivenby|A|2. Iftheexperiment does not measure the helicities of the particles, they must be summed over. In order to exploit angular momentum conservation, a complete set of the helicity-basis states is introduced : (cid:88) A= (cid:104)θ,φ,λ ,λ |j,m,λ ,λ (cid:105)(cid:104)j,m,λ ,λ |H |JM(cid:105) 1 2 1 2 1 2 eff j,m (cid:88) = (cid:104)θ,φ,λ ,λ |j,m,λ ,λ (cid:105)δJδMH 1 2 1 2 j m λ1λ2 j,m =(cid:104)θ,φ,λ ,λ |J,M,λ ,λ (cid:105)H (2.4) 1 2 1 2 λ1λ2 The section 6.1.1 gives the explicit calculation of (cid:104)θ,φ,λ ,λ |J,M,λ ,λ (cid:105). 1 2 1 2 The next step is to apply the equation 2.4 to the full decay B0 → φK∗0, φ → K+K− andK∗0 →Kπ. Thisisrelatedinsection6.2andisfollowedbytheactualderivationofthe angular distribution from |A|2. The angular distributions for helicity and transversity bases are given here after. Their integrated forms are also reported as the core of the study focuses on 1-D angular distribu- tion. Angles are defined in the next section. In the helicity basis d3Γ(χ,θ ,θ ) 9 (cid:104) 1 2 = (|H |2+|H |2)sin2θ sin2θ +4|H |2cos2θ cos2θ dχdcosθ dcosθ 32π + − 1 2 0 1 2 1 2 +2(cid:8)(cid:60)(H H∗)cos2χ−(cid:61)(H H∗)sin2χ(cid:9)sin2θ sin2θ + − + − 1 2 +(cid:8)(cid:60)(cid:0)(H +H )H∗(cid:1)cosχ−(cid:61)(cid:0)(H −H )H∗(cid:1)sinχ(cid:9)sin2θ sin2θ (cid:105)(2.5) + − 0 + − 0 1 2 The angular distribution is normalized such that: (cid:90) 2π (cid:90) 1 (cid:90) 1 dχ dcosθ dcosθ d3Γ(χ,θ ,θ )=|H |2+|H |2+|H |2. 1 2 1 2 + − 0 0 −1 −1 The integration of the angular distribution over the different variables gives the following results : dΓ(χ) = 1 (cid:104)|H |2+|H |2+|H |2+2(cid:8)(cid:60)(H H∗)cos2χ−(cid:61)(H H∗)sin2χ(cid:9)(cid:105) dχ 2π + − 0 + − + − dΓ(θ ) 3(cid:104) (cid:105) 1 = (|H |2+|H |2)sin2θ +2|H |2cos2θ dcosθ 4 + − 1 0 1 1 dΓ(θ ) 3(cid:104) (cid:105) 2 = (|H |2+|H |2)sin2θ +2|H |2cos2θ (2.6) dcosθ 4 + − 2 0 2 2 In the transversity basis d3Γ(φ ,θ ,θ ) 9 (cid:104) tr tr 2 = |A |22sin2θ sin2φ sin2θ dφ dcosθ dcosθ 32π || tr tr 2 tr tr 2 +|A |22cos2θ sin2θ +|A |24sin2θ cos2φ cos2θ √⊥ tr 2 0 tr√ tr 2 + 2(cid:60)(A∗A )sin2θ sin2φ sin2θ − 2(cid:61)(A∗A )sin2θ cosφ sin2θ || 0 tr tr 2 0 ⊥ tr tr 2 (cid:105) −2(cid:61)(A∗A )sin2θ sinφ sin2θ (2.7) || ⊥ tr tr 2 9 2Angulardistributionformalismandcalculation By fitting the angular distribution, the norms and phases of the different amplitudes are obtained. The number of parameters to fit can be reduced by integrating the previous expressionoverφ . Asseenin2.8,thereisnomoredependanceoncombinatoryamplitudes. tr d2Γ(θ ,θ ) 9 (cid:104) tr 2 = |A |2sin2θ sin2θ dcosθ dcosθ 16 || tr 2 tr 2 (cid:105) +|A |22cos2θ sin2θ +|A |22sin2θ cos2θ (2.8) ⊥ tr 2 0 tr 2 If one wants to observe the distribution in function of the parity of the decay, remembering that A and A are amplitudes of the even parity states (A the amplitude of odd-parity), || 0 ⊥ it is only necessary to distinguish the last state from the two first. Integrating 2.8 over θ leads to the distribution 2.9, where even-parity states have distribution in sin2θ and 2 tr odd-parity in cos2θ . tr dΓ(θ ) 3(cid:104) (cid:105) tr = (|A |2+|A |2)sin2θ +2|A |2cos2θ (2.9) dcosθ 4 || 0 tr ⊥ tr tr Other integrations lead to the following distributions : 2-D distributions d2Γ(φ ,θ ) 3 (cid:104) tr 2 = 8|A |2sin2φ sin2θ +4|A |2sin2θ dφ dcosθ 32π || tr 2 ⊥ 2 tr 2 √ (cid:105) +16|A |2cos2φ cos2θ + 2(cid:60)(A∗A )sin2φ sin2θ 0 tr 2 || 0 tr 2 d2Γ(φ ,θ ) 3 (cid:104) tr tr = |A |2sin2θ sin2φ +|A |2cos2θ dφ dcosθ 4π || tr tr ⊥ tr tr tr (cid:105) +|A |2sin2θ cos2φ −(cid:61)(A∗A )sin2θ sinφ (2.10) 0 tr tr || ⊥ tr tr 1-D distributions dΓ(θ ) 3(cid:104) (cid:105) 2 = (|A |2+|A |2)sin2θ +2|A |2cos2θ dcosθ 4 || ⊥ 2 0 2 2 dΓ(φ ) 1 (cid:104) (cid:105) tr = 2|A |2sin2φ +|A |2+2|A |2cos2φ (2.11) dφ 2π || tr ⊥ 0 tr tr 10
Description: