ebook img

Studies of the Canadian Arctic Archipelago water transport and its relationship to basin‐ PDF

24 Pages·2016·5.93 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Studies of the Canadian Arctic Archipelago water transport and its relationship to basin‐

PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Studies of the Canadian Arctic Archipelago water transport and 10.1002/2016JC011634 its relationship to basin-local forcings: Results from AO-FVCOM KeyPoints: YuZhang1,2,ChangshengChen1,2,RobertC.Beardsley3,GuopingGao2,ZhigangLai4,BethCurry5, (cid:2)Ahigh-resolutionArcticOcean CraigM.Lee5,HuichanLin1,JianhuaQi1,andQichunXu1 FVCOMiscapableofsimulatingthe CAAoutflow 1SchoolforMarineScienceandTechnology,UniversityofMassachusetts-Dartmouth,NewBedford,Massachusetts,USA, (cid:2)Thebasin-scalesealevelpressureisa majordriveroftheCAAoutflow 2InternationalCenterforMarineStudies,ShanghaiOceanUniversity,Shanghai,China,3DepartmentofPhysical (cid:2)ThevolumefluxthroughDavisStrait Oceanography,WoodsHoleOceanographicInstitution,WoodsHole,Massachusetts,USA,4SchoolofMarineSciences,Sun isnegativelycorrelatedwiththeflux Yat-SenUniversity,Guangzhou,China,5AppliedPhysicsLaboratory,UniversityofWashington,Seattle,Washington,USA throughFramStrait Correspondenceto: Abstract Ahigh-resolution(upto2km),unstructured-grid,fullycoupledArcticseaice-oceanFinite-Vol- Y.Zhang, umeCommunityOceanModel(AO-FVCOM)wasemployedtosimulatetheflowandtransportthroughthe [email protected] CanadianArcticArchipelago(CAA)overtheperiod1978–2013.Themodel-simulatedCAAoutflowfluxwas inreasonableagreementwiththefluxestimatedbasedonmeasurementsacrossDavisStrait,NaresStrait, Citation: LancasterSound,andJonesSounds.Themodelwascapableofreproducingtheobservedinterannualvari- Zhang,Y.,C.Chen,R.C.Beardsley, G.Gao,Z.Lai,B.Curry,C.M.Lee,H.Lin, abilityinDavisStraitandLancasterSound.ThesimulatedCAAoutflowtransportwashighlycorrelatedwith J.Qi,andQ.Xu(2016),Studiesofthe thealong-straitandcross-straitseasurfaceheight(SSH)difference.Comparedwiththewindforcing,the CanadianArcticArchipelagowater sealevelpressure(SLP)playedadominantroleinestablishingtheSSHdifferenceandthecorrelationofthe transportanditsrelationshiptobasin- localforcings:ResultsfromAO-FVCOM, CAAoutflowwiththecross-straitSSHdifferencecanbeexplainedbyasimplegeostrophicbalance.The J.Geophys.Res.Oceans,121, changeinthesimulatedCAAoutflowtransportthroughDavisStraitshowedanegativecorrelationwiththe doi:10.1002/2016JC011634. netfluxthroughFramStrait.Thiscorrelationwasrelatedtothevariationofthespatialdistributionand intensityoftheslopecurrentovertheBeaufortSeaandGreenlandshelves.Thedifferentbasin-scalesurface Received8JAN2016 forcingscanincreasethemodeluncertaintyintheCAAoutflowfluxupto15%.Thedailyadjustmentofthe Accepted27MAY2016 modelelevationtothesatellite-derivedSSHintheNorthAtlanticregionoutsideFramStraitcouldproduce Acceptedarticleonline2JUN2016 alargerNorthAtlanticinflowthroughwestSvalbardandweakentheoutflowfromtheArcticOcean througheastGreenland. 1.Introduction TheArcticOceanisapolarbasinwithitsmajorwatersourcesconsistingofrelativelycoldandfreshPacific water inflowing through Bering Strait [Coachman and Aagaard, 1988], relatively warm and salty Atlantic waterenteringthrough Fram Strait andthe Barents Sea [Fahrbach et al., 2001]and river runoff (Figure 1). These water inflows coexist with outflows through two pathways: the Canadian Arctic Archipelago (CAA) StraitsandtheeasternshelfofGreenlandconnectedtoFramStrait[AagaardandCarmack,1989].TheCAA ischaracterizedbynumerousislands,straits,andnarrowandshallowchannelsorwaterpassages.TheCAA waterfromNaresStrait,LancasterSound,andJonesSoundflowsintoBaffinBayandthenenterstheNorth AtlanticOceanthroughDavisStrait[Tangetal.,2004;Cunyetal.,2005;Curryetal.,2011,2014],withasmall portion flowing into the Labrador Sea through Hudson Strait [Straneo and Saucier, 2008]. Fram Strait can carry the warm and salty Atlantic inflow named the West Spitsbergen Current (WSC) along the western coastofSpitsbergenandthecoldandfreshArcticoutflownamedtheEastGreenlandCurrent(EGC)[Schlich- tholzandHoussais,1999;Woodgateetal.,1999]. The inflow and outflow transports through the Arctic varied seasonally and interannually in responses to thebasin-scaleforcingwithinfluencesofglobalclimatechange[e.g.,Jahnetal.,2010;McGeehanandMas- lowski,2012;Wekerleetal.,2013].Thequalitativeandaccurateestimationofthesevariabilities,inturn,iscrit- ical to understanding the changes in the Arctic and the impacts on the North Atlantic Ocean. In the past decades,manymeasurementshavebeenmadetoestimatethetransportsthroughBeringStrait[Coachman and Aagaard, 1988; Roach et al., 1995; Woodgate et al., 2005, 2006,2010] and Fram Strait [Fahrbach et al., 2001;Schaueretal.,2004,2008;Rudelsetal.,2008],butonlyafewweremadeintheBarentsSeaOpening VC2016.AmericanGeophysicalUnion. AllRightsReserved. [Ingvaldsen et al., 2004; Skagseth et al., 2008] and the CAA. The measurements in the CAA were mainly ZHANGETAL. NUMERICALSTUDYONTHECAAVOLUMEFLUX 1 Journal of Geophysical Research: Oceans 10.1002/2016JC011634 Figure1.Bathymetryandschematicofnear-surfaceanddeepcirculationsintheArcticOcean.Redarrows:thedeepcurrents.Bluearrows: thenear-surfacecurrents.Redlines:thesectionswherethevolumefluxwasestimated.Box:theareaofDavisStraitthatisdisplayed enlargedinthelower-leftcorner.Theredtrianglesindicatethelocationsofcurrent/hydrographicmeasurementsitesinDavisStrait. focused on Nares Strait [Sadler, 1976; Mu€nchow et al., 2006, 2007; Mu€nchow and Melling, 2008], Lancaster Sound [Prinsenberg and Hamilton, 2005; Melling et al., 2008; Prinsenberg et al., 2009; Peterson et al., 2012], andJonesSound[Mellingetal.,2008],aswellasDavisStrait-adownstreamstraitcapturingwatertransports fromthethreemainwaterpathways[Cunyetal.,2005;Curryetal.,2011,2014]. OurcurrentunderstandingonthevariabilityoftheCAAoutflowismainlybasedonbothobservationalfindings andbasin-scaleArcticOceanmodels.Previousobservationssuggestedthattheseasurfaceheight(SSH)differ- encebetweentheArcticshelfandBaffinBayisthekeymechanismtocontroltheCAAoutflowtransport[e.g., Mu€nchowandMelling,2008;Petersonetal.,2012].Severalmodelingeffortsweremadetoexaminephysicalproc- essescontrollingtheSSHvariationintheCAA.Duetodifferencesindiscretealgorithm,gridresolution,bathym- etryandcoastlineapproximation,externaldrivingforcingandlateralboundaryconditions,etc.,however,the findings obtained from these models were diverse, often not consistent, and the mechanisms produced by themdifferedsubstantiallyintermsofparticulars[Jahnetal.,2010;HoussaisandHerbaut,2011;McGeehanand Maslowski,2012;Wekerleetal.,2013;Luetal.,2014].Whatarekeyexternalforcingcomponents,windsorsea levelpressure(SLP)orboth,attributingtotheonsetandvariabilityoftheSSHdifferenceandthustheCAAout- flow?Toourknowledge,thisquestionhasnotbeenwellunderstoodyetintermofaquantitativeassessment. ItiswellknownthatFramStraitandtheCAAarethetworegionsfortheArcticOceanwateroutflows.The outflowalongtheeastGreenlandcoastofFramStraitconsistsoftwomajorcurrentpathways:oneisfrom ZHANGETAL. NUMERICALSTUDYONTHECAAVOLUMEFLUX 2 Journal of Geophysical Research: Oceans 10.1002/2016JC011634 thecycloniccirculationintheEurasianBasinandalongtheLomonosovRidgeandtheotheristhecyclonic slopecurrentsfromtheBeaufortSea/CanadianBasin(Figure1).Assumingthattheinflowandoutfloware balanced,whentheinflowsaregiven,thevariationoftheoutflowthroughtheCAAcouldaffectthenetflux throughFramStrait.Thissuggeststhatastate-of-the-artArcticOceanmodelshouldhaveasufficientresolu- tiontobecapableofresolvingbothbasinandlocal-scalephysicalprocesses,particularlywithbetterrepre- senting the complex geometry of the CAA including narrow straits and water passages. This type of multiscale resolving model could provide us a tool to examine the role of the CAA in the Arctic Ocean system. The upper ocean circulation in the Arctic is dominated by the wind-drifting-driven and ice-drifting-driven anticycloniccirculation[Proshutinskyetal.,2001;Steeleetal.,2001;Hollowayetal.,2007;Chenetal.,2016]. Due to its severe natural conditions and limitations in past research efforts, the Arctic still remains in an insufficient monitoring status for both meteorological and oceanic conditions [Wekerle et al., 2013]. The externalforcingusedtoforceamodelisbasedfullyontheregionalorglobalmeteorologicalmodeloutputs with the lack of validation or calibration through observations. What level could a model-produced CAA outflow transport be affected when different meteorological forcings are used? Is it critical to resolve the local wind variability in narrow straits of the CAA when the CAA outflow is simulated? These questions should be addressed, since a fair model-data comparison is required to take the model uncertainty into account. FramStraitisaninflow-outflowstraitcontainingboththeNorthAtlanticinflowalongthewestcoastofSval- bardandtheArcticoutflowalongtheeastGreenlandshelf.Whetherornotamodelcanwellproducethe NorthAtlanticinflowdirectlyaffectstherealityandaccuracyofthenetoutflowfluxthroughFramStraitand hencethecirculationandiceintheArcticbasin.WhenaregionalmodelisappliedtotheArcticOcean,one isrequiredtosetuptheboundaryconditionsinbothAtlanticandPacificOcean.Eitherone-wayortwo-way nestingwithaglobalmodelisacommonapproachusedintheArcticOceanmodelsimulation.Aslongas Fram Strait is considered, the success of this approach depends on whether or not a global model could provide an accurate simulation of the North Atlantic water flux on the nesting boundary. The satellite- derived SSH is widely used in the global ocean models to improve the low-frequency spatial variation of thegradientoftheseasurfaceelevationandthusthebarotropiccomponentoftheoceancirculation[Mar- shalletal.,1997;Madecetal.,1998;PacanowskyandGriffies,1999;SmithandGent,2002;Blecketal.,2002; Chassignet et al., 2003, 2006; Chen et al., 2016]. The Archiving, Validation, and Interpretation of Satellite Oceanographic data (AVISO) daily satellite-derived SSH product covers the ocean region bounded by (cid:3)808S–808N. How will a regional Arctic Ocean model perform with the data assimilation of the satellite- derivedSSHintheArcticOcean?HowwillthenetfluxthroughFramStraitchangewhentheSSHassimila- tionistakenintoaccount?ConductingthemodelexperimentswithandwithouttheSSHassimilationcould help us not only address these questions but also explore the dynamics controlling the net flux through FramStrait. Anewhigh-resolution,global-basinnested,ice-seacoupledArcticOceanmodelwasdevelopedbasedon theunstructured-grid,Finite-VolumeCommunityOceanModel(hereafterreferredtoasAO-FVCOM)[Chen etal.,2009;Gaoetal.,2011;Chenetal.,2016].Themodelwasdesignedtomeetthefollowingstate-of-the- artArcticOceanmodelrequirements:(a)gridflexibilitytoresolvethecomplexcoastalgeometryandsteep continentalslopes;(b)massconservationinanumericalcomputationalsensetoaccuratelysimulatemass, heat,andsalttransport;(c)properparameterizationofverticalandlateralmixingtocapturewaterstratifica- tion;(d)advanceddataassimilationmethodstointegrateobservationswithsimulationresults;and(e)mod- ularstructurestofacilitateprocess-orientedandhindcast/forecastapplications[Chenetal.,2013].Usingthe AO-FVCOM,wehavesimulatedtheseaiceandcirculationintheArcticfortheperiod1978–2013.TheAO- FVCOMsimulationresultsprovideuswithanopportunitytovalidatethismodelthroughcomparisonswith observationsintheCAAandexaminethephysicalprocessescontrollingArcticoutflowthroughtheCAA. Inthispaper,weattempttoaddressthequestionsdescribedabove.Thesimulatedwatertransportisfirst comparedwithobservationstakenintheCAAandDavisStraittoensuretheabilityoftheAO-FVCOMtorea- sonably capture the seasonal and interannual variability of the CAA outflow. Then a series of process- orientedmodel-experimentsareconductedtoexaminethelocalandbasin-scalephysicalprocessesassoci- atedwithexternalforcing. ZHANGETAL. NUMERICALSTUDYONTHECAAVOLUMEFLUX 3 Journal of Geophysical Research: Oceans 10.1002/2016JC011634 The rest of the paper is organized as fol- lows. In section 2, the model setup and observational data are briefly described. In section 3, the comparison of observed and simulated water transports through the CAA and Davis Strait is presented. In section 4, the process-oriented experi- ment results are discussed, with a focus on the response of the CAA outflow to thelocalandbasin-scalevariability.Insec- tion5,sensitivitiesofthemodelperform- ance to external forcing, grid refinement and SSH assimilation are examined. Con- clusionsaresummarizedfollowingdiscus- sionsinsection6. 2.AO-FVCOMandObservational Data 2.1.AO-FVCOM The AO-FVCOM is an Arctic regional coupled ice-ocean model nested within the global FVCOM modeling system [Chen et al., 2016]. The FVCOM is a prog- nostic, unstructured-grid, Finite-Volume, free-surface,3-D primitiveequationCom- munity Ocean Model [Chen et al., 2003, Figure2.TheunstructuredtriangulargirdoftheAO-FVCOMnestedwith Global-FVCOM.BlackdashlinesindicatethenestingboundariesofAO- 2006,2007,2013].TheAO-FVCOMiscon- FVCOMandGlobal-FVCOM.Bluelineindicatesthe62.58Nline,thenorthern figured using a spherical coordinate ver- boundaryofSSTandSSHassimilation.Forthe36yearsimulation,theAO- sion of FVCOM with a horizontal FVCOMwasrunbymergingittotheGlobal-FVCOMwithahorizontalresolu- tionupto2kmintheCanadianArcticArchipelago. resolutionvaryingfrom2to40km,witha meanresolutionof(cid:3)5kmintheCAAand (cid:3)12kminthecentralArcticOcean(Figure2).Ahybridterrain-followingcoordinateisusedinthevertical, withatotalof45layers.Thes-coordinateisusedintheregiondeeperthanandequal225m,with10uni- formlayers(thicknessof5m)nearthesurfaceandfiveuniformlayers(thicknessof5m)nearthebottom, respectively.Ther-coordinateisspecifiedintheshallowcontinentalandcoastalregionsoflessthan225m. Theses-coordinateandr-coordinatehaveatransitionatthe225-isobathatwhichthethicknessofalllayers is 5 m. The AO-FVCOM can run either through nesting with Global-FVCOM or by merging into Global- FVCOM as a single global-scale model. Global-FVCOM has a horizontal resolution of up to 2 km and the sameverticalresolutionasAO-FVCOM.TheicemodelcoupledinAO-FVCOMandGlobal-FVCOMisUG-CICE: anunstructured-grid,finite-volumeversionoftheLosAlamosCommunityIceCodedevelopedbyGaoetal. [2011]. The36year(1978–2013)simulationwasconductedbyGlobal-FVCOMmergingwithAO-FVCOMwithresolu- tionupto2km.Themodelwasinitializedwiththe50yearspin-upoutputundera‘‘climatologic’’meteoro- logicalforcingandriverdischargeconditions[Gaoetal.,2011]anddrivenby(a)astronomicaltidalforcing witheightconstituents(M ,S ,N ,K ,K ,P ,O ,andQ ),(b)surfacewindstress,(c)netheatfluxatthesur- 2 2 2 2 1 1 1 1 faceplusshortwaveirradianceinthewatercolumn,(d)surfaceairpressuregradients,(e)precipitation(P) minusevaporation(E),and(f)riverdischarges[Gaoetal.,2011;Chenetal.,2016]. The1978–2013simulationbeganon1January1978.Theatmosphericforcingwastakenfromthe6hourly version-2datasetfortheCommonOcean-iceReferenceExperiments(CORE-v2)overtheperiod1978–2009 and then the National Center for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) data set over the period 2010–2013. A total of 766 rivers were included in the Global-FVCOM. The river discharges collected from the U.S. Geological Survey and the Water Survey of ZHANGETAL. NUMERICALSTUDYONTHECAAVOLUMEFLUX 4 Journal of Geophysical Research: Oceans 10.1002/2016JC011634 Figure3.(left)Originaland(right)refinedunstructuredtriangulargridsconfiguredintheBaffinBayregionusedinthesensitivityexperi- ments.Thehorizontalresolutionswere35and8kminthisregion,respectively,forthecaseswithoriginalandrefinedAO-FVCOMgrids. Canadawerespecifiedusingdailyreal-timerecords.Fortheriverswithoutreal-timedischargerecords,the climatologicallyaverageddailyrecordswereused.Toadjusttheinitialclimatologictemperatureandsalinity to the real-time observation, the satellite-derived global daily sea surface temperature (SST) (ftp://data. nodc.noaa.gov/pub/data.nodc/ghrsst/) andseasurfaceheight(SSH)(http://www.aviso.altimetry.fr/en/data/ products/sea-surface-height-products/global/msla-h.html) south of 62.58N was assimilated into Global- FVCOMbyanudgingmethod.Givenaprioristatisticalassumptionaboutthemodelnoiseanderrorsinthe observationaldata,thisassimilationmethodwastomergemodel-predictedvaluesdirectlytoobservations [Chenetal.,2013].TheSSTassimilationwasconductedthroughthesurfacemixedlayerwithitsthickness (whichcouldbetensofmeters)beingdeterminedusingthePWPmixedlayermodel[Priceetal.,1986].We collectedallavailableT/Sobservationaldata(e.g.,NODC,JAMSTEC,andArgo)andassimilatedthisintothe Global-FVCOMonthemonthlyaveragedscaletohelpensuresimulatedstratificationwouldbeconsistent withobservations.ThemodelusedamodifiedMellorandYamadalevel2.5(MY-2.5)andSmagorinskytur- bulentclosureschemesforverticalandhorizontalmixing,respectively[MellorandYamada,1982;Galperin etal.,1988;Smagorinsky,1963].Thetimestepusedforintegrationwas300s. ToexaminethesensitivityofthesimulatedCAAoutflow toexternalforcing, wereranthesimulationwith differentatmosphericforcingfromtheNCEP/NCARreanalysisandtheEuropeanCentreforMedium-Range WeatherForecasts(ECMWF)datasetsaswellasinadditionthehigh-resolution((cid:3)6km)hourlypolarwind fieldproducedbytheFifth-GenerationPennState/NCARMesoscaleModel(MM5)fortheperiod2004–2010. ToevaluatetheinfluenceofmodelresolutionontheaccuracyofthesimulatedCAAoutflow,wealsoreran themodelbyrefiningthegridfrom35to8kminBaffinBay(Figure3). 2.2.ObservationalData The simulated CAA outflow transport was compared with the observations of currents across Davis Strait (Figure 1). The Bedford Institute of Oceanography (BIO) deployed six moorings across Davis Strait in Sep- tember1987andtherecordscoveredtheperioduntilAugust1990[Cunyetal.,2005].Theseparationdis- tancebetweenmooringswasabout30–60km.Ateachmooring,threeAanderaaRecordingCurrentMeters (RCM5) were mounted at depths of around 150, 300, and 500 m. A new set of moorings were deployed againinSeptember2004,with14moorings:4ontheshelfofBaffinIsland,4ontheshelfofwesternGreen- land, and 6 in the interior of thestrait [Curry et al., 2011]. Thenumber of moorings variedwith the years. ZHANGETAL. NUMERICALSTUDYONTHECAAVOLUMEFLUX 5 Journal of Geophysical Research: Oceans 10.1002/2016JC011634 21 Duringtheyear2009–2010,itbecame12 moorings:2ontheshelfofBaffinIsland,4 C on the shelf of the western Greenland, and 6 in the interior of the strait [Curry 18 A et al., 2014]. The separation distance of a these moorings varied from (cid:3)0.1 to b 15 SecN-aNres Strait ifi2n6leterksrmio(Aro.DvCAerPco)thuwesetsircheemDlfootopupn(cid:3)lte1er6d–Ci6nu5rtrkhementdinePptrhtohe- Sec-L B between56and390mandSea-BirdElec- m) tronics(SBE)37MicroCATsweremounted k12 20 cm/s 20 10 cm/s in the depth between 20 and 500 m 1 D ×e ( 5 cm/s depending on the location [Curry et al., nc 2 cm/s 2014]. At each mooring in the interior of sta 9 thestrait,1-3AanderaaRecordingCurrent Di Meters(RCM8)weremountedinthedeep B G af r region between 200 and 500 m. A 6 fin e detailed summary of the locations, I e depths, record lengths, and types of sla n l instruments deployed between Septem- n a d ber 2004 and September 2010 was pub- n 3 d lished in the appendix of Curry et al. [2014]. We also compared the model results with observations taken in Nares 0 Strait [Sadler, 1976; Mu€nchow et al., 2006, 0 2 4 6 8 10 12 14 2007; Mu€nchow and Melling, 2008], Lan- Distance (×102 km) caster Sound [Peterson et al., 2012; Prin- senbergandHamilton,2005;Mellingetal., Figure4.Thedistributionofthemeancurrentvectorsaveragedintheupper 400mandovera36yearperiodof1978–2013inBaffinBaywithconnection 2008; Prinsenberg et al., 2009; Peterson toNaresStrait,LancasterSound,andJonesSound.Thecurrentswererescaled et al., 2012], and Jones Sound [Melling usingtheroot-squarevectorscaleandresampledwitha35kmresolutionto et al., 2008]. To examine the dynamical makevectorsvisible.Blackboxes:theareawherethemeansimulatedSSH wascalculatedintheupstreamanddownstreamofNaresStraitandLancaster relationshipoftheCAAoutflowtransport Sound.Blacklines:thesectionswheretheSSHdifferencewascalculatedin withtheArcticBasinvariability,thesimu- NaresStraitandLancasterSound.Thebacklineconnectedbetweenaandb isthestreamlineusedfortheanalyticalsolution. lated transports were compared with the observations taken in Bering Strait [Coachman and Aagaard, 1988; Roach etal.,1995;Woodgateetal.,2005,2006,2010],BarentsSeaOpening[Ingvaldsenetal.,2004;Skagsethetal., 2008],andFramStrait[Fahrbachetal.,2001;Schaueretal.,2004,2008;Rudelsetal.,2008]. 3.ValidationsoftheSimulatedCAAWaterTransport 3.1.MeanTransport The CAA outflows from Nares Strait, Lancaster Sound, and Jones Sound enter the North Atlantic Ocean throughDavisStrait.ThegeometriesofmajorwaterpassagesoftheCAAwerereasonablyresolvedinAO- FVCOMandthesimulated36yearaveragedresultscapturedtheCAAcirculationpatternsuggestedbypre- viousobservations.TheAO-FVCOMshowedthecoastal-intensifiedoutflowsthroughNaresStrait,Lancaster Sound and Johnes Sound (Figure 4). These flows brought the relarively cold and fresher water into Davis Straittoformastrongsouthwardcoastalcurrentnamedthe‘‘BaffinIslandCurrent(BIC)’’alongthewestern shelfofDavisStrait[Tanget al.,2004;Cuny etal.,2005]. Themodelsuggested aflowconnectivityamong thesethreeCAAoutflowpassages,whichdirectlycontributedtotheformationofBIC.DavisStraitwaschar- acterized by the northward inflow along the eastern slope and shelf, which could be traced back to the inflowofmixedWestGreenlandCoastal andSlopeCurrentsliketheobservationsdescribedinCurryetal. [2014]. ZHANGETAL. NUMERICALSTUDYONTHECAAVOLUMEFLUX 6 Journal of Geophysical Research: Oceans 10.1002/2016JC011634 Table1.ComparisonoftheVolumeFluxBetweenAO-FVCOMandObservationalEstimatesa FVCOM(Sv) Location Vol.Flux Std. Obs.(Sv) Source DavisStrait 21.83 0.80 Simulation(1978–2013) 21.51 0.46 22.661.0 Cunyetal.[2005](Sep1987toAug1990) 21.94 0.61 22.360.7 Curryetal.[2011](Oct2004toSep2005) 22.14 0.76 21.660.2 Curryetal.[2014](Oct2004toSep2010) NaresStrait 20.81 0.33 Simulation(1978–2013) 20.6760.1 Sadler[1976](AprtoJun1972) 20.73 0.48 20.860.3 Mu€nchowetal.[2006](Aug2003) 20.73 0.48 20.9160.1 Mu€nchowetal.[2007](Aug2003) 20.85 0.32 20.5760.09 Mu€nchowandMelling[2008](Aug2003toAug2006) LancasterSound 20.71 0.17 Simulation(1978–2013) 20.70 0.30 20.7560.25 PrinsenbergandHamilton[2005](Aug1998toSep2001) Mellingetal.[2008](Aug1998toAug2004) 20.68 0.32 20.760.4 Prinsenbergetal.[2009](Aug1998toAug2006) 20.65 0.32 20.760.3 Petersonetal.[2012](Aug1998toAug2006) 20.65 0.32 20.53 Petersonetal.[2012](Aug1998toAug2011) 20.62 0.33 20.4660.34 PrinsenbergandHamilton[2005](Aug1998toSep2001) JonesSound 20.31 0.05 Simulation(1978–2013) 20.31 0.03 20.3 Mellingetal.[2008](1998–2002) BeringStrait 0.88 0.08 Simulation(1978–2013) 0.8 CoachmanandAagaard[1988](1976–1977) 0.81 0.27 0.8360.25 Roachetal.[1995](Sep1990toSep1994) 0.86 0.08 0.8 Woodgateetal.[2005](1990–2004) 0.86 0.08 0.7–1.0 Woodgateetal.[2006](1991–2004) 0.85 0.08 0.6–1.0 Woodgateetal.[2010](1991–2007) BarentsSeaOpening 2.07 0.36 Simulation(1978–2013) 2.29 1.39 1.5 Ingvaldsenetal.[2004](Aug1997toAug2001) 2.21 0.34 1.8 Skagsethetal.[2008](1997–2006) FramStrait 21.10 0.70 Simulation(1978–2013) 20.46 1.03 24.262.3 Fahrbachetal.[2001](Sep1997toSep1999) 20.51 1.12 2262-2462 Schaueretal.[2004](Sep1997toAug2000) 20.58 0.50 2262.7 Schaueretal.[2008](1997–200s6) 20.83 0.74 21.7 Rudelsetal.[2008](1980–2005) aThemodel-estimatedtransportwasbasedonthe36yearaveragedcurrents.Note:thepositivesign,inflow;thenegativesign, outflow. In Davis Strait, the observed mean volume transports and uncertainties, which were estimated based on combineddirectcurrentandhydrographicmeasurementsmadeoverperiodsofSeptember1987toAugust 1990, October 2004 to September 2005, and October 2004 to September 2010, were 22.661.0 Sv [Cuny etal., 2005],22.360.7Sv[Curry etal.,2011], and21.660.2Sv[Curryetal., 2014],respectively(Table1). Sincethedifferencesofthesethreetransportvalueshadthesameorderofmagnitudeasthemeasurement uncertainty,wecouldnotestimatetheinterannualvariationofthetransportbasedonthesethreemeasure- ment period data. Correspondingly, the simulated volume transports calculated over the same periods as observationswere21.5,21.9,and22.1Sv(Table1),whichwere21.1and20.4Svsmallerthanobserved valuesovertheperiodsofSeptember1987toAugust1990andOctober2004toSeptember2005,respec- tively,and0.5SvlargerthantheobservedvalueovertheperiodofOctober2004toSeptember2010.The simulatedvolumetransportshowedatendencytoincreaseoverthethreemeasurementperiods.Wealso estimated the 36 year (1978–2013) averaged volume transport through Davis Strait, which was (cid:3)21.8 Sv withastandarddeviationof60.8Sv(Table1).Thisvaluewasveryclosetothemeanvalueof22.1Svwith theuncertaintyrangeof0.2–1.0SvestimatedfromthemeasurementsofCunyetal.[2005]andCurryetal. [2014]. Reasonable agreement between simulated and observed transports in Davis Strait was consistent with the model-datacomparisonsmadeinNaresStrait,LancasterSoundandJonesSound.NaresStraitisoneofthe majorwaterpassagesofArcticoutflowenteringtheCAAandhasawidthof(cid:3)35km.Theobservedvolume transports and uncertainties were 20.6760.1 Sv [Sadler, 1976], 20.860.3 Sv [Mu€nchow et al., 2006], 20.9160.1Sv[Mu€nchowetal.,2007],and20.5760.09Sv[Mu€nchowandMelling,2008].Thesetransportval- ues were estimated based on current measurements made across Robeson Channel over the period April– June, 1972, the ship-board ADCP/hydrographic survey data across Kennedy Channel in early August 2003, ZHANGETAL. NUMERICALSTUDYONTHECAAVOLUMEFLUX 7 Journal of Geophysical Research: Oceans 10.1002/2016JC011634 four cross-strait ADCP/hydrographictransects takeninAugust2003 inRobeson Channel,northern Kennedy Channel,southernKennedyChannel,andSmithSound,and3yearcurrentmeasurementsovertheperiodof August2003toAugust2006,respectively.Themeantransportvalueaveragedoverthesefourmeasurement periodswas20.74Svwiththemeasurementuncertaintyrangeof60.09–0.3Sv. The AO-FVCOM simulations covered the two measurement periods of August 2003 and August 2003 to August 2006. Correspondingly, the simulated volume transports for these two periods were 20.73 and 20.85 Sv, respectively (Table 1), which were 0.13 Sv smaller than the mean value of 20.86 Sv averaging fromMu€nchowetal.[2006]andMu€nchowetal.[2007],and0.28Svlargerthantheobservedvaluereported byMu€nchowandMelling[2008]. Itshouldbepointedoutthattheobservedtransportbasedon3yearcurrentmeasurementsovertheperiod ofAugust2003toAugust2006[Mu€nchowandMelling,2008]wasestimatedbyexcludingtheupper30m. We recomputed the simulated transport over the same period for the case by excluding the upper 30 m layer,whichequaledto20.68Sv,0.17Svsmallerthanthetotaltransportthroughouttheentirewatercol- umn. Compared with theobserved transport, thesimulatedtransport with excludingtheupper 30 m still showedanoverestimationbyavalueof0.11Sv.Ifweconsideredthemeasurementuncertaintyof0.09Sv, thesimulatedtransportwasveryclosetotheobservedtransport.Thisresultalsosuggestedthattheuncer- taintyduetoeitherdifferentsamplingresolutionsintheverticalandhorizontalormodelaccuracydueto inaccurateexternalandboundaryforcingcouldbeintherangeof0.02Sv. The 36 year AO-FVCOM simulation showed that Nares Strait accounted for (cid:3)44% of the total transport throughDavisStrait.Thesimulated36yearmeantransportthroughNaresStraitwas20.81Svwithastand- arddeviationof60.33Sv(Table1),whichwasabout0.07Svlargerthanthemeanvalueestimatedbased onthefourmeasurements.Thisdifferencewaswithinthemeasurementuncertaintyrange. Lancaster Sound, located in thewest of Baffin Bay, is about 100 km wide. Moored current measurements wereinitiated in western LancasterSound in 1998 and continued until 2011.The observed meanvolume transports and standard deviations, estimated based on measurements over the periods of 1988–2001, 1998–2004,and1998–2006,were20.7560.25Sv[PrinsenbergandHamilton,2005],20.760.4Sv[Melling etal.,2008],and20.760.3Sv[Prinsenbergetal.,2009],respectively.Usingthesamemeasurementdataas Prinsenberg et al. [2009], Peterson et al. [2012] recalculate the mean volume transport over 1998–2006 by introducinganimprovedalgorithm,whichproducedatransportof20.53Sv.Itwasclearthatduetoinsuffi- cient spatial sampling, the transport estimated by different methods could cause a difference of 0.17 Sv. Usingthesameapproachandextendingthedatatocovertheperiodof2007–2011,Petersonetal.[2012] reportedameanvolumetransportandstandarddeviationof20.4660.34Sv. SimilartotheresultsshowninPrinsenbergandHamilton[2005],Mellingetal.[2008],andPrinsenbergetal. [2009], the simulated mean transport over the periods with measurements shows minor differences from the36yearmeanvalue.Theywere20.70Svovertheperiodsof1998–2001;20.68Svovertheperiodsof 1998–2004; and 20.65 Sv over the periods of 1998–2006, and 20.62 Sv over the periods of 1998–2011 (Table 1). The simulated transport was 0.12 and 0.16 Sv larger than the values reported by Peterson et al. [2012].Theseerrorsweresmallerthan0.17Sv,thedifferenceoftransportsestimatedbyPrinsenbergetal. [2009]andPeterson etal.[2012]withdifferentalgorithms.Thesimulated36 yearmeantransport through Lancaster Sound was 20.71 Sv with a standard deviation of 60.17 Sv and showed that the outflow from LancasterSoundaccountedfor(cid:3)39%ofthetotalCAAoutflowthroughDavisStrait. JonesSoundislocatedtothenorthofLancasterSound.Thetwonarrowchannels,CardiganStraitandHell Gate,arewaterpassagesintheCAAthatoutflowthroughJonesSound[Wekerleetal.,2013].Severalefforts weremadetoestimatethetransportthroughthesetwochannelsandthemeantotalvolumetransportesti- matedbasedoncurrentmeasurementsover1988–2002was20.3Sv:20.2SvthroughCardiganStraitand 20.1SvthroughHellGate[Mellingetal.,2008].Correspondingly,overthesameperiod,thesimulatedmean total transport and a standard deviation through Cardigan Strait and Hell Gate 20.3160.03 Sv (Table 1), withadifferenceof0.01Svcomparedwiththeobservations.The36yearsimulatedtotaltransportoverthe period 1978–2013 through Jones Sound was 20.3160.05 Sv, implying that the yearly mean transport remained relatively constant, with small interannual variability in the standard deviation range of 0.05 Sv. The36yearAO-FVCOMsimulationshowedthattheoutflowthroughJonesSoundaccountedfor(cid:3)17%of thetotaloutflowtransportthroughDavisStrait. ZHANGETAL. NUMERICALSTUDYONTHECAAVOLUMEFLUX 8 Journal of Geophysical Research: Oceans 10.1002/2016JC011634 -0.5 -1 v) S ort (-1.5 p ns -2 a me tr-2.5 u ol V -3 -3.5 04-05 05-06 06-07 07-08 08-09 09-10 0.5 Sv) 0 ort ( p ns-0.5 a e tr m olu -1 V -1.5 98-99 99-00 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 Time (year) Figure5.Comparisonsof(top)yearly(October–September)simulated(red)andobserved(blue)volumefluxesinDavisStraitoverthe period2004–2010and(bottom)yearly(August–July)simulated(red)andobserved(blue)volumefluxesinLancasterSoundoverthe period1998–2011.Thebluesolidverticalbarinthetopplotistheobserveduncertainty[Curryetal.,2014].Theredandbluedashedverti- calbarsarethesimulatedandobservedstandarddeviations. SeveralmodelingeffortsweremadetoestimatetheCAAoutflowtransportinpreviousstudies.McGeehan andMaslowski[2012]usedtheNavalPostgraduateSchoolArcticModelingEffort(NAME)modeltosimulate theArcticOceancirculationovertheperiod1979–2004.Withahorizontalresolutionof1/128((cid:3)9km),the simulated26yearmeanvolumetransportplusstandarddeviationwas21.5560.29SvthroughDavisStrait; 20.7760.17SvthroughNaresStrait,and20.7660.12SvthroughLancasterSound.ThewidthsofCardi- ganStraitandHellGatewere(cid:3)10km,whichcouldnotbewellresolvedinNAME,andthetransportresult fromJonesSoundwasnotdescribedintheirpaper.Thesimulatedtransportswereingoodagreementwith observationsinNaresStraitandLancasterSound,butabout0.55Svlowerthanthemeanobservationsin DavisStrait.Wekerleetal.[2013]appliedtheunstructured-gridFiniteElementSeaice-OceanModel(FESOM) tosimulatetheCAAoutflowtransportovertheperiod1968–2007.Withahorizontalmodelresolutionofup to (cid:3)5 km, the simulated 40 year mean volume transport was 21.8160.31 Sv through Davis Strait, 20.9160.16 Sv through Nares Strait, 20.8660.16 Sv through Lancaster Sound, and 20.0460.01 Sv throughJonesStrait.ThetransportsestimatedbytheFESOMandAO-FVCOMhadnosignificantdifference inDavisStrait,NaresStrait,andLancasterSound,buttheFESOM-estimatedtransportthroughJonesSound was(cid:3)0.26SvsmallerthanboththeobservedandAO-FVCOMvalues.Thisdifferenceaccountedfor87%of thetotaltransportthroughthissound. 3.2.SeasonalandInterannualVariability Wecompared theAO-FVCOM-simulatedannuallyandmonthlyaveragedvolumetransportswithobserva- tionsinDavisStraitovertheperiod2004–2010summarizedbyCurryetal.[2014]andinLancasterSound over the period 1998–2011 described by Prinsenberg and Hamilton [2005], Prinsenberg et al. [2009], and Petersonetal.[2012].InDavisStrait,theobservedannualmeanoutflowtransportwas22.0Svover2004– 2005, gradually decreased to 21.3 Sv over 2005–2008, increased to 21.8 Sv over 2008–2009 and then droppedto21.5Svover2009–2010(Figure5,top)[seealsoCurryetal.,2014].Thesimulatedannualmean outflow transport was 0.1 Sv smaller over 2004–2005, 0.5, 0.6, and 0.5larger over 2005–2008,2008–2009, and2009–2010,respectively.Themeasurementuncertaintiesoverthesefourperiodswere0.5,0.6,0.4and 0.5 Sv, respectively. Considering these measurement uncertainties, the simulated annual mean outflow ZHANGETAL. NUMERICALSTUDYONTHECAAVOLUMEFLUX 9 Journal of Geophysical Research: Oceans 10.1002/2016JC011634 0.5 Observed 6-year mean (10/2004-09/2010) 0 Simulated 6-year mean (10/2004-09/2010) v)-0.5 S ort ( -1 nsp-1.5 me tra-2-.52 u ol -3 V -3.5 -4 1 2 3 4 5 6 7 8 9 10 11 12 Time (month) 3 Observed anomaly (minus 6-year mean: 10/2004-09/2010) 2.5 Simulated anomaly (minus 6-year mean: 10/2004-09/2010) v) 2 ort (S 1.51 nsp 0.5 e tra-0.50 m u -1 ol V-1.5 -2 -2.5 Jan Jan Jan Jan Jan Jan 2005 2006 2007 2008 2009 2010 Figure6.Comparisonsofmonthlysimulatedandobserved(top)volumefluxesand(bottom)anomaliesinDavisStraitovertheperiod 2004–2010.Blue:observed,red:monthlyfluxandanomalyaveragedoverthe6yearsimulationperiodofOctober2004toSeptember 2010.Thebluesolidverticalbarinthetopplotistheobservationaluncertainty.Theredandbluedashedverticalbarsarethesimulated andobservedstandarddeviations. transport was in reasonable agreement with observations. The AO-FVCOM captured the interannual vari- abilityoftheoutflowthroughDavisStraitoverthemeasurementperiods2004–2010. TheinterannualvariabilityoftheoutflowtransportwasalsoobservedandcapturedbyAO-FVCOMinLan- casterSound(Figure5,bottom).Bothobservationsandmodelsuggestedadecreaseover2002–2008and anincreaseover2008–2009,thenadecreaseover2009–2011.Sincenomeasurementuncertaintywasgiven intheobservedtransportinLancasterSound,itwasdifficulttoestimatemodelerrorsinthisregion. ItappearedthattheobservedandsimulatedCAAoutflowtransportthroughDavisStraitexhibiteddifferent seasonalvariationpatterns(Figure6,top).Over2004–2010,thetransportestimatedbytheobserveddata showedthatthe6yearmonthlyaveragedobservedtransportvariedseasonallyinarangeof(cid:3)1.3Sv,with theminimumvalueof21.0SvinNovemberandthemaximumvalueof22.3SvinJune.Thesimulatedsea- sonalvariabilitywasinasimilarrangeof(cid:3)1.4Sv,butwiththeminimumvalueof21.4SvoccurringinOcto- ber and the maximum value of 22.8 Sv occurring in January. Both observed and simulated monthly transport anomalies were in a range of 61.6 Sv except December 2009, in which the simulated anomaly wasabove2.0Sv(Figure6,bottom). Thedifferencebetweenmaximumandminimumtransportswas1.3Svfortheobservationsand1.4Svforthe model,whichwasclosetothemeasurementuncertaintyof(cid:3)1.1Sv.Fortheobservations,thetransportdiffer- encebetweenOctoberandNovemberwasonly0.1Sv,butthemeasurementuncertaintyforthese2months was0.8–1.0Sv.Iftakingthemeasurementuncertaintyintoaccount,thetimingdifferencebetweenobserved and simulated minimum transports should not be significant. Similarly, the observed transport difference betweenJanuaryandJunewas0.6Sv,whichwaswithinthemeasurementuncertaintyof0.8–1.1Sv.Forthe samereason,onecouldnotconfirmthatthetransportwaslargerinJunethaninJanuary.Luetal.[2014]used theNucleusforEuropeanModelingoftheOcean(NEMO)tosimulatethetransportthroughDavisStraitover theperiod1998–2007,andtheirresultsalsoshowedamaximumtransportinwinterratherthansummer.Itis prematuretoattributethedifferenceinthetimingofthemaximumtransportshowninmodelsandobserva- tionstothemodeluncertaintyrelatingtoexternalforcing,ice,andwaterstratification.Thereisnodoubt,how- ever,thatmoreattentionshouldbepaidonthisissueinfutureobservationsandmodeling. ZHANGETAL. NUMERICALSTUDYONTHECAAVOLUMEFLUX 10

Description:
Canadian Arctic Archipelago (CAA) over the period 1978–2013. The SST assimilation was conducted through the surface mixed layer with its
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.