Student’s Manual Essential Mathematics for Economic Analysis rd 3 edition Knut Sydsæter Arne Strøm Peter Hammond For further supporting resources please visit: www.pearsoned.co.uk/sydsaeter Preface Thisstudent’ssolutionsmanualaccompaniesEssentialMathematicsforEconomicAnalysis(3rdedition,FT ⊂⊃ PrenticeHall,2008). Itsmainpurposeistoprovidemoredetailedsolutionstotheproblemsmarked SM inthe text. ThisManualshouldbeusedinconjunctionwiththeanswersinthetext. Insomefewcasesonlyapart oftheproblemisdoneindetail,becausetherestfollowsthesamepattern. WearegratefultoCarrenPindiriri forhelpwiththeproofreading. Wewouldappreciatesuggestionsforimprovementsfromourreadersaswell ashelpinweedingoutinaccuraciesanderrors. OsloandCoventry,July2008 KnutSydsæter ([email protected]) ArneStrøm ([email protected]) PeterHammond ([email protected]) Version: 9July2008 Contents 1 IntroductoryTopicsI:Algebra ........................................................ 1 2 IntroductoryTopicsII:Equations ..................................................... 4 3 IntroductoryTopicsIII:Miscellaneous ................................................. 6 4 FunctionsofOneVariable ........................................................... 8 5 PropertiesofFunctions ............................................................ 12 6 Differentiation ................................................................... 14 7 DerivativesinUse ................................................................ 18 8 Single-VariableOptimization........................................................ 22 9 Integration ...................................................................... 26 10 InterestRatesandPresentValues..................................................... 33 11 FunctionsofManyVariables ........................................................ 35 12 ToolsforComparativeStatics ....................................................... 37 13 MultivariableOptimization ......................................................... 42 14 ConstrainedOptimization .......................................................... 48 15 MatrixandVectorAlgebra .......................................................... 57 16 DeterminantsandInverseMatrices ................................................... 61 17 LinearProgramming .............................................................. 67 ©KnutSydsæter,ArneStrøm,andPeterHammond2008 CHAPTER 1 INTRODUCTORY TOPICS I: ALGEBRA 1 Chapter 1 Introductory Topics I: Algebra 1.1 1. (a)True (b)False. −5issmallerthan−3,soonthenumberlineitistotheleftof−3. (SeeFig.1.1.1 inthebook.) (c)False. −13isaninteger,butnotanaturalnumber. (d)True. Anynaturalnumberis rational. For example 5 = 5√/1. (e)√False, since 3.1415 = 31415/10000, the quotient of two integers. (f)False. Counterexample: 2+(− 2) = 0. (g)True. (h)True. 1.3 9. (a) (2t−1)(t2−2t+1) = 2t(t2−2t+1)−(t2−2t+1) = 2t3−4t2+2t−t2+2t−1 = 2t3−5t2+4t−1 (b) (a+1)2 +(a−1)2 −2(a+1)(a−1) = a2 +2a+1+a2 −2a+1−2a2 +2 = 4 (c) (x + y + z)2 = (x + y + z)(x + y + z) = x(x + y + z) + y(x + y + z) + z(x + y + z) = x2+xy+xz+yx+y2+yz+zx+zy+z2 = x2+y2+z2+2xy+2xz+2yz (d) (x−y−z)2 = (x−y−z)(x−y−z) = x2−xy−xz−xy+y2−yz−xz−yz+z2,so(x+y+z)2−(x−y−z)2 = 4xy+4xz 13. (a) a2+4ab+4b2 = (a+2b)2usingthefirstquadraticidentity. (d) 9z2−16w2 = (3z−4w)(3z+4w), accordingtothedifference-of-squaresformula. (e) −1x2 +2xy −5y2 = −1(x2 −10xy +25y2) = 5 5 −1(x − 5y)2 (f) a4 − b4 = (a2 − b2)(a2 + b2), using the difference-of-squares formula. Since 5 a2 −b2 = (a−b)(a+b),theanswerinthebookfollows. 1.4 1 1 x +2 x −2 x +2−x +2 4 5. (a) − = − = = x −2 x +2 (x −2)(x +2) (x +2)(x −2) (x −2)(x +2) x2 −4 (b)Since4x +2 = 2(2x +1)and4x2 −1 = (2x +1)(2x −1),theLCDis2(2x +1)(2x −1). Then 6x +25 6x2 +x −2 (6x +25)(2x −1)−2(6x2 +x −2) 21(2x −1) 21 − = = = 4x +2 4x2 −1 2(2x +1)(2x −1) 2(2x +1)(2x −1) 2(2x +1) 18b2 a 18b2 −a(a−3b)+2(a2 −9b2) a(a+3b) a (c) − +2 = = = a2 −9b2 a+3b (a+3b)(a−3b) (a+3b)(a−3b) a−3b 1 1 1 a2 −4−a(a−2)+8a 2(5a−2) 5a−2 (d) − + = = = 8ab 8b(a+2) b(a2 −4) 8ab(a2 −4) 8ab(a2 −4) 4ab(a2 −4) (cid:2) (cid:3) 2t −t2 5t 2t t(2−t) 3t −t(t −2) 3t −3t2 (e) · − = · = · = t +2 t −2 t −2 t +2 t −2 t +2 t −2 t +2 (cid:4) (cid:5) (cid:4) (cid:5) a 1− 1 a− 1 a 1− 1 (f) 2a = 2 = 4a−2,so2− 2a = 2−(4a−2) = 4−4a = 4(1−a) 0.25 1 0.25 4 2 1 2(x +1)+x −3x(x +1) 2−3x2 6. (a) + −3 = = x x +1 x(x +1) x(x +1) t t t(2t −1)−t(2t +1) −2t (b) − = = 2t +1 2t −1 (2t +1)(2t −1) 4t2 −1 3x 4x 2x −1 3x(x −2)+4x(x +2)−(2x −1) 7x2 +1 (c) − − = = x +2 2−x (x −2)(x +2) (x −2)(x +2) x2 −4 ©KnutSydsæter,ArneStrøm,andPeterHammond2008 2 CHAPTER 1 INTRODUCTORY TOPICS I: ALGEBRA (cid:2) (cid:3) (cid:2) (cid:3) 1 1 1 1 1 1 1 1 + + xy − − ·x2y2 x y x y y +x x2 y2 x2 y2 y2 −x2 (d) = = = x +y (e) = (cid:2) (cid:3) = 1 1 1 1 1 1 1 x2 +y2 ·xy + + ·x2y2 xy xy x2 y2 x2 y2 a(y −x) y −x (f)Multiplythenumeratorandthedenominatorbyxy. Thenthefractionreducesto = . a(y +x) y +x (cid:4) (cid:5) (cid:4) (cid:5) 8. (a) 1 − 1 = 5 − 4 = 1 ,so 1 − 1 −2 = 1 −2 = 202 = 400 4 5 20 20 20 4 5 20 n n·n n2 n(n−1)−n2 −n (b) n− = n− (cid:6) (cid:7) = n− = = 1 1 n−1 n−1 n−1 1− 1− ·n n n 1 1 1 1 1 u (c) Ifu = xp−q,then + = + = + = 1 1+xp−q 1+xq−p 1+u 1+1/u 1+u 1+u (cid:2) (cid:3) 1 1 + (x2 −1) x −1 x2 −1 x +1+1 x +2 1 (d) (cid:2) (cid:3) = = = 2 x3−x −2x +2 (x +2)(x2 −2x +1) (x −1)2 x − (x2 −1) x +1 1 1 − 1 1 x2 −(x +h)2 −2xh−h2 (x +h)2 x2 −2x −h (e) − = = ,so = (x +h)2 x2 x2(x +h)2 x2(x +h)2 h x2(x +h)2 10x2 2x (f) Multiplyingdenominatorandnumeratorbyx2 −1 = (x +1)(x −1)yields = 5x(x −1) x −1 1.5 √ √ √ √ 5. (Ne√eds some hints√.) Mult√iply the d√enominato√r and the num√erator by: (a) 7 − 5 (b) 5 − 3 (c) 3+2 (d)x y −y x (e) x +h+ x (f)1− x +1 7. Theanswerswilldependonthecalculatoryouuse. 12. (a) For x = 1 the left-hand side is 4 and the right-hand side is 2. (In fact, (2x)2 = 22x.) (b) Correct because ap−q = ap/aq (c) Correct because a−p = 1/ap (d) For x = 1 it says 5 = 1/5, which is absurd. (e) For x = y = 1, it says that a2 = 2a, which is usually wrong. (In fact, ax+y = axay.) √ √ √ √ √ (f)2 x ·2 y = 2 x+ y,not2 xy. 1.6 3x +1 3x +1 3x +1−2(2x +4) −x −7 4. (a)2 < hasthesamesolutionsas −2 > 0,or > 0,or > 0 2x +4 2x +4 2x +4 2x +4 A sign diagram reveals that the inequality is satisfied for −7 < x < −2. A serious error is to multiply theinequalityby2x +4, withoutassumingthat2x +4 > 0. Whenmultiplyingwith2x +4whenthis number is negative, the inequality sign must be reversed. (It might be a good idea to test the inequality forsomevaluesofx. Forexample,forx = 0itisnottrue. Whataboutx = −5?) 120 3 3(160−n) (b)The inequality is equivalent to − ≤ 0, i.e. ≤ 0. A sign diagram reveals that the n 4 4n inequality is satisfied for n < 0 and for n ≥ 160. (Note that for n = 0 the inequality makes no sense. Forn = 160,wehaveequality.) ©KnutSydsæter,ArneStrøm,andPeterHammond2008 CHAPTER 1 INTRODUCTORY TOPICS I: ALGEBRA 3 (c) Easy: g(g − 2) ≤ 0 etc. (d) Note that p2 − 4p + 4 = (p − 2)2, and the inequality reduces to p+1 ≥ 0. Thefractionmakesnosenseifp = 2. Theconclusionfollows. (p−2)2 −n−2 −n−2−2n−8 −3n−10 (e)Theinequalityisequivalentto −2 ≥ 0,i.e. ≥ 0,or ≥ 0,etc. n+4 n+4 n+4 (f)Seethetextanduseasigndiagram. (Don’tcancelx2. Ifyoudo,x = 0appearsasafalsesolution.) 5. (a)Useasigndiagram. (b)Theinequalityisnotsatisfiedforx = 1. Ifx (cid:7)= 1,itisobviouslysatisfied for x + 4 > 0, i.e. x > −4 (because (x − 1)2 is positive when x (cid:7)= 1). (c) Use a sign diagram. (d)Theinequalityisnotsatisfiedforx = 1/5. Ifx (cid:7)= 1/5,itisobviouslysatisfiedforx < 1. (e)Useasigndiagram. ((5x −1)11 < 0ifx < 1/5,> 0ifx > 1/5.) 3x −1 3x −1 −(1+x2) (f) > x +3, −(x +3) > 0, > 0,sox < 0. (1+x2 isalwayspositive.) x x x x −3 x −3 −2x(x +2) (g) > 2x −1or −(2x −1) < 0or < 0. Thenuseasigndiagram. x +3 x +3 x +3 (h)Usethehintandasigndiagram. (Actually,thisproblemandthenextcouldbepostponedtoSection2.3 ifyouhaveforgottenyourhighschoolalgebra.) (i)Usethehintandasigndiagram. ReviewProblemsforChapter1 4. (a)(2x)4 = 24x4 = 16x4 (b)2−1−4−1 = 1/2−1/4 = 1/4,so(2−1−4−1)−1 = 4 (c)Cancelthecommonfactor4x2yz2. (d)−(−ab3)−3 = −(−1)−3a−3b−9 = a−3b−9,so a5·a3·a−2 a6 [−(−ab3)−3(a6b6)2]3 = [a−3b−9a12b12]3 = [a9b3]3 = a27b9 (e) = = a3 a−3·a6 a3 (cid:8)(cid:6) (cid:7) (cid:9) (cid:8) (cid:9) x 3 8 −3 x3·8 −3 (f) · = = (x5)−3 = x−15 2 x−2 8·x−2 √ (cid:4)√ √ (cid:5) √ √ √ √ √ 8. Allarestra√ightforward,except(c),(g),and(h): (c)− 3 3− 6 = −3+ 3 6 = −3+ 3 3 2 = −3+3 2 (g) (1+x +x2 +x3)(1−x) = (1+x +x2 +x3)−(1+x +x2 +x3)x = 1−x4 (h)(1+x)4 = (1+x)2(1+x)2 = (1+2x +x2)(1+2x +x2)a.s.o. 11. (a)and(b)areeasy. (c)ax+ay+2x+2y = ax+2x+ay+2y = (a+2)x+(a+2)y = (a+2)(x+y) (d)2x2−5yz+10xz−xy = 2x2+10xz−(xy+5yz) = 2x(x+5z)−y(x+5z) = (2x−y)(x+5z) (e)p2−q2+p−q = (p−q)(p+q)+(p−q) = (p−q)(p+q+1) (f)Seetheanswerinthebook. s s s(2s +1)−s(2s −1) 2s 15. (a) − = = 2s −1 2s +1 (2s −1)(2s +1) 4s2 −1 x 1−x 24 −x(x +3)−(1−x)(x −3)−24 −7(x +3) −7 (b) − − = = = 3−x x +3 x2 −9 (x −3)(x +3) (x −3)(x +3) x −3 y −x y −x 1 (c) Multiplyingnumeratoranddenominatorbyx2y2 yields, = = y2 −x2 (y −x)(y +x) x +y 16. (a) Cancel the factor 25ab. (b) x2 −y2 = (x +y)(x −y). Cancel x +y. (c) The fraction can be (2a−3b)2 2a−3b 4x −x3 x(2−x)(2+x) x(2+x) written = . (d) = = (2a−3b)(2a+3b) 2a+3b 4−4x +x2 (2−x)2 2−x ©KnutSydsæter,ArneStrøm,andPeterHammond2008 4 CHAPTER 2 INTRODUCTORY TOPICS II: EQUATIONS Chapter 2 Introductory Topics II: Equations 2.1 3. (a)Wenotefirstthatx = −3andx = −4bothmaketheequationabsurd. Multiplyingtheequationby the common denominator, (x +3)(x +4), yields (x −3)(x +4) = (x +3)(x −4), and thus x = 0. (b) Multiplying by the common denominator (x − 3)(x + 3) yields 3(x + 3) − 2(x − 3) = 9, from whichwegetx = −6. (c)Multiplyingbythecommondenominator15x (assumingthatx (cid:7)= 0,yields 18x2 −75 = 10x2 −15x +8x2,fromwhichwegetx = 5. 5. (a)Multiplyingbythecommondenominator12yields9y−3−4+4y+24 = 36y,andsoy = 17/23. (b) Multiplying by 2x(x +2) yields 8(x +2)+6x = 2(2x +2)+7x, from which we find x = −4. 2−2z−z (c)Multiplyingthenumeratorandthedenominatorinthefirstfractionby1−z,leadsto = (1−z)(1+z) 6 . Multiplyingby(1−z2)(2z+1)yields(2−3z)(2z+1) = 6−6z2,andsoz = 4. 2z+1 (d) Expanding the parentheses we get p − 3 − 1 + p − 1 + p = −1. Multiplying by the common 4 8 4 12 3 3 3 denominator24givesanequationwiththesolutionp = 15/16. 2.2 (cid:2) (cid:3) a+b a b 1 1 1 2. (a)Multiplybothsidesbyabxtoobtainb+a = 2abx. Hence,x = = + = + . 2ab 2ab 2ab 2 a b (b)Multiplytheequationbycx +d toobtainax +b = cAx +dA,or(a −cA)x = dA−b,andthus x = (dA−b)/(a−cA). (c)Multiplytheequationbyx1/2 toobtain 1p = wx1/2,thusx1/2 = p/2w, √ 2 so,bysquaringeachside,x = p2/4w2. (d)Multiplyeachsideby 1+x toobtain1+x +ax = 0, sox = −1/(1+a). (e)x2 = b2/a2,sox = ±b/a. (f)Weseeimmediatelythatx = 0. 4. (a)αx −a = βx −b ⇐⇒ (α−β)x = a−b,sox = (a−b)/(α−β). √ (b)Squaringeachsideof pq = 3q +5yieldspq = (3q +5)2,sop = (3q +5)2/q. (c)Y = 94+0.2(Y −(20+0.5Y)) = 94+0.2Y −4−0.1Y,so0.9Y = 90,andthenY = 100. (cid:4) (cid:5) r (d)Raiseeachsidetothe4thpower: K21 K = Q4,soK3 = 2wQ4/r,andhenceK = 2wQ4/r 1/3. 2w (e)Multiplyingnumeratoranddenominatorintheleft-handfractionby4K1/2L3/4,(cid:6)leads(cid:7)to2L/K = r/w, r fromwhichwegetL = rK/2w. (f)Raiseeachsidetothe4thpower: 1 p4K−1 1 = r4. Itfollows 16 2w thatK−1 = 32r3w/p4,soK = 1 p4r−3w−1. 32 1 1 1 T −t tT √ 5. (a) = − = , so s = . (b) KLM = B + αL, so KLM = (B + αL)2, and s t T tT T −t so M = (B +αL)2/KL. (c) Multiplying each side by x −z yields, x −2y +xz = 4xy −4yz, or (x+4y)z = 4xy−x+2y,andsoz = (4xy−x+2y)/(x+4y). (d)V = C−CT/N,soCT/N = C−V andthusT = N(1−V/C). 2.3 5. (a) See the answer in the book. (b) If the first natural number is n, then the next is n + 1, so the requirementisthatn2+(n+1)2 = 13,whichreducesto2n2+2n−12 = 0,i.e. n2+n−6 = 0. This second-orderequationhasthesolutionsn = −3andn = 2,sothetwonumbersare2and3. (Ifweasked forintegersolutions,wewouldhave−3and−2inaddition.) ©KnutSydsæter,ArneStrøm,andPeterHammond2008 CHAPTER 2 INTRODUCTORY TOPICS II: EQUATIONS 5 (c) If the shortest side is x, the other is x + 14, so according to Pythagoras’Theorem (see page 633 and draw a picture), x2 +(x +14)2 = (34)2, or x2 +14x −480 = 0. The solutions are x = 16 and x = −30, so the shortest side is 16 cm and the longest is 30 cm. (d) If the usual driving speed is x km/handtheusualtimespentist hours,thenxt = 80. 16minutesis16/60 = 4/15hours,sodrivingat thespeedx +10fort −4/15hoursgives(x +10)(t −4/15) = 80. Fromthefirstequation,t = 80/x. Inserting this into the second equation, we get (x +10)(80/x −4/15) = 80. Rearranging, we obtain x2 +10x −3000 = 0,whosepositivesolutionisx = 50. Sohisusualdrivingspeedis50km/h. 2.4 4. (a) If the two numbers are x and y, then x +y = 52 and x −y = 26. Adding the two equations gives 2x = 78, so x = 39, and then y = 52−39 = 13. (b) Let the cost of one chair be $x and the cost of onetable$y. Then5x +20y = 1800and2x +3y = 420. Solvingthissystemyieldsx = 120,y = 60. (c)UnitsproducedofB:x. Thenx+ 1x = 3x unitsareproducedofA,and300· 3x+200x = 13000, 2 2 2 or650x = 13000,sox = 20. Thus,30ofqualityAand20ofqualityBshouldbeproduced. (d)Ifsheinvests$x at15%and$y at20%,thenx +y = 1500and0.15x +0.2y = 275. Thesolution isx = 8000andy = 2000. 2.5 2. (a)Thenumerator5+x2 isnever0,sotherearenosolutions. (b)Theequationisobviouslyequivalent x2 +1+2x (x +1)2 to = 0, or = 0, so x = −1. (c) x = −1 is clearly no solution. Multiply x2 +1 x2 +1 the equation by (x + 1)2/3. Then the denominator becomes x + 1 − 1x, which is 0 for x = −3/2. 3 (d)Multiplyingbyx −1andrearrangingyieldsx(2x −1) = 0,andsox = 0orx = 1/2. 3. (a)z = 0satisfiestheequation. Ifz (cid:7)= 0,cancelingz2 yieldsz−a = za+zb,orz(1−(a+b)) = a. If a+b = 1wehaveacontradiction. Ifa+b (cid:7)= 1,z = a/(1−(a+b)). (b)Theequationisequivalent to(1+λ)μ(x −y) = 0,soλ = −1,μ = 0,orx = y. (c)μ = ±1makestheequationmeaningless. Multiplyingtheequationby1−μ2 yieldsλ(1−μ) = −λ,orλ(2−μ) = 0,soλ = 0orμ = 2. (d)Theequationisequivalenttob(1+λ)(a−2) = 0,sob = 0,λ = −1,ora = 2. ReviewProblemsforChapter2 2. SeeProblem2.1.3. 3. (a)x = 2(y −3)+y = 2y −2+y = 5y −2,or 5y = x +2,soy = 3(x +2). 3 3 3 3 5 (b)√ax −cx = b+d,or(a−c)x = b+d,sox = (b+d)/(a−c). (c) L = Y /AK,sosquaringeachsideyieldsL = (Y /AK)2. (d)qy = m−px,soy = (m−px)/q. 0 0 (e)and(f): Seetheanswersinthetext. 5. (a)Multiplytheequationby5K1/2 toobtainK1/2 = 15L1/3. SquaringeachsidegivesK = 225L2/3. (b)Raiseeachsidetothepower1/t toobtain1+r/100 = 21/t,andsor = 100(21/t −1). (c)abxb−1 = p,soxb−1 = p/ab. Nowraiseeachsidetothepower1/(b−1). 0 0 (d)Raiseeachsidetothepower−ρ toget(1−λ)a−ρ+λb−ρ = c−ρ,orb−ρ = λ−1(c−ρ−(1−λ)a−ρ). Nowraiseeachsidetothepower−1/ρ. 9. (a)Seetheanswerinthetext. (b)Letu = 1/x andv = 1/y. Thenthesystemreducesto3u+2v = 2, 2u−3v = 1/4,withsolutionu = 1/2,v = 1/4. Itfollowsthatx = 1/u = 2andy = 1/v = 4. (c)Seetheanswerinthetext. ©KnutSydsæter,ArneStrøm,andPeterHammond2008 6 CHAPTER 3 INTRODUCTORY TOPICS II: MISCELLANEOUS Chapter 3 Introductory Topics II: Miscellaneous 3.1 3. (a)–(d): Lookatthelasttermandreplacenbyk. Sumoverk from1ton. (e)Thecoefficientsarethe powers3n forn = 1,2,3,4,5,sothegeneraltermis3nxn. (f)and(g)seeanswersinthetext. (h) This is tricky. One has to see that each term is 198 larger that the previous term. (The problem is relatedtothestoryaboutGaussonpage56.) (cid:10) (cid:10) 7. (a) n ck2 = c·12 +c·22 +···+c·n2 = c(12 +22 +···+n2) = c n k2 k=1 k=1 (b)Wrongevenforn = 2: Theleft-handsideis(a +a )2 = a2 +2a a +a2,buttheright-handside 1 2 1 1 2 2 isa2 +a2. (c)Bothsidesequalb +b +···+b . (d)Bothsidesequal51+52 +53+54+55. 1 2 1 2 N (e)Bothsidesequala2 +···+a2 . (f)Wrongevenforn = 2: Theleft-handsideisa +a /2,but 0,j n−1,j 1 2 theright-handsideis(1/k)(a +a ). 1 2 3.2 5. Onedoesnothavetousesummationsigns. Thesumisa+(a+d)+(a+2d)+···+(a+(n−1)d. Therearenterms. Thesumofallthea’sisna. Therestisd(1+2+···+n−1). Thenuseformula(4). 3.3 (cid:10) (cid:10) (cid:4) (cid:5) (cid:10) (cid:11)(cid:4) (cid:5) (cid:4) (cid:5) (cid:4) (cid:5) (cid:12) (cid:4) (cid:5) (cid:4) (cid:5) (cid:4) (cid:5) 1. (a)Seethetext. (b) 2 4 rs 2 = 2 2s 2+ 3s 2+ 4s 2 = 2 2+ 3 2+ 4 2+ (cid:4) (cid:5) (cid:4) (cid:5) (cid:4) (cid:5) s=0 r=2 r+s s=0 2+s 3+s 4+s 3 4 5 4 2 + 6 2 + 8 2 = 5+ 3113 4 (cid:10) 5(cid:10) 6 (cid:10) 3600(cid:10) (c) m n i·j2 = m i· n j2 = 1m(m+1)·1n(n+1)(2n+1) = 1 m(m+1)n(n+1)(2n+1), i=1 j=1 i=1 j=1 2 6 12 whereweused(4)and(5). (cid:2) (cid:3) (cid:13)n (cid:13)m (cid:13)n 1 1 1 4. a¯ isthemeanofthea¯ ’sbecausea¯ = a = a¯ . s rs s n m n s=1 r=1 s=1 Toprove(∗),notethatbecausea −a¯ isindependentofthesummationindexs,itisacommonfactor (cid:10) rj (cid:10) whenwesumovers,so m (a −a¯)(a −a¯) = (a −a¯) m (a −a¯)foreachr. Next,summing s=1 rj sj rj s=1 sj overr gives (cid:14) (cid:15)(cid:14) (cid:15) (cid:13)m (cid:13)m (cid:13)m (cid:13)m (a −a¯)(a −a¯) = (a −a¯) (a −a¯) (∗∗) rj sj rj sj r=1 s=1 r=1 s=1 Usingthepropertiesofsumsandthedefinitionofa¯ ,wehave j (cid:13)m (cid:13)m (cid:13)m (a −a¯) = a − a¯ = ma¯ −ma¯ = m(a¯ −a¯) rj rj j j r=1 r=1 r=1 (cid:10) Similarly, replacing r with s as the index of summation, one also has m (a − a¯) = m(a¯ − a¯). s=1 sj j Substitutingthesevaluesinto(∗∗)thenconfirms(∗). 3.4 √ √ √ 6. (a)If (i) x −4 = x +5−9,thenalso (ii)x −4 = ( x +5−9)2,whichwegetbysquaringboth √ sidesin(i). Calculatingthesquareontheright-handsideof(ii)gives x +5 = 5,andsox +5 = 25, ©KnutSydsæter,ArneStrøm,andPeterHammond2008 CHAPTER 3 INTRODUCTORY TOPICS II: MISCELLANEOUS 7 i.e. x = 20. This shows that if x is a solution of (i), then x = 20. No other va√lue of x can satisfy (i). But if we√check this solution, we find that with x = 20 the LHS of (i) becomes 16 = 4, and the RHS becomes 25−9 = 5−9 = −4. ThustheLHSandtheRHSaredifferent. Thismeansthatequation(i) actuallyhasnosolutionsatall. (Butnotethat42 = (−4)2, i.e.thesquareoftheLHSequalsthesquare oftheRHS.Thatishowthespurioussolutionx = 20managedtosneakin.) √ √ (b)Ifxisasolutionof(iii) x −4 = 9− x +5,thenjustasinpart(a)wefindthatxmustbeasolution √ √ √ of(iv)x −4 = (9− x +5)2. Now,(9− x +5)2 = ( x +5−9)2,soequation(iv)isequivalent toequation(ii)inpart(a). Thismeansthat(iv)hasexactlyonesolution, namelyx = 20. Insertingthis valueofx intoequation(iii),wefindthatx = 20isasolutionof(iii). Ageometricexplanationoftheresultscanbegivenwithreferencetothefollowingfigure. y √ y =9− x+5 5 √ y = x−4 x 5 10 15 20 25 -5 √ y = x+5−9 Figure SM3.4.6 √ Weseethatthetwosolidcurvesinthefigurehavenopointincommon,thatis,theexpressions x −4 √ √ √ and x +5−9arenotequalforanyvalueofx. (Infact,thedifference x −4−( x +5−9)increases with x, so there is no point of intersection farther to the right, either.) This explains why the equation √ √ in(a)hasnosolution. Thedashedcurvey = 9− x +5,ontheotherhand,intersectsy = x +5for x = 20(andonlythere),andthiscorrespondstothesolutioninpart(b). Comment: In part (a) it was necessary to check the result, because the transition from (i) to (ii) is only an implication, not an equivalence. Similarly, it was necessary to check the result in part (b), since the transitionfrom(iii)to(iv)alsoisonlyanimplication—atleast,itisnotclearthatitisanequivalence. (Afterwards, it turned out to be an equivalence, but we could not know that until we had solved the equation.) √ 7. (a)Herewehave“iff”since 4 = 2. (b)Itiseasytoseebymeansofasigndiagramthatx(x+3) < 0 precisely when x lies in the open interval (−3,0). Therefore we have an implication from left to right (that is, “only if”), but not in the other direction. (For example, if x = 10, then x(x + 3) = 130.) (c) x2 < 9 ⇐⇒ −3 < x < 3, so x2 < 9 only if x < 3. If x = −5, for instance, we have x < 3 but x2 > 9. Hence we cannot have “if” here. (d) x2 +1 is never 0, so we have “iff” here. (e) If x > 0, thenx2 > 0,butx2 > 0alsowhenx < 0. (f)x4+y4 = 0 ⇐⇒ x = 0andy = 0. Ifx = 0and,say, y = 1,thenx4+y4 = 1,sowecannothave“if”here. 9. (a)Ifx andy arenotbothnonnegative,atleatoneofthemmustbenegative,i.e. x < 0ory < 0. (b)Ifnotallx aregreaterthanorequaltoa,atleastonex mustbelessthana. (c)Atleastoneofthem is less than 5. (Would it be easier if the statement to negate were “Neither John nor Diana is less than 5yearsold”?) (d)–(f)Seetheanswersinthetext. ©KnutSydsæter,ArneStrøm,andPeterHammond2008 8 CHAPTER 4 FUNCTIONS OF ONE VARIABLE 3.7 3. Forn = 1,bothsidesare1/2. Suppose(∗)istrueforn = k. Thenthesumofthefirstk+1termsis 1 1 1 1 1 k 1 + + +···+ + = + 1·2 2·3 3·4 k(k+1) (k+1)(k+2) k+1 (k+1)(k+2) k 1 (k+1)2 k+1 But + = = ,whichis(∗)forn = k+1. Thus,byinduction, k+1 (k+1)(k+2) (k+1)(k+2) k+2 (∗)istrueforalln. 4. Theclaimistrueforn = 1. Astheinductionhypothesis,supposek3 +(k+1)3 +(k+2)3 isdivisible by 9. Note that (k + 1)3 + (k + 2)3 + (k + 3)3 = (k + 1)3 + (k + 2)3 + k3 + 9k2 + 27k + 27 = k3+(k+1)3+(k+2)3+9(k2+3k+3). Thisisdivisibleby9becausetheinductionhypothesisimplies thatthesumofthefirstthreetermsisdivisibleby9,whereasthelasttermisalsoobviouslydivisibleby9. ReviewProblemsforChapter3 6. (b) ⇒ false (because x2 = 16 also has the solution x = −4), ⇐ true, because if x = 4, then x2 = 16. (c) ⇒ true, ⇐ false because with y > −2 and x = 3, (x −3)2(y +2) = 0. (d) ⇒ and ⇐ both true, since the equation x3 = 8 has the solution x = 2 and no others. (In the terminology of Section 6.3, f(x) = x3 isstrictlyincreasing. SeeProblem6.3.3andseethegraphFig. 7,page88.) 9. ConsiderFig.A3.6.8,page643inthebook,andletn denotethenumberofstudentsinthesetmarkedS , k k fork = 1,2,...,8. SetsA,B,andCrefertothosewhostudyEnglish,French,andSpanish,respectively. Since 10 students take all three languages, n = 10. There are 15 who take French and Spanish, so 7 15 = n +n , and thus n = 5. Furthermore, 32 = n +n , so n = 22. Also, 110 = n +n , so 2 7 2 3 7 3 1 7 n = 100. Therestoftheinformationimpliesthat52 = n +n +n +n ,son = 52−5−22−10 = 15. 1 2 3 6 7 6 Moreover,220 = n +n +n +n ,son = 220−100−5−10 = 105. Finally,780 = n +n +n +n , 1 2 5 7 5 1 3 4 7 son = 780−100−22−10 = 648. Theanswerstotheproblemsare: 4 (cid:10) (a): n = 100 (b): n +n = 648+22 = 670 (c)1000− 8 n = 1000−905 = 95 1 3 4 i=1 i Chapter 4 Functions of One Variable 4.2 1. (a) f(0√) = 02 +√1 = 1, f(−1) = (−1)2 + 1 = 2, f(1/2) = (1/2)2 + 1 = 1/4 + 1 = 5/4, and f( 2) = ( 2)2 + 1 = 2 + 1 = 3. (b) (i) Since (−x)2 = x2, f(x) = f(−x) for all x. (ii)f(x+1) = (x+1)2+1 = x2+2x+1+1 = x2+2x+2andf(x)+f(1) = x2+1+2 = x2+3. Thus equalityholdsifandonlyifx2+2x+2 = x2+3,i.e.ifandonlyifx = 1/2. (iii)f√(2x) = (2x)√2+1 = 4x2 +1and2f(x) = 2x2 +2. Now,4x2 +1 = 2x2 +2 ⇔ x2 = 1/2 ⇔ x = ± 1/2 = ±1 2. 2 10. (a) No: f(2+1) = f(3) = 1√8,whereasf(2)+f(1) = 10. (b) Y√es: f(2+1) = f(2)+f(1) = −9. (c) No: f(2+1) = f(3) = 3 ≈ 1.73,whereasf(2)+f(1) = 2+1 ≈ 2.41. 13. (a) Wemustrequire5−x ≥ 0,sox ≤ 5. (b) Thedenominatorx2 −x = x(x −1)mustbedifferent from0,sox (cid:7)= 0andx (cid:7)= 1. (c) Tobeginwith,thedenominatormustbenonzero,sowemustrequire x (cid:7)= 2 and x (cid:7)= −3. Moreover, since we can only take the square root of a nonnegative number, the fraction(x−1)/(x−2)(x+3)mustbe≥ 0.AsigndiagramrevealsthatD = (−3,1]∪(2,∞). Note f inparticularthatthefunctionisdefinedwithvalue0atx = 1. ©KnutSydsæter,ArneStrøm,andPeterHammond2008