ebook img

Structure-based Design of Drugs and Other Bioactive Molecules: Tools and Strategies PDF

476 Pages·2014·10.936 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Structure-based Design of Drugs and Other Bioactive Molecules: Tools and Strategies

Arun K. Ghosh and Sandra Gemma Structure-based Design of Drugs and Other Bioactive Molecules Tools and Strategies ArunK.GhoshandSandraGemma Structure-basedDesignofDrugsand OtherBioactiveMolecules RelatedTitles Li,J.J.,Corey,E.J.(eds.) DrugDiscovery Practices,Processes,andPerspectives 2013 ISBN:978-0-470-94235-2(Alsoavailable inelectronicformats) Brown,N.(ed.) ScaffoldHoppinginMedicinalChemistry 2014 ISBN:978-3-527-33364-6(Alsoavailable inelectronicformats) Schneider,G.(ed.) DenovoMolecularDesign 2014 ISBN:978-3-527-33461-2(Alsoavailableinelectronicformats) Young,D.C. ComputationalDrugDesign AGuideforComputationalandMedicinalChemists(withCD-Rom) 2009 PrintISBN:978-0-470-12685-1(Alsoavailableinelectronicformats) Arun K. Ghosh and Sandra Gemma Structure-based Design of Drugs and Other Bioactive Molecules Tools and Strategies TheAuthors AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editors,and Prof.Dr.ArunK.Ghosh publisherdonotwarranttheinformationcontained PurdueUniversity inthesebooks,includingthisbook,tobefreeof DepartmentofChemistry errors.Readersareadvisedtokeepinmindthat andDepartmentofMedicinalChemistry statements,data,illustrations,proceduraldetailsor 560OvalDrive otheritemsmayinadvertentlybeinaccurate. WestLatayette,IN UnitedStates LibraryofCongressCardNo.:appliedfor BritishLibraryCataloguing-in-PublicationData Prof.Dr.SandraGemma Acataloguerecordforthisbookisavailablefromthe UniversitàdegliStudiSiena BritishLibrary. DipartimentodiBiotecnologie,Chimicae Farmacia BibliographicinformationpublishedbytheDeutsche viaAldoMoro2 Nationalbibliothek 53100Siena TheDeutscheNationalbibliothekliststhis Italy publicationintheDeutscheNationalbibliografie; detailed bibliographicdataareavailableonthe Internet at < http:// dnb.d-nb.d e> . #2014Wiley-VCHVerlagGmbH&Co.KGaA, Boschstr.12,69469Weinheim,Germany Allrightsreserved(includingthoseoftranslationinto otherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobeconsidered unprotectedbylaw. PrintISBN: 978-3-527-33365-3 ePDFISBN: 978-3-527-66524-2 ePubISBN: 978-3-527-66523-5 MobiISBN: 978-3-527-66522-8 oBookISBN: 978-3-527-66521-1 CoverDesign BlueseaDesign,McLeeseLake, Canada Typesetting ThomsonDigital,Noida,India PrintingandBinding MarkonoPrintMediaPteLtd, Singapore Printedonacid-freepaper j V Contents Preface XIII 1 FromTraditionalMedicinetoModernDrugs:Historical PerspectiveofStructure-BasedDrugDesign 1 1.1 Introduction 1 1.2 DrugDiscoveryDuring1928–1980 1 1.3 TheBeginningofStructure-BasedDrugDesign 6 1.4 Conclusions 12 References 13 PartOne Concepts,Tools,Ligands,andScaffoldsforStructure-Based DesignofInhibitors 19 2 DesignofInhibitorsofAsparticAcidProteases 21 2.1 Introduction 21 2.2 DesignofPeptidomimeticInhibitorsofAsparticAcidProteases 22 2.3 DesignofStatine-BasedInhibitors 24 2.4 DesignofHydroxyethyleneIsostere-BasedInhibitors 29 2.5 DesignofInhibitorswithHydroxyethylamineIsosteres 35 2.5.1 SynthesisofOpticallyActivea-AminoalkylEpoxide 37 2.6 Designof(Hydroxyethyl)urea-BasedInhibitors 40 2.7 (Hydroxyethyl)sulfonamide-BasedInhibitors 42 2.8 DesignofHeterocyclic/NonpeptidomimeticAspartic AcidProteaseInhibitors 42 2.8.1 Hydroxycoumarin-andHydroxypyrone-BasedInhibitors 44 2.8.2 DesignofSubstitutedPiperidine-BasedInhibitors 46 2.8.3 DesignofDiaminopyrimidine-BasedInhibitors 50 2.8.4 DesignofAcylGuanidine-BasedInhibitors 51 2.8.5 DesignofAminopyridine-BasedInhibitors 53 2.8.6 DesignofAminoimidazole-andAminohydantoin-BasedInhibitors 53 2.9 Conclusions 56 References 56 VIjContents 3 DesignofSerineProteaseInhibitors 67 3.1 Introduction 67 3.2 CatalyticMechanismofSerineProtease 67 3.3 TypesofSerineProteaseInhibitors 67 3.4 HalomethylKetone-BasedInhibitors 69 3.5 DiphenylPhosphonate-BasedInhibitors 70 3.6 TrifluoromethylKetoneBasedInhibitors 73 3.6.1 SynthesisofTrifluoromethylKetones 76 3.7 PeptidylBoronicAcid-BasedInhibitors 78 3.7.1 Synthesisofa-AminoalkylBoronicAcidDerivatives 83 3.8 Peptidyla-Ketoamide-anda-Ketoheterocycle-BasedInhibitors 85 3.8.1 Synthesisofa-Ketoamideanda-KetoheterocyclicTemplates 90 3.9 DesignofSerineProteaseInhibitorsBasedUponHeterocycles 93 3.9.1 Isocoumarin-DerivedIrreversibleInhibitors 94 3.9.2 b-Lactam-DerivedIrreversibleInhibitors 95 3.10 Reversible/NoncovalentInhibitors 97 3.11 Conclusions 104 References 105 4 DesignofProteasomeInhibitors 113 4.1 Introduction 113 4.2 CatalyticMechanismof20SProteasome 113 4.3 ProteasomeInhibitors 114 4.3.1 DevelopmentofBoronateProteasomeInhibitors 115 4.3.2 Developmentofb-LactoneNaturalProduct-BasedProteasome Inhibitors 116 4.3.3 DevelopmentofEpoxyKetone-DerivedInhibitors 118 4.3.4 NoncovalentProteasomeInhibitors 120 4.4 Synthesisofb-LactoneScaffold 121 4.5 SynthesisofEpoxyKetoneScaffold 123 4.6 Conclusions 126 References 126 5 DesignofCysteineProteaseInhibitors 131 5.1 Introduction 131 5.2 DevelopmentofCysteineProteaseInhibitorswithMichael Acceptors 132 5.3 DesignofNoncovalentCysteineProteaseInhibitors 136 5.4 Conclusions 140 References 140 6 DesignofMetalloproteaseInhibitors 143 6.1 Introduction 143 6.2 DesignofMatrixMetalloproteaseInhibitors 144 ContentsjVII 6.3 DesignofInhibitorsofTumorNecrosisFactor-a-Converting Enzymes 150 6.4 Conclusions 152 References 152 7 Structure-BasedDesignofProteinKinaseInhibitors 155 7.1 Introduction 155 7.2 ActiveSiteofProteinKinases 155 7.3 CatalyticMechanismofProteinKinases 156 7.4 DesignStrategyforProteinKinaseInhibitors 156 7.5 NatureofKinaseInhibitorsBaseduponBinding 160 7.5.1 TypeIKinaseInhibitorsandTheirDesign 160 7.5.2 TypeIIKinaseInhibitorsandTheirDesign 164 7.5.3 AllostericKinaseInhibitorsandTheirDesign 168 7.5.4 CovalentKinaseInhibitorsandTheirDesign 172 7.6 Conclusions 177 References 177 8 ProteinX-RayCrystallographyinStructure-BasedDrugDesign 183 8.1 Introduction 183 8.2 ProteinExpressionandPurification 184 8.3 SynchrotronRadiation 185 8.4 StructuralBiologyinFragment-BasedDrugDesign 186 8.5 SelectedExamplesofFragment-BasedStudies 187 8.6 Conclusions 196 References 197 9 Structure-BasedDesignStrategiesforTargetingG-Protein-Coupled Receptors(GPCRs) 199 9.1 Introduction 199 9.2 High-ResolutionStructuresofGPCRs 200 9.3 VirtualScreeningAppliedtotheb2-Adrenergic Receptor 201 9.4 Structure-BasedDesignofAdenosineA2AReceptor Antagonists 204 9.5 Structure-GuidedDesignofCCR5Antagonists 207 9.5.1 DevelopmentofMaravirocfromHTSLeadMolecules 207 9.5.2 ImprovementofAntiviralActivityandReductionof CytochromeP450Activity 208 9.5.3 ReductionofhERGActivityandOptimizationofPharmacokinetic Profile 209 9.5.4 OtherCCR5Antagonists 213 9.6 Conclusion 213 References 213 VIIIjContents PartTwo Structure-BasedDesignofFDA-ApprovedInhibitorDrugsandDrugs UndergoingClinicalDevelopment 217 10 Angiotensin-ConvertingEnzymeInhibitorsfortheTreatment ofHypertension:DesignandDiscoveryofCaptopril 219 10.1 Introduction 219 10.2 DesignofCaptopril:theFirstClinicallyApproved Angiotensin-ConvertingEnzymeInhibitor 220 10.3 StructureofAngiotensin-ConvertingEnzyme 225 10.4 DesignofACEInhibitorsContainingaCarboxylateas ZincBindingGroup 228 10.5 ACEInhibitorsBearingPhosphorus-BasedZincBindingGroups 231 10.5.1 Phosphonamidate-BasedInhibitors 232 10.5.2 PhosphonicandPhosphinicAcidDerivatives:thePathto Fosinopril 233 10.6 Conclusions 234 References 235 11 HIV-1ProteaseInhibitorsfortheTreatmentofHIVInfectionandAIDS: DesignofSaquinavir,Indinavir,andDarunavir 237 11.1 Introduction 237 11.2 StructureofHIVProteaseandDesignofPeptidomimeticInhibitors ContainingTransition-StateIsosteres 239 11.3 Saquinavir:theFirstClinicallyApprovedHIV-1ProteaseInhibitor 241 11.4 Indinavir:anHIVProteaseInhibitorContainingthe HydroxyethyleneTransition-StateIsostere 246 11.5 DesignandDevelopmentofDarunavir 251 11.6 DesignofCyclicEtherTemplatesinDrugDiscovery 252 11.7 InvestigationofCyclicSulfonesasP Ligands 255 2 11.8 DesignofBis-tetrahydrofuranandOtherBicyclicP Ligands 257 2 11.9 The“BackboneBindingConcept”toCombatDrugResistance: InhibitorDesignStrategyPromotingExtensiveBackbone HydrogenBondingfromS toS 0Subsites 259 2 2 11.10 DesignofDarunavirandOtherInhibitorswithClinical Potential 263 11.11 Conclusions 266 References 266 12 ProteinKinaseInhibitorDrugsforTargetedCancerTherapy:Design andDiscoveryofImatinib,Nilotinib,Bafetinib,andDasatinib 271 12.1 Introduction 271 12.2 EvolutionofKinaseInhibitorsasAnticancerAgents 272 12.3 TheDiscoveryofImatinib 274 12.4 Imatinib:theStructuralBasisofSelectivity 275 12.5 PharmacologicalProfileandClinicalDevelopment 278

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.