Strong isomorphism in Marinatto-Weber type quantum games PiotrFra˛ckiewicz InstituteofMathematics PomeranianUniversity,Poland January24, 2017 Abstract Ourpurposeistofocusattentiononanewcriterionforquantumschemesbybringingtogetherthenotionsof 7 quantumgameandgameisomorphism. Aquantumgameschemeisrequiredtogeneratetheclassicalgameasa 1 0 specialcase. Now,givenaquantumgameschemeandtwoisomorphicclassicalgames,weadditionallyrequire 2 theresultingquantumgamestobeisomorphicaswell. Weshowhowthisisomorphismconditioninfluencesthe players’strategysets. WeareconcernedwiththeMarinatto-Webertypequantumgameschemeandthestrong n isomorphismbetweengamesinstrategicform. a J 1 1 Introduction 2 ] The Marinatto-Weber (MW) scheme introduced in [1] is a straightforward way to apply the power of quantum T mechanicstoclassicalgametheory. Inthesimplestcaseof2 2games,theplayersmanipulatetheirownqubits G ofatwo-qubitstateeitherwiththeidentity1orthePauliopera×torσ . Therefore,ithasfoundapplicationinmany x . otherbranchesofgametheory: fromevolutionarygametheory[2],[3]toextensive-formgames[4]andduopoly s c examples[5], [6]. Inpaper[7]wepointedoutafewundesirablepropertiesoftheMWschemeandintroduceda [ refinedquantumgamemodel. 1 ThoughitispossibletoextendboththeMWschemeandourrefinementtoconsidermorecomplexgamesthan v 2 2, possible generalizationscan be defined in many differentways. A result concerning3 3 games can be 0 fo×undin[2]and[8].Theauthorsproposedsuitablethree-elementsetsofplayers’strategiestoob×tainageneralized 0 3 3 game. On the other hand, our work [9] providesanotherway to define players’strategy sets thatremains 1 × validforanyfiniten mgames. 6 × 0 Certainly,onecanfindyetotherwaystogeneralizetheMWscheme. Henceitwouldbeinterestingto place . additionalrestrictionsonaquantumgameschemeandexaminehowtheyrefinethequantummodel. Inthispaper 1 weformulateacriterionintermsofisomorphicgames.Giventwoisomorphicgameswerequirethecorresponding 0 7 quantumgamestobeisomorphicaswell. If,forexample,twobimatrixgamesdifferonlyintheorderofplayers’ 1 strategies, they describe the same problem from a game-theoretical point of view. Given a quantum scheme, v: it appears reasonable to assume that the resulting quantum game will not depend on the numbering of players’ i strategiesintheclassicalgame. X r a 2 Preliminaries 2.1 Marinatto-weber type quantum gamescheme Inpaper[7]and[10]wepresentedarefinementoftheMarinatto-Weberscheme[1].Themotivationofconstructing ourschemewastwofold. Ourmodelenablestheplayerstochoosebetweenplayingafixedquantumstrategyand classicalstrategies.Thesecondaimwastoconstructtheschemethatgeneratestheclassicalgamebymanipulating theplayers’strategiesratherthantheinitialquantumstate. Inwhatfollows,werecalltheschemeforthecaseof 2 2bimatrixgame, × l r t (a ,b ) (a ,b ) 00 00 01 01 , where(a ,b ) R. (1) b (a10,b10) (a11,b11)! ij ij ∈ Definition1 Thequantumschemeforgame(1)isdefinedonaninnerproductspace(C2) 4bythetriple ⊗ Γ =(H,(S ,S ),(M ,M )), (2) Q 1 2 1 2 where 1 H isapositiveoperator, • H =(1 1 11 11) 00 00 + 11 11 Ψ Ψ, (3) ⊗ −| ih | ⊗| ih | | ih |⊗| ih | and Ψ =α00 +β01 +γ10 +δ11 C2 C2 (4) | i | i | i | i | i∈ ⊗ suchthat Ψ =1, k| ik S = P(1) U(3),i, j=0,1 , S = P(2) U(4),k,l=0,1 are the players’ strategy sets, and the upper • 1 i ⊗ j 2 k ⊗ l indicesnidentifythesubspaceoC2of(Cn2) 4onwhichtheoperoators ⊗ P = 0 0, P = 1 1, U =1, U =σ , (5) 0 1 0 1 x | ih | | ih | aredefined, M andM arethemeasurementoperators 1 2 • M =1 1 a (b )xy xy (6) 1(2) ⊗ ⊗ xy xy | ih | x,Xy=0,1 thatdependonthepayoffsa andb from(1). xy xy TheschemeproceedsinthesimilarwayastheMWscheme–theplayersdeterminethefinalstatebychoosingtheir strategiesandactingonoperatorH. Asaresult,theydeterminethefollowingdensityoperator: ρ = P(1) P(2) U(3) U(4) H P(1) P(2) U(3) U(4) f i ⊗ k ⊗ j ⊗ l i ⊗ k ⊗ j ⊗ l (cid:16) (cid:17) (cid:16) (cid:17) 11 11 U(3) U(4)Ψ ΨU(3) U(4) ifi= j=1, = | ih |⊗ j ⊗ l | ih | j ⊗ l (7) ij ij U(cid:16)(3) U(4)00 00U(3) U(4)(cid:17) ifotherwise. | ih |⊗ j ⊗ l | ih | j ⊗ l Next,thepayoffsforplayer1and2are (cid:16) (cid:17) tr(ρ M ) and tr(ρ M ). (8) f 1 f 2 Asitwasshownin[10],scheme(2)canbesummarizedbythefollowingmatrixgame P(2) 1(4) P(2) σ(4) P(2) 1(4) P(2) σ(4) 0 ⊗ 0 ⊗ x 1 ⊗ 1 ⊗ x P(1) 1(3) X X X X 0 ⊗ 00 01 00 01 P(1) σ(3) X X X X PP(1(1011))⊗⊗⊗σ1((xx44)) XX101000 XX101111 ∆∆101000 ∆∆101111 , (9) where X =(a ,b ), for i, j=0,1 ij ij ij ∆ = α2X + β2X + γ2X + δ2X , 00 00 01 10 11 | | | | | | | | ∆ = α2X + β2X + γ2X + δ2X , (10) 01 01 00 11 10 | | | | | | | | ∆ = α2X + β2X + γ2X + δ2X , 10 10 11 00 01 | | | | | | | | ∆ = α2X + β2X + γ2X + δ2X . 11 11 10 01 00 | | | | | | | | 2.2 Strong isomorphism Thenotionofstrongisomorphismdefinesclassesofgamesthatarethesameuptothenumberingoftheplayers andthe orderofplayers’strategies. Thefollowingdefinitionsaretakenfrom[11](see also [12], [13] and[14]). Thefirstonedefinesamappingthatassociatesplayersandtheiractionsinonegamewithplayersandtheiractions intheothergame. Definition2 LetΓ=(N,(S ) ,(u) )andΓ =(N,(S ) ,(u) )begamesinstrategicform.Agamemapping i i N i i N ′ i′ i N ′i i N f fromΓtoΓ isatuple f =(η∈,(ϕ) ∈),whereηisabijecti∈onfrom∈NtoNandforanyi N,ϕ isabijectionfrom ′ i i N i ∈ ∈ S toS . i η′(i) 2 Ingeneralcase,themapping f from(N,(S ) ,(u) )to(N,(S ) ,(u) )identifiesplayeri N withplayer i i∈N i i∈N i′ i∈N ′i i∈N ∈ η(i) and maps S to S . This means that a strategy profile (s ,...,s ) S S is mapped into profile i η(i) 1 n 1 n (s ,...,s )thatsatisfiesequations =ϕ(s)fori N. ∈ ×···× ′1 ′n ′η(i) i i ∈ The notion of game mapping is a basis for the definition of game isomorphism. Depending on how rich structureofthegameistobepreservedwecandistinguishvarioustypesofgameisomorphism.Onethatpreserves theplayers’payofffunctionsiscalledastrongisomorphism.Theformaldefinitionisasfollows: Definition3 Given two strategic games Γ = (N,(S ) ,(u) ) and Γ = (N,(S ) ,(u) ), a game mapping i i N i i N ′ i′ i N ′i i N f =(η,(ϕ) )iscalledastrongisomorphismifrelatio∈nu(s)∈=u (f(s))holdsfor∈eachi ∈N andeachstrategy i i∈N i ′η(i) ∈ profiles S S . 1 n ∈ ×···× FromtheabovedefinitionitmaybeconcludedthatifthereisastrongisomorphismbetweengamesΓandΓ,they ′ maydiffermerelybythenumberingofplayersandtheorderoftheirstrategies. Thefollowinglemmashowsthatrelabelingplayersandtheirstrategiesdonotaffectthegamewith regardto Nashequilibria. If f isastrongisomorphismbetweengamesΓandΓ,onemayexpectthattheNashequilibriain ′ ΓmaptoonesinΓ under f. ′ Lemma1 Let f beastrongisomorphismbetweengamesΓandΓ. Strategyprofiles =(s ,...,s ) S S isaNashequilibriumingameΓifandonlyif f(s ) S S′ isaNashequilib∗rium∗1inΓ. ∗n ∈ 1×···× n ∗ ∈ 1′ ×···× n′ ′ 3 Application of game isomorphism to Marinatto-Weber type quantum game schemes ItisnothardtoseethatwecandefineawidevarietyofschemesbasedontheMWapproach.Wecanmodifyoper- ator(3)andtheplayers’strategiestoconstructanotherschemestillsatisfyingtherequirementaboutgeneralization oftheinputgame.Thefollowingexampleofsuchaschemeisparticularlyinteresting. Letusconsideratriple Γ =(H ,(S ,S ),(M ,M )) (11) ′Q ′ 1′ 2′ 1 2 withthecomponentsdefinedasfollows: H isapositiveoperator, ′ • H = 00 00 00 00 + 01 01 0 0 ρ + 10 10 ρ 0 0 + 11 11 Ψ Ψ, (12) ′ 2 1 | ih |⊗| ih | | ih |⊗| ih |⊗ | ih |⊗ ⊗| ih | | ih |⊗| ih | where Ψ C2 C2 such that Ψ = 1, ρ and ρ are the reduced density operators of Ψ Ψ, i.e., 1 2 ρ =tr|(Ψi ∈Ψ)an⊗dρ =tr (Ψ Ψk|),ik | ih | 1 2 2 1 | ih | | ih | S = P(1) 1(3),P(1) σ(3),P(1) 1(3) andS = P(2) 1(4),P(2) σ(4),P(2) 1(4) aretheplayers’strat- • 1′ 0 ⊗ 0 ⊗ x 1 ⊗ 2′ 0 ⊗ 0 ⊗ x 1 ⊗ egysents, o n o M andM arethemeasurementoperatorsdefinedbyequation(6). 1 2 • Itisimmediatethattheresultingfinalstateρ isadensityoperatorforeach(pureormixed)strategyprofile. For ′f example,player1’sstrategyP(1) σ(3) andplayer2’sstrategyP(2) 1(4)imply 0 ⊗ x 1 ⊗ ρ = P(1) P(2) σ(3) 1(4) H P(1) P(2) σ(3) 1(4) = 01 01 1 1 ρ . (13) ′f 0 ⊗ 1 ⊗ x ⊗ ′ 0 ⊗ 1 ⊗ x ⊗ | ih |⊗| ih |⊗ 2 (cid:16) (cid:17) (cid:16) (cid:17) Asaresult,theplayers’payofffunctifonsu andu givenbytr(ρ M )andtr(ρ M ),respectively,arewell-defined. ′1 ′2 ′f 1 ′f 2 It is also clear that scheme (11) produces the classical game in a similar way to scheme (2). The players play the classical game as long as they choose the strategies P 1 and P σ . This can be seen by determin- 0 0 x ⊗ ⊗ ing tr(ρ M ) for each strategy profile and arranging the obtained values into a matrix. As an example, let us ′f 1(2) determinetr(ρ M )forthefinalstateρ givenby(13). Let Ψ representageneraltwoqubitstate, ′f 1(2) ′f | i Ψ =α00 +β01 +γ10 +δ11 . (14) | i | i | i | i | i Since ρ =(α2+ β2)0 0 +(αγ +βδ )0 1 +(γα +δβ )1 0 +(γ2+ δ2)1 1, 1 ∗ ∗ ∗ ∗ | | | | | ih | | ih | | ih | | | | | | ih | (15) ρ =(α2+ γ2)0 0 +(αβ +γδ )0 1 +(βα +δγ )1 0 +(β2+ δ2)1 1, 2 ∗ ∗ ∗ ∗ | | | | | ih | | ih | | ih | | | | | | ih | theplayers’strategiesP(1) σ(3) andP(2) 1(4)generatethefollowingformofthefinalstate: 0 ⊗ x 1 ⊗ ρ = 01 01 (α2+ γ2)10 10 +(αβ +γδ )10 11 +(βα +δγ )11 10 +(β2+ δ2)11 11 . (16) ′f | ih |⊗ | | | | | ih | ∗ ∗ | ih | ∗ ∗ | ih | | | | | | ih | (cid:16) (cid:17) 3 Hence (tr(ρ M ),tr(ρ M ))=(α2+ γ2)(a ,b )+(β2+ δ2)(a ,b ). (17) ′f 1 ′f 2 | | | | 10 10 | | | | 11 11 Thevalues(tr(ρ M ),tr(ρ M ))forallstrategycombinationsaregivenbythefollowingmatrix: ′f 1 ′f 2 P(2) 1(4) P(2) σ(4) P(2) 1(4) 0 ⊗ 0 ⊗ x 1 ⊗ P(1) 1(3) X X ∆ 0 ⊗ 00 01 02 P(1) σ(3) X X ∆ (18) P0(11)⊗⊗1(x3) ∆1200 ∆1211 ∆1222 where X =(a ,b ), for i, j=0,1 ij ij ij ∆ =(α2+ γ2)X +(β2+ δ2)X ; 02 00 01 | | | | | | | | ∆ =(α2+ γ2)X +(β2+ δ2)X ; 12 10 11 | | | | | | | | ∆ =(α2+ β2)X +(γ2+ δ2)X ; 20 00 10 | | | | | | | | ∆ =(α2+ β2)X +(γ2+ δ2)X ; 21 01 11 | | | | | | | | ∆ = α2X + β2X + γ2X + δ2X . (19) 22 00 01 10 11 | | | | | | | | Itfollowseasilythatmatrixgame(18)isagenuineextensionof(1). Althoughpayoffprofiles∆ , ∆ arealso ij 22 achievablein(1),theplayers,ingeneral,arenotabletoobtain∆ whenchoosingtheir(mixed)strategies. 22 Tosumup, scheme(11)mightseemto beacceptableaslongasscheme(2)isacceptable. Matrixgame(18) includes(1)anddependingontheinitialstate Ψ itmaygiveextraordinaryNashequilibria. Itisworthpointing | i outthattheNashequilibriain(18)correspondtocorrelatedequilibriain(1),(see[15]).Howeverscheme(11)fails toimplytheisomorphicgameswhentheinputgamesareisomorphic. Wecanmakethisclearwiththefollowing example. Example1 Letusconsiderthegameof“Chicken"Γ andits(strongly)isomorphiccounterpartΓ , 1 2 l r l r ′ ′ t (6,6) (2,7) t (2,7) (6,6) Γ : , Γ : ′ . (20) 1 b (7,2) (0,0)! 2 b′ (0,0) (7,2)! Thecorrespondingisomorphism f =(π,ϕ ,ϕ )isdefinedbycomponents 1 2 π(i)=i for i=1,2, ϕ =(t t ,b b),ϕ =(l r ,r l). (21) 1 ′ ′ 2 ′ ′ → → → → Set Ψ =(00 + 01 + 10 )/√3. Using(9)wecanwritequantumapproach(2)togames(20)as | i | i | i | i P(2) 1(4) P(2) σ(4) P(2) 1(4) P(2) σ(4) 0 ⊗ 0 ⊗ x 1 ⊗ 1 ⊗ x P(1) 1(3) (6,6) (2,7) (6,6) (2,7) 0 ⊗ ΓQ1: PPP(1(0(1111)))⊗⊗⊗σσ1(((xx443))) (((776,,,226))) (((002,,,007))) (4((7531,,,225))32) (2((3032,,,430))31) (22) and P(2) 1(4) P(2) σ(4) P(2) 1(4) P(2) σ(4) 0 ⊗ 0 ⊗ x 1 ⊗ 1 ⊗ x P(1) 1(3) (2,7) (6,6) (2,7) (6,6) 0 ⊗ It is fairly easy to seeΓthQa2t:gPPPa(1(0(1m111)))e⊗⊗⊗sσσ1(2(((xx4243)))) and((((0022,,,3007))))differ in(((776th,,,226e)))order o(2f((3032th,,,430e))31fi)rst tw(4o((5731s,,,t252ra))32t)egies and the second(t2w3o) strategiesofplayer2.Thus,thegamesarestronglyisomorphic.Moreformally,onecancheckthatagamemapping f˜=(η,ϕ˜ ,ϕ˜ ),where 1 2 ϕ˜ = P(1) 1(3) P(1) 1(3),P(1) σ(3) P(1) σ(3) , 1 (cid:16) i ⊗ → i ⊗ i ⊗ x → i ⊗ x (cid:17) (24) ϕ˜ = P(2) 1(4) P(2) σ(4),P(2) σ(4) P(2) 1(4) , 1 k ⊗ → k ⊗ x k ⊗ x → k ⊗ (cid:16) (cid:17) 4 fori,k=0,1isastrongisomorphism. Inthenextsectionweproveamoregeneralresultaboutscheme(2)). Letusnowconsiderscheme(11). Matrix(18)intermsofinputgames(20)implies P(2) 1(4) P(2) σ(4) P(2) 1(4) 0 ⊗ 0 ⊗ x 1 ⊗ P(1) 1(3) (6,6) (2,7) (42,61) Γ′Q1: PP0(0(111))⊗⊗⊗σ1((x33)) (6(731,,42)32) (1(031,,40)32) (4(5332,,15)331) (25) and P(2) 1(4) P(2) σ(4) P(2) 1(4) 0 ⊗ 0 ⊗ x 1 ⊗ P(1) 1(3) (2,7) (6,6) (31,62) Γ′Q2: PP0(1(011))⊗⊗⊗1σ((x33)) (1(031,,40)32) (6(731,,42)32) ((2233231,,432331)) . (26) With Lemma 1 we can show that games (25) and (26) are not isomorphic. Comparing the sets of pure Nash equilibriainbothgameswefindtheequilibriumprofiles (P(1) 1(3),P(2) σ(4)),(P(1) σ(3),P(2) 1(4)),(P(1) 1(3),P(2) 1(4)) (27) { 0 ⊗ 0 ⊗ x 0 ⊗ x 0 ⊗ 1 ⊗ 1 ⊗ } inthefirstgameand (P(1) 1(3),P(2) 1(4)),(P(1) σ(3),P(2) σ(4)) (28) { 0 ⊗ 0 ⊗ 0 ⊗ x 0 ⊗ x } inthesecondone. 4 ApplicationofgameisomorphismtogeneralizedMarinatto-Weberquan- tum game scheme Additionalcriteriaforaquantumgameschememayhaveasignificantimpactonthewayhowwegeneralizethese schemes. It can be easily seen in the case of the MW scheme [1] (or the refined scheme (2)), where the sets of unitarystrategiesarefinite. TheMWschemeprovidesuswithaquantummodel,wherethestrategysetsconsistof theidentityoperator1andthePaulioperatorσ . Underthisdescription,whatsubsetsofunitaryoperatorswould x besuitableforgeneraln mgames? Thecaseofa3-elementstrategysetcanbeidentifiedwithunitaryoperators 1 ,CandDactingonα0× +β1 +γ2 C3,where 3 | i | i | i∈ 1 0 = 0 , C0 = 2 , D0 = 1 , 3 1 |1i=|1i, C|1i=|1i, D|1i=|0i, (29) 3 1 |2i=|2i, C|2i=|0i, D|2i=|2i. 3 | i | i | i | i | i | i This construction can be found in [2] and [8]. Another way to generalize the MW scheme was presented in [9]. Having given a strategic-form game, we identify the players’ n strategies with n unitary operators V for k k=0,1,...,n 1. Theyactonstatesofthecomputationalbasis 0 , 1 ,..., n 1 asfollows: − {| i | i | − i} V i = i , 0 V |ii=|ii+1modn , 1 .|i | i (30) . . V i = i+n 1modn . n 1 − |i | − i BothwaystogeneralizetheMWschemeenableustoobtaintheclassicalgame. Soatthislevel,neither(29)nor (30) is questionable. If we seek otherproperties, we see that the MW scheme outputsthe classical game (or its isomorphiccounterpart)whentheinitialstateisoneofthecomputationalbasisstates. Given(29)and(30),only thelattercasesatisfiesthiscondition. FurtheranalysiswouldshowthattheMWschemeisinvariantwithrespect tostronglyisomorphicinputgames.Itturnsoutthatneither(29)or(30)satisfiestheisomorphismproperty. Example2 Letustakealookatthefollowing2 3bimatrixgames: × l m r l m r ′ ′ ′ t (4,8) (0,0) (8,8) t (0,0) (4,8) (8,8) Γ: , Γ : ′ . (31) b (0,4) (4,0) (8,0)! ′ b′ (4,0) (0,4) (8,0)! 5 ConsidertheMW-typeapproachesΓ andΓ togames(31)accordingtothefollowingassignement: Q ′Q l m r t P P P 00 01 02 , whereP = j j j j . (32) b P10 P11 P12! j1j2 | 1 2ih 1 2| Then Γ =(Ψ ,(D ,D ),(M ,M )), Γ =(Ψ ,(D ,D ),(M ,M )), (33) Q | i 1 2 1 2 ′Q | i ′1 ′2 1′ 2′ where M =4P +8P +4P +8P , M =4P +8P +4P +8P , 1 00 02 11 12 1′ 01 02 10 12 (34) M =8P +8P +4P , M =8P +8P +4P . 2 00 02 10 2′ 01 02 11 Settheinitialstate Ψ = (1/2)00 +(√3/2)12 C2 C3 andassumefirstthat D = D = 1 ,σ andD = | i | i | i ∈ ⊗ 1 ′1 { 2 x} 2 aDn′2d=i={113,,C2,,aDn}dadsoiinn(g2s9i)m.iDlaertecramlciunliantgiotnrs(cid:16)(iUn1th⊗eUca2s)e|ΨoifhΨM|(Uw1†e⊗obUta2†i)nMi(cid:17)foreveryU1⊗U2 ∈{1,σx}⊗{13,C,D} i′ 1 C D 1 C D 3 3 1 (7,2) (2,5) (6,0) 1 (6,0) (5,2) (7,2) Γ : 2 , Γ : 2 . (35) Q σx (6,7) (5,6) (7,6)! ′Q σx (7,6) (2,0) (6,7)! Ontheotherhand,replacing(29)by(30)givesD = D = 1 ,V ,V ,where 2 ′2 { 3 1 2} 1 0 0 0 0 1 0 1 0 13 = 0 1 0 , V1 = 1 0 0 , V2 = 0 0 1 . (36) 0 0 1 0 1 0 1 0 0 Then,wehave 1 V V 1 V V 3 1 2 3 1 2 1 (7,2) (0,3) (5,2) 1 (6,0) (4,2) (2,5) Γ : 2 , Γ : 2 . (37) Q σx (6,7) (4,6) (2,0)! ′Q σx (7,6) (0,1) (5,6)! ThereisnopureNashequilibriuminthefirstgameof(35)and(37),whereastherearetwoNashequilibriainthe secondgames.Asaresult,eachpairofthegamesdonotdetermineastrongisomorphism. Example2showsthatplayers’strategysetsdefinedby(29)and(36)needtoberevisedinordertohaveageneral- izedMWschemeinvariantwithrespecttotheisomorphism. Weshallstickforthemomenttoconsideringgames (31). Let A ,A ,A ,A ,A ,A beplayer2’sstrategysetdefinedtobe 012 102 021 120 201 210 { } A 0 = 0 A 0 = 1 A 0 = 0 A 0 = 1 A 0 = 2 A 0 = 2 , 012 102 021 120 201 210 A |1i=|1i A |1i=|0i A |1i=|2i A |1i=|2i A |1i=|0i A |1i=|1i, (38) 012 102 021 120 201 210 A |2i=|2i A |2i=|2i A |2i=|1i A |2i=|0i A |2i=|1i A |2i=|0i. 012 102 021 120 201 210 | i | i | i | i | i | i | i | i | i | i | i | i Each A isapermutationmatrixthatcorrespondstoa specificpermutationπ = (0 j ,1 j ,2 j )of j1j2j3 → 1 → 2 → 3 the set 0,1,2 . Note also that operators(29) and (36) are included in (38). Hence, the MW scheme with (38) { } implies,inparticular,theclassicalgame. Wenowcheckifitoutputstheisomorphicgames. Sincetherearenow sixoperatorsavailableforplayer2,theresultinggamemaybewrittenasa2 6bimatrixgamewithentries × tr (U U )Ψ Ψ(UT UT)M (39) 1⊗ 2 | ih | 1 ⊗ 2 i (cid:16) (cid:17) forU 1 ,σ andU A : π permutationsof 0,1,2 .Asaresult,weobtain 1 2 x 2 π ∈{ } ∈{ − { }} A A A A A A 012 102 021 120 201 210 1 (7,2) (6,0) (4,2) (0,3) (5,2) (2,5) Γ : 2 (40) Q σ (6,7) (7,6) (0,1) (4,6) (2,0) (5,6) x and A A A A A A 012 102 021 120 201 210 1 (6,0) (7,2) (0,3) (4,2) (2,5) (5,2) Γ : 2 . (41) ′Q σ (7,6) (6,7) (4,6) (0,1) (5,6) (2,0) x 6 Thegamesdeterminetheisomorphism f˜=(id ,ϕ˜ ,ϕ˜ ),where N 1 2 ϕ˜ =(1 1 ,σ σ ), 1 2 2 x x → → (42) ϕ˜ =(A A ,A A ,A A ,A A ,A A ,A A ). 2 012 102 102 012 021 120 120 021 201 210 210 201 → → → → → → UsingpermutationmatricesleadsustoformulateanothergeneralizedMWscheme.Forsimplicity,weconfine attentionto(n+1) (m+1)bimatrixgames. × LetS bethesetofallpermutationsπof 0,1,...,n . WitheachπthereisassociatedapermutationmatrixA , n π { } A i = π(i) fori=0,1,...,n. (43) π |i | i WeletB denotethepermutationmatrixassociatedwithapermutationσ S . Given(n+1) (m+1)bimatrix σ m gameΓwedefine ∈ × Γ =(Ψ ,(D ,D ),(M ,M )), (44) Q 1 2 1 2 | i where n m Ψ = α j j Cn+1 Cm+1, D = A : π S , D = B : σ S , | i j1j2| 1 2i∈ ⊗ 1 { π ∈ n} 2 { σ ∈ m} Xj1=0Xj2=0 (45) n m (M ,M )= (a ,b )P . 1 2 j1j2 j1j2 j1j2 Xj1=0Xj2=0 BeforestatingthemainresultofthissectionwestartwiththeobservationthattheMWschemeremainsinvariant tonumberingoftheplayers.Considertwoisomorphicbimatrixgames: t t t 0 1 m ··· s (a ,b ) (a ,b ) (a ,b ) 0 00 00 01 01 0m 0m ··· s (a ,b ) (a ,b ) (a ,b ) Γ: s...n1 (an100,...bn100) (an111,...bn111) ··.··.··. (an1mm,...bn1mm) (46) and s s s ′0 ′1 ··· ′n t (b ,a ) (b ,a ) (b ,a ) 0′ 00 00 10 10 ··· n0 n0 t (b ,a ) (b ,a ) (b ,a ) Γ′: tm...1′′ (b00m1,...a00m1) (b11m1,...a11m1) ··.··.··. (bnnm1,...annm1). (47) Clearly,theisomorphismisdefinedbyagamemapping f = π,ϕ ,ϕ ,where 1 2 { } π=(1 2,2 1), ϕ (s )= s , ϕ (t )=t (48) → → 1 j1 ′j1 2 j2 ′j2 for j = 0,1,...,n, j = 0,1,...,m. The generalMW schemefor(46)is simplygivenby(44). ForΓ, we can 1 2 ′ write Γ =(Ψ ,(D ,D ),(M ,M )), (49) ′Q | ′i ′1 ′2 1′ 2′ where n m Ψ = α j j Cm+1 Cn+1, | ′i j1j2| 2 1i∈ ⊗ Xj1=0Xj2=0 D = B ,σ S ,D = A ,π S , (50) ′1 { σ ∈ m} ′2 { π ∈ n} n m n m M = b j j j j ,M = a j j j j . 1′ j1j2| 2 1ih 2 1| 2′ j1j2| 2 1ih 2 1| Xj1=0Xj2=0 Xj1=0Xj2=0 Gamesdeterminedby(44)and(49)arethenisomorphic.Toprovethis,let f˜=(π,ϕ˜ ,ϕ˜ )beagamemappingsuch 1 2 that π=(1 2,2 1), ϕ˜ : D D , ϕ˜ (A )= A , ϕ˜ : D D , ϕ˜ (B )= B . (51) → → 1 1 → ′2 1 π π 2 2 → ′1 2 σ σ 7 OnaccountofDefinition3wehave f˜(A B )=ϕ (B ) ϕ (A )= B A . (52) π σ 2 σ 1 π σ π ⊗ ⊗ ⊗ Asaresult, u (f˜(A B ))=u (f˜(A B )) ′π(1) π⊗ σ ′2 π⊗ σ =tr f˜(A B )Ψ Ψ f˜(A B )TM π⊗ σ | ′ih ′| π⊗ σ 2′ (cid:16) (cid:17) =tr (ϕ (B ) ϕ (A ))Ψ Ψ (ϕ (B )T ϕ (A )T)M 2 σ ⊗ 1 π | ′ih ′| 2 σ ⊗ 1 π 2′ (cid:16) (cid:17) n m =tr (B A )Ψ Ψ (BT AT) a j j j j σ⊗ π | ′ih ′| σ⊗ π j1j2| 2 1ih 2 1| nXj1=0mXj2=0 =tr (A B )Ψ Ψ(AT BT) a j j j j π⊗ σ | ih | π ⊗ σ j1j2| 1 2ih 1 2| =u(A B ). Xj1=0Xj2=0 (53) 1 π σ ⊗ Byasimilarargument,wecanshowthatu (f˜(A B )) = u (A B ). Wecannowformulatethefollowing ′π(2) π⊗ σ 2 π⊗ σ proposition: Proposition1 AssumethatΓandΓ arestronglyisomorphicbimatrixgamesandΓ andΓ arethecorresponding ′ Q ′Q quantumgamesdefinedby(44). ThenΓ andΓ arestronglyisomorphic. Q ′Q Proof Let Γ and Γ be bimatrix games of dimension n m and let f: Γ Γ, f = (η,ϕ ,ϕ ) be the strong ′ ′ 1 2 × → isomorphism. Since the MW scheme is invariant to numbering of the players, there is no loss of generality in assumingη=id . Now,itfollowsfromDefinition3thatgamesΓandΓ differintheorderofplayers’strategies. N ′ Let us identify players’ strategies (i.e., rows and columns) in Γ with sequences (0,1,...,n) and (0,1,...,m), respectively. Then,we denotebyπ andσ thepermutationsofthesets 0,1,...,n and 0,1,...,m associated ∗ ∗ with the order of strategies in game Γ. A trivial verification shows tha{t the payoff} oper{ator M in}Γ may be ′ i′ ′Q writtenas M =(A B )M (A B )T, (54) i′ π∗ ⊗ σ∗ i π∗ ⊗ σ∗ where A and B are the permutation matrices corresponding to π and σ . Define a game mapping f˜ = π σ ∗ ∗ ∗ ∗ (id ,ϕ˜ ,ϕ˜ ),where N 1 2 ϕ˜ : A : π S A : π S , ϕ (A )= A A ; 1 π n π n 1 π π π { ∈ }→{ ∈ } ∗ (55) ϕ˜ : B : σ S B : σ S , ϕ (B )= B B . 2 σ m σ m 2 σ σ σ { ∈ }→{ ∈ } ∗ Hence, f˜mapsA B toA A B B . Thus,weobtain π σ π π σ σ ⊗ ∗ ⊗ ∗ u(f˜(A B ))=tr f˜(A B )Ψ Ψ f˜(A B ) T M ′i π⊗ σ (cid:18) π⊗ σ | ih |(cid:16) π⊗ σ (cid:17) i′(cid:19) =tr (A A B B )Ψ Ψ(A A B B )T(A B )M (A B )T π π σ σ π π σ σ π σ i π σ ∗ ⊗ ∗ | ih | ∗ ⊗ ∗ ∗ ⊗ ∗ ∗ ⊗ ∗ (cid:16) (cid:17) =tr (A B )T(A A B B )Ψ Ψ(A A B B )T(A B )M π σ π π σ σ π π σ σ π σ i ∗ ⊗ ∗ ∗ ⊗ ∗ | ih | ∗ ⊗ ∗ ∗ ⊗ ∗ (cid:16) (cid:17) =tr AT A A BT B B Ψ Ψ ATAT A BTBT B M π∗ π∗ π⊗ σ∗ σ∗ σ | ih | π π∗ π∗ ⊗ σ σ∗ σ∗ i (cid:16)(cid:16) (cid:17) (cid:16) (cid:17) (cid:17) =tr (A B ) Ψ Ψ (A B )T M =u(A B ). (56) π σ π σ i i π σ ⊗ | ih | ⊗ ⊗ (cid:16) (cid:17) Thisfinishestheproof. (cid:4) Note that operators (43) come down to 1 and σ for n = 1. Therefore, the original MW scheme preserves the x isomorphism.ThesameconclusioncanbedrawnfortherefinedMWscheme(2). Corollary1 If Γ and Γ are strongly isomorphic bimatrix games and Γ and Γ are the corresponding games ′ Q ′Q definedby(2). ThenΓ andΓ arestronglyisomorphic. Q ′Q Proof Let Γ and Γ be strongly isomorphic 2 2 bimatrix games. By Proposition 1 there exists a strong iso- ′ morphism f˜ = (id ,ϕ˜ ,ϕ˜ ) between the game×sΓ and Γ playedaccordingto (44)-(45). Given the quantum 1,2 1 2 Q ′Q approach(2)toΓa{nd}Γ wedefineg˜ =(id ,ξ˜ ,ξ˜ ),where ′ 1,2 1 2 { } ξ˜ : S S , ξ˜ P(1) U(3) = P(1) ϕ˜ U(3) , 1 1 → 1 1(cid:16) i ⊗ j (cid:17) i ⊗ 1(cid:16) j (cid:17) (57) ξ˜ : S S , ξ˜ P(2) U(4) = P(2) ϕ˜ U(4) . 2 2 → 2 2 k ⊗ l k ⊗ 2 l (cid:16) (cid:17) (cid:16) (cid:17) 8 Now,wehave u g˜ P(1) P(2) U(3) U(4) ′i i ⊗ k ⊗ j ⊗ l (cid:16) (cid:16) (cid:17)(cid:17) =tr g˜ P(1) P(2) U(3) U(4) Hg˜ P(1) P(2) U(3) U(4) T M (cid:18) (cid:16) i ⊗ k ⊗ j ⊗ l (cid:17) (cid:16) i ⊗ k ⊗ j ⊗ l (cid:17) 1′(cid:19) =tr P(1) P(2) ϕ˜ U(3) ϕ˜ U(4) HP(1) P(2) ϕ˜ U(3) T ϕ˜ U(4) T M (cid:18) i ⊗ k ⊗ 1(cid:16) j (cid:17)⊗ 2(cid:16) l (cid:17) i ⊗ k ⊗ 1(cid:16) j (cid:17) ⊗ 2(cid:16) l (cid:17) i′(cid:19) =tr P(1) P(2) f˜ U(3) U(4) HP(1) P(2) f˜ U(3) U(4) T M . (58) (cid:18) i ⊗ k ⊗ (cid:16) j ⊗ l (cid:17) i ⊗ k ⊗ (cid:16) j ⊗ l (cid:17) i′(cid:19) ForfixedP P ,wecanwritetherightsideof(58)intheform i k ⊗ tr(cid:18)|ikihik|⊗ f˜(cid:16)U(j3)⊗Ul(4)(cid:17)ρf˜(cid:16)U(j3)⊗Ul(4)(cid:17)T Mi′(cid:19), ρ=||Ψ00iihhΨ0|0,|, ((ii,, jj))=,((11,,11));. (59) Byreasoningsimilarto(56)weconcludethat u g˜ P(1) P(2) U(3) U(4) ′i i ⊗ k ⊗ j ⊗ l (cid:16) (cid:16) (cid:17)(cid:17) =tr ik ik f˜ U(3) U(4) ρf˜ U(3) U(4) T M (cid:18)| ih |⊗ (cid:16) j ⊗ l (cid:17) (cid:16) j ⊗ l (cid:17) i′(cid:19) =tr ik ik U(3) U(4)ρ U(3) U(4) T M (cid:18)| ih |⊗ j ⊗ l (cid:16) j ⊗ l (cid:17) i′(cid:19) =u P(1) P(2) U(3) U(4) . (60) i i ⊗ k ⊗ j ⊗ l (cid:16) (cid:17) WehavethusprovedthatΓ andΓ areisomorphic. (cid:4) Q ′Q Itisworthnotingthattheconversemaynotbetrue.GivenisomorphicgamesΓ andΓ ,theinputgamesΓandΓ Q ′Q ′ maynotdeterminethestrongisomorphism.Indeed,bimatrixgames l r l r ′ t (3,1) (0,0) t (4,0) (0,0) and ′ (61) b (0,0) (1,3)! b′ (0,0) (0,4)! are notstronglyisomorphic. Howeverthe MW approach(with the initialstate (00 + 11 )/√2) to each one of | i | i (61)impliesthesameoutputgamegivenby 1 σ x 1 (3,1) (0,0) (62) σx (0,0) (1,3)! 5 Conclusions The theory of quantum games does not provide us with clear definitions of how a quantum game should look like. In fact, only one condition is taken into consideration. A quantum game scheme is merely required to generalize the classical game. As a result, this allows us to define a quantum game scheme in many different ways. However, a wide variety of techniques to describe a game in the quantum domain can imply different quantumgameresults. Therefore,itwouldbeconvenienttospecifythatsomequantumschemesworkundersome furtherrestrictions. Wehavebeenworkingundertheassumptionthataquantumschemeisinvariantwithrespect to isomorphic transformationsof an input game. We have shown that this requirementmay be essential tool in definingaquantumscheme.Theprotocolthatreplicatesclassicalcorrelatedequilibriaisanexamplethatdoesnot satisfyourcriterion.Therefineddefinitionforaquantumgameschememayalsobeusefultogeneralizeprotocols. OurworkhasshownthatdependenceoflocalunitaryoperatorsintheMWschemeonthenumberofstrategiesin a classical gameis notlinear. Infact, the generalizedapproachto n m bimatrixgamecanbe identifiedwith a × gameofdimensionn! m!. × Acknowledges ThisworkwassupportedbytheMinistryofScienceandHigherEducationinPolandundertheProjectIuventus PlusIP2014010973intheyears2015–2017. 9 References [1] L.MarinattoandT.Weber,Aquantumapproachtostaticgamesofcompleteinformation,Phys.Lett.A272 291(2000) [2] A.IqbalandA.H.Toor,StabilityofmixedNashequilibriainsymmetricquantumgames,Commun.Theor. Phys.42335(2004) [3] A. Nawaz and A. H. Toor, Evolutionarily stable strategies in quantum Hawk-Dove game, Chinese Phys. Lett.27,050303(2010) [4] P.Fra¸ckiewicz,Quantuminformationapproachtotheultimatumgame,Int.J.Theor.Phys.533248(2014) [5] A.IqbalandA.H.Toor,Backwards-inductionoutcomeinaquantumgame,Phys.Rev.A65,052328(2002) [6] S.Khan,M.RamzanandM.K.Khan,QuantummodelofBertrandduopoly,Chin.Phys.Lett.27,080302 (2010) [7] P.Fra¸ckiewicz,AnewmodelforquantumgamesbasedontheMarinatto–Weberapproach,J.Phys.AMath. Theor.46,275301(2013) [8] A.IqbalandA.H.Toor,QuantummechanicsgivesstabilitytoaNashequilibrium,Phys.Rev.A65,022306 (2002) [9] P.Fra¸ckiewicz,AcommentonthegeneralizationoftheMarinatto-Weberquantumgamescheme,ActaPhys. Pol.B4429(2013) [10] P.Frackiewicz,Anewquantumschemefornormalformgames,QuantumInfProcess141809(2015) [11] J.Gabarró,A.GarcíaandM.Serna,Thecomplexityofgameisomorphism,Theor.Comput.Sci.4126675 (2011) [12] J.Nash,Non-cooperativegames,AnnMath54286(1951) [13] B.Peleg,J.RosenmüllerandP.Sudhölter,TheCanonicalExtensiveFormofaGameForm-PartI-Sym- metriesInCurrentTrendsinEconomics,AdvancementofStudiesinEconomics367(1999) [14] P. Sudhölter, J. Rosenmüller and B. Peleg, The Canonical Extensive Form of a Game Form - Part II - RepresentationJMathEcon33299(2000) [15] P.Fra¸ckiewicz,Onquantumgameapproachtocorrelatedequilibrium,ProceedingsinGlobalVirtualCon- ference,Slovakia,(2016) 10