ebook img

Stratifications on moduli spaces of abelian varieties in positive characteristic PDF

46 Pages·2012·0.24 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stratifications on moduli spaces of abelian varieties in positive characteristic

STRATIFICATIONSONMODULISPACESOF ABELIANVARIETIESINPOSITIVECHARACTERISTIC Jeffrey D.Achter ADissertation inMathematics Presentedto theFaculties oftheUniversity of PennsylvaniainPartialFul(cid:2)llment oftheRequirementsfor theDegreeof Doctor of Philosophy 1998 Supervisor of Dissertation GraduateGroup Chairperson COPYRIGHT JEFFREY D.ACHTER 1998 Acknowledgments This thesis would not have been written without Ching-Li Chai, whom I thank for pa- tiently introducing me to abelian varieties and awaiting this work. Chia-Fu Yu has been nolesspatient,andIthankhimforbothgeneraldiscussionsandtechnicalremarks. TheUniversityof Pennsylvania has beena warm place tolearn and domathematics. Let methankthefacultyingeneralandSteveShatzinparticularforsupportandguidance. Istartedworkonthisprojectin autumnof1995 atHarvardUniversity,whosehospitality Ienjoyed. Iparticularlybene(cid:2)tedfromconversationswithJohandeJong. IamgratefultoScottPaulsandRachelPriesfortheirfriendshipandsupport,bothmathe- maticalandotherwise;andEileenAnderson,GeoffPikeandToddSinaifortheirs,mainly otherwise. Final thanks are due to my parents, Kathy and Gene Achter, and my brother, Mike, for theirloveandencouragement. iii ABSTRACT STRATIFICATIONSONMODULISPACESOF ABELIANVARIETIESINPOSITIVECHARACTERISTIC JeffreyD.Achter Ching-LiChai Over a (cid:2)eld of positive characteristic p, we consider moduli spaces of polarized abelian varietiesequippedwithanactionbyaringunrami(cid:2)edat p. Usingdeformationtheory,we show that ordinary points are dense in each of the following situations: the polarization is separable; the polarization is mildly inseparable, and the ring of endomorphisms is a totally real number (cid:2)eld; or the polarization is arbitrary, and the ring is a real quadratic (cid:2)eldactingonabelianfourfolds. Weintroduceanewinvariantwhichmeasurestheextent to which a polarized Dieudonne· module admits an isotropic splitting lifting the Hodge (cid:2)ltration, and use it to explain the singularities arising from mildly inseparable polariza- tions. iv Contents 1 Modulispaces 3 2 Howtodeformanabelianvariety 6 2.1 Kodaira-Spencertheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Cartier-Dieudonne· theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Crystallinecohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Nicedeformstoordinary 26 4 Mildinseparability 30 5 Arbitraryinseparability 37 Bibliography 39 v Thericharithmeticofabelian varietiescomesfromplayingthegrouplaw againsttheun- derlyinggeometry. Whiletosomeextentanyabelianvarietybehaveslikeaclassicalcom- plexprojectivetorus,intriguingfeaturesariseinpositivecharacteristic. Apparentlysimple questionsaboutthestructureofthetorsiongrouprevealdecisivelynewphemonena. ConsideranabelianvarietyXofdimensiongoveranalgebraicallyclosed(cid:2)eldkofpositive characteristic p. There is a number (cid:26) between zero and g, the p-rank of X, such that the numberof p-torsionpointsin theabeliangroup X(k)is p(cid:26). When(cid:26)isaslargeaspossible, theabelianvarietyissaidtobeordinary. Theclassi(cid:2)cationby p-rankinducesastrati(cid:2)cationonanyfamilyofabelianvarieties. This dissertationexploresthis strati(cid:2)cation on moduli spaces of abelian varieties with a given endomorphismring. The problems considered here arise in two distinct but closely related lines of inquiry. On one hand, Deuring shows that the generic elliptic curve is ordinary [Deu]. Mumford announces[Mum],andNormanandOortprove[N-O],theobviousgeneralizationofthis statementtohigherdimension: ordinarypointsaredenseinthemodulispaceofpolarized abelianvarieties. On the other hand, moduli spaces of PEL type (cid:150) those parametrizing abelian varieties with certain polarization, endomorphismand level-structure data (cid:150) are important spaces in their own right. Roughly speaking, when the characteristic of the ground(cid:2)eld is rela- tivelyprimetothemoduliproblem,theresultingspaceissmooth. Whenthecharacteristic resonateswiththemoduli functor, thingsgetinterestingand thespacesgetsingular. The singularities of such spaces have attracted considerable attention. Forresults along these 1 lines see,e.g.,[dJ] and [Nor] for moduli spaceswith inseparable polarizations; [D-P] and [R-Z] for endomorphism rings rami(cid:2)ed at p; and [C-N], [D-R] and [KaMa] for p level structure. Withthiscontext,Isetouttounderstandthelocusparametrizingordinaryabelianschemes inmodulispacesofPELtype. Themainresultsinthisdirectionare3.3,4.2and5.1. Along theway,weareabletosaysomethingaboutthegeometryofthesespaces. This paper is organized in the following way. The (cid:2)rst section gives the precise de(cid:2)ni- tion of the moduli stacks in question. The second section collects a number of results on the deformation theoryof abelian varieties. As we avail ourselvesof techniques from Kodaira-Spencer, Dieudonne· and crystalline theories, we present a utilitarian review of their main theorems. Subsequently we extend these techniques to the deformation of an abelianvarietywithgivenendomorphismstructure. The(cid:2)nalthreesectionsshowthatordinarypointsaredenseinmodulispacesofPELtype undervaryinghypotheses. Sectionthreeshowsdirectlythatordinarypointsaredensein any such smooth space. Section four proves a similar result for spaces with singularities comingfrommildlyinseparablepolarizations. Wealsogiveacompletedescriptionofthe singularities which arise. The (cid:2)nal section uses slightly different techniques to examine a slightly different class of spaces; at the expense of serious restrictions on the type of endomorphismring,weallowarbitrarilyinseparablepolarizations. 2 1 Moduli spaces Thisthesisinvestigatesmodulispacesforpolarizedabelianvarietiesequippedwithendo- morphisms. Thesespacesarede(cid:2)nedinthefollowingway. LetO be an order in a (cid:2)nite-dimensional Q-algebra B with positive involution (cid:3). Let E B bethere(cid:3)ex(cid:2)eldof B,essentiallythe(cid:2)eldoftracesofelementsof Bontherepresentation space Lie(X) below, and let D be the product of all primes of E lying over primes in Q which ramify in B or E. For natural numbers g and d we denote by AOB the category of g;d e triples(X=S;(cid:19);(cid:21))where i. X ! S!SpecO [1]isanabelianschemeofrelativedimensiong. E D (cid:19) ii. O ,!End(X)isaringhomomorphismtaking1toidX,sothatLie(X)isafreeO (cid:10) B B O -module. S iii. X!(cid:21) X_isapolarizationofdegreed2,takingthegiveninvolutiononO totheRosati B involutionofEnd(X). Recall that X ! S is an abelian scheme if it is a smooth proper group scheme with [geo- metrically]connected(cid:2)bers. Fixanalgebraicallyclosed(cid:2)eldO [1]!kofcharacteristic p>0. Denotethereductionof E D theglobalmodulispacemodulo pby AOB d=efAOB (cid:2) Speck: g;d g;d SpecOE[D1] e Remark 1.1 The demanded compatibilities in (ii) and (iii) are quite reasonable requests of our moduli space. The freeness constraint in (ii) expresses one instance of Kottwitz’s 3 (cid:147)determinantalcondition(cid:148)[Kott]. Whilemodifyingthisconditionstillyieldsareasonable modulispace,anyothersuchconditionforbidstheexistenceofordinarypoints.Moreover, Lie(X)isalwaysfreeoverO (cid:10)O ifdisinvertibleon S. B S Itmaybeworthmaking(iii)’smeaningexplicit,too. AnamplelinebundleL onanabelian variety X over a (cid:2)eld k induces an isogeny (cid:30)L : X ! X_ d=ef Pic0(X), x 7!L (cid:10)Tx(cid:3)L(cid:0)1. An isogenyarisinginthiswayiscalledapolarizationofX=k. IfXisanabelianschemeoverS, thenapolarizationof Xisamap(cid:21):X! X_ whichisapolarizationofabelianvarietiesat everygeometricpointof S. Thedegreeofapolarizationissimplyitsdegreeasanisogeny, thatis,therankofitskernel. AnypolarizationinducesaRosatiinvolutiononEnd(X)(cid:10)Q, de(cid:2)nedby(cid:11)y =(cid:21)(cid:0)1(cid:14)(cid:11)_(cid:14)(cid:21). Weinsistthat,foranyb2O ,(cid:19)(b(cid:3))=(cid:19)(b)y. B Thefunctor(X=S;(cid:19);(cid:21))7! Sclearlyreveals AOB asa(cid:2)beredcategoryoverSch . g;d OE[D1] e Theorem1.2ThecategoryAOB isanalgebraicstackoverO [1]. g;d E D e Proof The sketch in Theore(cid:30)me 1.20 of [Rap], which treats the case where O is a totally B real(cid:2)eldofdimensiong,isastandardexegesisofArtin’smethodwhichworksforgeneral B. A standard class-number argument, which I learned from Chia-Fu Yu, showsthat the forgetful functor AOB !(cid:30) A is quasi(cid:2)nite. Indeed, one can directly prove that, for any g;d g;d e e pair of orders in Q-algebras with positive involutions, Hom((O ;(cid:3) );(O ;(cid:3) )) is (cid:2)nite. B1 1 B2 2 Moreover,arigiditystatementonhomomorphismsofabelianvarieties([F-C],I.2.7)shows (cid:30)isproper,too. SoAOB is(cid:2)niteoverA ,itselfwellknowntobeanalgebraicstack. Thus, g;d g;d e e AOK isanalgebraicstack. g;d e Remark1.3GiventheintroductoryremarksonproblemsofPELtype,thereadermayrea- sonablywonderattheabsenceoflevelstructureinthesemoduliproblems. Leveldatahas 4 beenomittedhere,assuchstructurehasnoeffectonthelocalargumentsusedthroughout. Indeed, all results proved for AOB are true for moduli spaces of polarized O -abelian va- g;d B e rieties with given prime-to-p level structure. If the level structure is suf(cid:2)ciently (cid:2)ne, the associated(cid:2)nemodulispaceisactuallyascheme;thismayaffordsomesmallpsychologi- calcomforttothereader. 5

Description:
number of p-torsion points in the abelian group X(k) is pρ real field of dimension g, is a standard exegesis of Artin's method which works for general.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.