STRATIFICATIONSONMODULISPACESOF ABELIANVARIETIESINPOSITIVECHARACTERISTIC Jeffrey D.Achter ADissertation inMathematics Presentedto theFaculties oftheUniversity of PennsylvaniainPartialFul(cid:2)llment oftheRequirementsfor theDegreeof Doctor of Philosophy 1998 Supervisor of Dissertation GraduateGroup Chairperson COPYRIGHT JEFFREY D.ACHTER 1998 Acknowledgments This thesis would not have been written without Ching-Li Chai, whom I thank for pa- tiently introducing me to abelian varieties and awaiting this work. Chia-Fu Yu has been nolesspatient,andIthankhimforbothgeneraldiscussionsandtechnicalremarks. TheUniversityof Pennsylvania has beena warm place tolearn and domathematics. Let methankthefacultyingeneralandSteveShatzinparticularforsupportandguidance. Istartedworkonthisprojectin autumnof1995 atHarvardUniversity,whosehospitality Ienjoyed. Iparticularlybene(cid:2)tedfromconversationswithJohandeJong. IamgratefultoScottPaulsandRachelPriesfortheirfriendshipandsupport,bothmathe- maticalandotherwise;andEileenAnderson,GeoffPikeandToddSinaifortheirs,mainly otherwise. Final thanks are due to my parents, Kathy and Gene Achter, and my brother, Mike, for theirloveandencouragement. iii ABSTRACT STRATIFICATIONSONMODULISPACESOF ABELIANVARIETIESINPOSITIVECHARACTERISTIC JeffreyD.Achter Ching-LiChai Over a (cid:2)eld of positive characteristic p, we consider moduli spaces of polarized abelian varietiesequippedwithanactionbyaringunrami(cid:2)edat p. Usingdeformationtheory,we show that ordinary points are dense in each of the following situations: the polarization is separable; the polarization is mildly inseparable, and the ring of endomorphisms is a totally real number (cid:2)eld; or the polarization is arbitrary, and the ring is a real quadratic (cid:2)eldactingonabelianfourfolds. Weintroduceanewinvariantwhichmeasurestheextent to which a polarized Dieudonne· module admits an isotropic splitting lifting the Hodge (cid:2)ltration, and use it to explain the singularities arising from mildly inseparable polariza- tions. iv Contents 1 Modulispaces 3 2 Howtodeformanabelianvariety 6 2.1 Kodaira-Spencertheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Cartier-Dieudonne· theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Crystallinecohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Nicedeformstoordinary 26 4 Mildinseparability 30 5 Arbitraryinseparability 37 Bibliography 39 v Thericharithmeticofabelian varietiescomesfromplayingthegrouplaw againsttheun- derlyinggeometry. Whiletosomeextentanyabelianvarietybehaveslikeaclassicalcom- plexprojectivetorus,intriguingfeaturesariseinpositivecharacteristic. Apparentlysimple questionsaboutthestructureofthetorsiongrouprevealdecisivelynewphemonena. ConsideranabelianvarietyXofdimensiongoveranalgebraicallyclosed(cid:2)eldkofpositive characteristic p. There is a number (cid:26) between zero and g, the p-rank of X, such that the numberof p-torsionpointsin theabeliangroup X(k)is p(cid:26). When(cid:26)isaslargeaspossible, theabelianvarietyissaidtobeordinary. Theclassi(cid:2)cationby p-rankinducesastrati(cid:2)cationonanyfamilyofabelianvarieties. This dissertationexploresthis strati(cid:2)cation on moduli spaces of abelian varieties with a given endomorphismring. The problems considered here arise in two distinct but closely related lines of inquiry. On one hand, Deuring shows that the generic elliptic curve is ordinary [Deu]. Mumford announces[Mum],andNormanandOortprove[N-O],theobviousgeneralizationofthis statementtohigherdimension: ordinarypointsaredenseinthemodulispaceofpolarized abelianvarieties. On the other hand, moduli spaces of PEL type (cid:150) those parametrizing abelian varieties with certain polarization, endomorphismand level-structure data (cid:150) are important spaces in their own right. Roughly speaking, when the characteristic of the ground(cid:2)eld is rela- tivelyprimetothemoduliproblem,theresultingspaceissmooth. Whenthecharacteristic resonateswiththemoduli functor, thingsgetinterestingand thespacesgetsingular. The singularities of such spaces have attracted considerable attention. Forresults along these 1 lines see,e.g.,[dJ] and [Nor] for moduli spaceswith inseparable polarizations; [D-P] and [R-Z] for endomorphism rings rami(cid:2)ed at p; and [C-N], [D-R] and [KaMa] for p level structure. Withthiscontext,Isetouttounderstandthelocusparametrizingordinaryabelianschemes inmodulispacesofPELtype. Themainresultsinthisdirectionare3.3,4.2and5.1. Along theway,weareabletosaysomethingaboutthegeometryofthesespaces. This paper is organized in the following way. The (cid:2)rst section gives the precise de(cid:2)ni- tion of the moduli stacks in question. The second section collects a number of results on the deformation theoryof abelian varieties. As we avail ourselvesof techniques from Kodaira-Spencer, Dieudonne· and crystalline theories, we present a utilitarian review of their main theorems. Subsequently we extend these techniques to the deformation of an abelianvarietywithgivenendomorphismstructure. The(cid:2)nalthreesectionsshowthatordinarypointsaredenseinmodulispacesofPELtype undervaryinghypotheses. Sectionthreeshowsdirectlythatordinarypointsaredensein any such smooth space. Section four proves a similar result for spaces with singularities comingfrommildlyinseparablepolarizations. Wealsogiveacompletedescriptionofthe singularities which arise. The (cid:2)nal section uses slightly different techniques to examine a slightly different class of spaces; at the expense of serious restrictions on the type of endomorphismring,weallowarbitrarilyinseparablepolarizations. 2 1 Moduli spaces Thisthesisinvestigatesmodulispacesforpolarizedabelianvarietiesequippedwithendo- morphisms. Thesespacesarede(cid:2)nedinthefollowingway. LetO be an order in a (cid:2)nite-dimensional Q-algebra B with positive involution (cid:3). Let E B bethere(cid:3)ex(cid:2)eldof B,essentiallythe(cid:2)eldoftracesofelementsof Bontherepresentation space Lie(X) below, and let D be the product of all primes of E lying over primes in Q which ramify in B or E. For natural numbers g and d we denote by AOB the category of g;d e triples(X=S;(cid:19);(cid:21))where i. X ! S!SpecO [1]isanabelianschemeofrelativedimensiong. E D (cid:19) ii. O ,!End(X)isaringhomomorphismtaking1toidX,sothatLie(X)isafreeO (cid:10) B B O -module. S iii. X!(cid:21) X_isapolarizationofdegreed2,takingthegiveninvolutiononO totheRosati B involutionofEnd(X). Recall that X ! S is an abelian scheme if it is a smooth proper group scheme with [geo- metrically]connected(cid:2)bers. Fixanalgebraicallyclosed(cid:2)eldO [1]!kofcharacteristic p>0. Denotethereductionof E D theglobalmodulispacemodulo pby AOB d=efAOB (cid:2) Speck: g;d g;d SpecOE[D1] e Remark 1.1 The demanded compatibilities in (ii) and (iii) are quite reasonable requests of our moduli space. The freeness constraint in (ii) expresses one instance of Kottwitz’s 3 (cid:147)determinantalcondition(cid:148)[Kott]. Whilemodifyingthisconditionstillyieldsareasonable modulispace,anyothersuchconditionforbidstheexistenceofordinarypoints.Moreover, Lie(X)isalwaysfreeoverO (cid:10)O ifdisinvertibleon S. B S Itmaybeworthmaking(iii)’smeaningexplicit,too. AnamplelinebundleL onanabelian variety X over a (cid:2)eld k induces an isogeny (cid:30)L : X ! X_ d=ef Pic0(X), x 7!L (cid:10)Tx(cid:3)L(cid:0)1. An isogenyarisinginthiswayiscalledapolarizationofX=k. IfXisanabelianschemeoverS, thenapolarizationof Xisamap(cid:21):X! X_ whichisapolarizationofabelianvarietiesat everygeometricpointof S. Thedegreeofapolarizationissimplyitsdegreeasanisogeny, thatis,therankofitskernel. AnypolarizationinducesaRosatiinvolutiononEnd(X)(cid:10)Q, de(cid:2)nedby(cid:11)y =(cid:21)(cid:0)1(cid:14)(cid:11)_(cid:14)(cid:21). Weinsistthat,foranyb2O ,(cid:19)(b(cid:3))=(cid:19)(b)y. B Thefunctor(X=S;(cid:19);(cid:21))7! Sclearlyreveals AOB asa(cid:2)beredcategoryoverSch . g;d OE[D1] e Theorem1.2ThecategoryAOB isanalgebraicstackoverO [1]. g;d E D e Proof The sketch in Theore(cid:30)me 1.20 of [Rap], which treats the case where O is a totally B real(cid:2)eldofdimensiong,isastandardexegesisofArtin’smethodwhichworksforgeneral B. A standard class-number argument, which I learned from Chia-Fu Yu, showsthat the forgetful functor AOB !(cid:30) A is quasi(cid:2)nite. Indeed, one can directly prove that, for any g;d g;d e e pair of orders in Q-algebras with positive involutions, Hom((O ;(cid:3) );(O ;(cid:3) )) is (cid:2)nite. B1 1 B2 2 Moreover,arigiditystatementonhomomorphismsofabelianvarieties([F-C],I.2.7)shows (cid:30)isproper,too. SoAOB is(cid:2)niteoverA ,itselfwellknowntobeanalgebraicstack. Thus, g;d g;d e e AOK isanalgebraicstack. g;d e Remark1.3GiventheintroductoryremarksonproblemsofPELtype,thereadermayrea- sonablywonderattheabsenceoflevelstructureinthesemoduliproblems. Leveldatahas 4 beenomittedhere,assuchstructurehasnoeffectonthelocalargumentsusedthroughout. Indeed, all results proved for AOB are true for moduli spaces of polarized O -abelian va- g;d B e rieties with given prime-to-p level structure. If the level structure is suf(cid:2)ciently (cid:2)ne, the associated(cid:2)nemodulispaceisactuallyascheme;thismayaffordsomesmallpsychologi- calcomforttothereader. 5
Description: