Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra Markus Hartla,1, Anna-Maria Mitterstillerb,1, Taras Valovkaa, Kathrin Breukerc, Bert Hobmayerb,2, and Klaus Bistera,2 InstitutesofaBiochemistry,bZoology,andcOrganicChemistry,CenterforMolecularBiosciences,UniversityofInnsbruck,Austria EditedbyPeterK.Vogt,TheScrippsResearchInstitute,LaJolla,CA,andapprovedJanuary15,2010(receivedforreviewSeptember25,2009) Thec-mycprotooncogeneencodesatranscriptionfactor(Myc)with Drosophila melanogaster, a triploblastic bilaterian model organ- oncogenic potential. Myc and its dimerization partner Max are ism(9,10).DrosophilaMyc(dMyc)controlscellgrowthandcell bHLH-Zip DNA binding proteins controlling fundamental cellular size(11)andregulatescellcompetitioninadose-dependentman- processes.Deregulationofc-mycleadsto tumorigenesisandisa ner (12). dMyc and dMax bind to a large number of genomic hallmarkofmanyhumancancers.Wehaveidentifiedandexten- E-boxes to regulate the expression of many genes including sively characterized ancestral forms of myc and max genes from key regulators of ribosome biogenesis (13, 14). theearlydiploblasticcnidarianHydra,themostprimitivemetazoan ThefreshwaterpolypHydraisaclassicdiploblasticmodelsys- organismemployedsofarforthestructural,functional,andevolu- tem to study pattern formation, regeneration, and stem cell dy- tionaryanalysisofthesegenes.Hydramycisspecificallyactivated namics in an evolutionary context (15–19), and belongs to the inallstemcellsandnematoblastnestswhichrepresenttherapidly animal phylum cnidaria that branched off almost 600 million proliferating cell types of the interstitial stem cell system and in Y R proliferatingglandcells.Interminallydifferentiatednervecells,ne- yearsago.Itssimplebodyplaniscomposedofthreeindependent ST matocytes,orepithelialcells,mycexpressionisnotdetectablebyin celllineages.Twolineagesofepithelialmusclecellsformunicel- EMI H situhybridization.Hydramaxexhibitsasimilarexpressionpattern lularsheets(ectoderm,endoderm),shapethebodyofthepolyp, OC ininterstitialcellclusters.TheancestralHydraMycandMaxpro- andcarryitsmorphogeneticcapacities.Thethirdlineageisastem BI teins display the principal design of their vertebrate derivatives, cellsystemdispersedintheinterstitialspacesbetweenepithelial with the highest degree of sequence identities confined to the musclecells.Themultipotentstemcellsarelocatedintheecto- bHLH-Zip domains. Furthermore, the 314-amino acid Hydra Myc dermofthegastricregion.Theygiverisetoectodermalanden- proteincontainsbasicformsoftheessentialMycboxesIthrough dodermal differentiation products that are essential for the III.ArecombinantHydraMyc/Maxcomplexbindstotheconsensus polyp’s behavior (nerve cells, nematocytes, and gland cells) DNA sequence CACGTG with high affinity. Hybrid proteins com- and sexual reproduction (gametes) (20). Ectodermal and endo- posed of segments from the retroviral v-Myc oncoprotein and dermalepithelialmusclecellsproliferatewithacellcyclelength theHydraMycproteindisplayoncogenicpotentialincelltransfor- of about 3.5 d, coincident with the polyp growth rate (21). The mationassays.Ourresultssuggestthattheprincipalfunctionsof interstitial stem cells proliferate much faster with a cell cycle theMycmasterregulatoraroseveryearlyinmetazoanevolution, allowingtheirdissectioninasimplemodelorganismshowingre- lengthofabout1d(22).However,only60%ofthedaughtercells generativeabilitybutnosenescence. remainstemcells,whereas40%differentiateintonervecells,ne- matocytes, or gland cells (23, 24). cellproliferation∣cnidaria∣development∣transcriptionfactor Here, we describe the cloning and structural and functional analysis of myc and max genes from Hydra, representing the The myc oncogene was originally identified as a highly onco- oldestandmostprimitivemetazoanorganismusedsofarformo- genicretroviralallele(v-myc),derivedfromthecellularc-myc lecularanalysesofthesegenesandtheirproteinproducts.Intri- protooncogenebytransduction(1).Theproteinproduct(Myc)of guingly, the basic biochemical and biological functions defined c-myc represents the central part of a transcriptional regulator forvertebrateMycandMaxproteinsarealreadylaidoutintheir network controlling the expression of up to 15% of all human earlyancestralhomologs.Furthermore,thespecificexpressionof genesandregulatingfundamentalcellularprocesseslikegrowth, Hydra myc and max in all rapidly proliferating cell types of the proliferation, differentiation, metabolism, and apoptosis (2, 3). interstitialstemcellsystempointstoanearlyroleinfundamental Deregulationofc-mycleadingtoelevatedlevelsofMycisafre- cellular regulation, rendering Hydra an ideal model system for quenteventintumorigenesis,occuringinabout30%ofallhuman cancers(4,5).MycisabHLH-Zipproteincontainingproteindi- biochemical and genetic analyses of these important regulatory merizationdomains(helix-loop-helix,leucinezipper)andaDNA genesandtheirpleiotropicimpactongrowthanddevelopment. contactsurface(basicregion)(2).Mycformsheterodimerswith the bHLH-Zip protein Max, binds to specific DNA sequence elements(E-boxes),andispartofatranscriptionfactornetwork Authorcontributions:M.H.,B.H.,andK.Bisterdesignedresearch;M.H.,A.-M.M.,T.V., andK.Breukerperformedresearch;M.H.,K.Breuker,B.H.,andK.Bisteranalyzeddata; includingadditionalbHLH-Zipproteins(2).Myc-Maxheterodi- andM.H.,B.H.,andK.Bisterwrotethepaper. mersareimplicatedintranscriptionalactivationofdistincttarget Theauthorsdeclarenoconflictofinterest. genes,butMychasalsobeenassociatedwithtranscriptionalre- ThisarticleisaPNASDirectSubmission. pression(2,3,6).ManyofthegenesactivatedbyMycarerelated Data deposition: The sequences reported in this paper have been deposited in the to processes of cell growth and metabolism, including protein GenBankdatabase(accessionnos.GQ856263,GQ856264,GU199337). synthesis, ribosomal biogenesis, glycolysis, mitochondrial func- 1M.H.andA.M.contributedequallytothiswork. tion, and cell cycle progression (3, 7, 8). Most of the genes re- 2Towhomcorrespondenceshouldbeaddressed.E-mail:[email protected]. pressed by Myc are involved in cell cycle arrest, cell adhesion, [email protected]. and cell-to-cell communication (3, 7, 8). Invertebrate orthologs This article contains supporting information online at www.pnas.org/cgi/content/full/ of Myc and Max proteins have been identified in the fruit fly 0911060107/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.0911060107 PNAS∣March2,2010∣vol.107∣no.9∣4051–4056 Results chemically conservative substitutes (Fig. S1B). The specific se- IdentificationandCloningofHydramycandmaxGenes.Startingfrom quence identities among the Hydra, chicken, and human Myc theHydraEST(expressedsequencetags)databasecontainingen- and Max proteins are summarized in Fig. S1C. The location of tries related to vertebrate myc and max genes, a bioinformatic myc1 and myc2 on the Hydra genome is shown in Fig. S1D. search of the emerging Hydra magnipapillata genome database Intriguingly, myc2 maps directly adjacent to the CAD gene, a ledtotheidentificationofopenreadingframesencodingputative bona fide Myc target in mammals (7, 8), encoding the multi- HydraMycandMaxproteins.Arecentsearchusingthemostcur- functional protein carbamoyl-phosphate synthetase/aspartate rentreleaseoftheHydragenomedatabaserevealedthepresence transcarbamoylase/dihydroorotase. Homology modeling of the of additional myc-related sequences in the completed genome dimerization/DNA binding domain of Hydra Myc/Max, using sequence. Two deduced protein sequences (termed Myc1 and the 3D structure available for the corresponding region of the Myc2) display the principal topography of Myc proteins, one humanproteins(29)asatemplate,revealedspecificconservation (Myc1) encoded by the gene initially cloned in this study and ofresiduesatthecontactsurfaces(Fig.S2).Molecularphyloge- nowtermedmyc1.Comparisonofthededucedproteinsequences netic analyses revealed that the Hydra Myc and Max protein with those of the human or chicken c-Myc and Max homologs sequences branch off from basal positions within the trees revealed overall sequence identities of 31.5% or 27.4% for the (Fig.S3AandB).Also,theanalysessuggestthatthediversifica- Myc1protein,and55.0%or54.4%fortheMaxprotein,respec- tionofC-/B-,L-,andN-/S-Mycsubfamiliesoccurredonlywithin tively(Fig.1).Thehighestdegreeofsequenceidentitywasfound the vertebrate lineage (Fig. S3A). in the bHLH-Zip regions of Myc1 (44.7% identity) and Max ThepredictedcodingregionsofHydramyc1(314aminoacids) (81.0% identity), necessary for dimerization and sequence- and max (176 amino acids) (Fig. 1) were cloned by using total specific DNA binding (Fig. 1). The amino-terminal Hydra mRNAs isolated from whole Hydra magnipapillata animals as a Myc1domainexhibitslessoverallsequenceidentitytothehuman templateforcDNAsynthesisfollowedbyPCR.Sequenceanalysis homolog, although Myc boxes I, II, IIIa, and IIIb, essential for ofthefull-length942-bpHydramyc1andthe528-bpHydramax Myc-induced cell transformation and transcriptional regulation coding regions revealed that the max sequence was identical to (25–28), display identities of 30.0%, 43.8%, 33.0%, and 41.7%, thesequencededucedfromtheHydragenome,whereastwonu- resp. The structures of Hydra Myc1 determined here and of cleotide substitutions were found in the myc1 coding sequence thededucedMyc2proteindisplaythesameprincipaltopography leading to one amino acid substitution (G188D) in comparison and similar evolutionary relationship to the human protein with the predicted Hydra Myc1 protein from the database. (Fig.S1A),butshareonly23.6%overallidentitiesamongthem- Furthermore, only a small fraction of the Hydra myc1-specific selves.Notably,theexon-exonjunctionsofHydramyc1andmyc2, cDNAs encode the full-length 314-amino acid Myc1 protein, andofhumanc-myc,shareverysimilarnucleotidesequences,and whereasthemajorityofcDNAsencodeashorter289-aminoacid the amino acids around the junctions are either identical or version starting with the methionine at position 26 (Fig. 1). Fig.1. AminoacidsequencesofHydraMyc1andMaxproteinsandalignmentwiththeirvertebratehomologs.(A)Alignmentofhuman(Hu)c-Myc,chicken (Ck)c-Myc,andHydra(Hy)Myc1sequences(GenBankaccessionnos.:huc-Myc,NP_002458;ckc-Myc,NP_001026123;hyMyc1,GQ856263).(B)Alignmentof human,chicken,andHydraMaxsequences(GenBankaccessionnos.:huMax,NP_002373;ckMax,P52162;hyMax,GQ856264).Identicalresiduesareshadedin Blue,gapsareindicatedbyDashes.ThepositionsoftheMycboxes(MB)I–IVinthetransactivationdomainsofthevertebrateproteinsandofthebHLH-Zip regionintheMycorMaxDNAbindingdomainsareindicated.ConservedheptadrepeatresiduesintheleucinezipperregionsaremarkedbyAsterisks.The positionscorrespondingtoexon-exonjunctionsareindicatedbyArrowsabove(HU,CK)andbelow(HY)thealignments.Alignmentsweregeneratedbyusing theClustalWalgorithmwithadditionalmanualadjustments. 4052 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0911060107 Hartletal. In a Northern analysis using polyðAÞþ RNAs from whole preparations (Fig. 3A, C–F). Also, the myc1 gene was not tran- polyps and Hydra myc1 and max cDNAs as probes, single tran- scriptionallyupregulatedduringmorphogeneticprocessessuchas scripts with sizes of 1.20 kb and 1.25 kb, resp., were detected, asexual bud formation and regeneration. Taken together, myc1 whichiscompatiblewiththesizesofthepredictedopenreading wasspecificallyactivatedinallstemcellsandnematoblastnests frames (Fig. 2A). Whereas the total expression level of myc1 in which represent the rapidly proliferating cell types of the inter- thewholeanimalwasratherlow,maxwasabundantlyexpressed. stitialstemcellsystem,andinproliferatingglandcells(Fig.3G). HybridizationofthesamefilterswithaHydraCADcDNAprobe InintactHydra,themaxgeneexhibitedanexpressionpattern revealed thepresenceofasingle7.0-kbtranscript (Fig.2A).By similartothemyc1geneincellclustersoftheinterstitialstemcell usingpolyclonalantibodiesgeneratedagainstrecombinantHydra lineage(Fig.3BandFig.S4B).Quantitativeanalysesofnestsizes Myc1andMaxproteins,endogenousHydraMyc1andMaxpro- showed similar results for the myc1 and max genes (Fig. S4C), teinsweredetectedbyimmunoprecipitationorimmunoblotana- withmyc1-andmax-positivenestscontaining4,8,or16cells.Pre- lysis(Fig.2BandC).Forsizecomparison,invitrotranslatedfull- vious analyses of genes activated in post-mitotic, differentiating length Hydra Myc1 (Mr 36,082) and Max (Mr 20,234) proteins, nematocytenestslikeHvJNK(31)andNowa(32)hadshownnest and the shorter Myc1 protein (Mr 33,174) were included in the sizesbetween8and32cells.Inaddition,doubleinsituhybridiza- analysis.BothinvitrotranslatedandendogenousHydraMaxpro- tion exhibited basically no overlap between myc1- and Nowa- teinsdisplayanapparentMr of22,000.Mostoftheendogenous expressing nests (Fig. S4D–F). Hence, myc1 and max are likely HydraMyc1proteinhasanapparentMr of35,000,similartothe coactivated in proliferating nematoblasts (Fig. 3G). At present, invitrotranslatedshorter289-aminoacidform(p36),whereasin itisuncleartowhatextentmaxisupregulatedininterstitialstem vitrotranslatedfull-lengthHydraMyc1displaysanapparentMr and gland cells. Whole mount preparations clearly showed max of 39,000. expression also in epithelial cells throughout the entire polyp (Fig. 3B and Fig. S4B). This is consistent with our results from Hydramyc1andmaxGenesareActivatedintheInterstitialStemCell Northern hybridization (Fig. 2A) and with the more ubiquitous Lineage.Inintactpolyps,insituhybridizationrevealedmyc1gene activation patterns observed for max in various bilaterians. expressioninalargenumberofcellsandcellnestsoftheinter- Y stitial stem cell lineage (Fig. 3A and Fig. S4A). Expression was BiochemicalPropertiesofHydraMycandMaxProteins.Totestifthe TR restricted to the gastric region; whereas head (hypostome and principal biochemical functions of Myc and Max proteins have MIS tentacles) and foot (lower peduncle and basal disc) were free already emerged in the early metazoan Hydra, the coding se- HE C of myc1 expressing cells (Fig. 3A). To analyze cell type-specific quences of full-length Hydra Max and of the carboxyl-terminal BIO expression in more detail, we performed in situ hybridization domainofHydraMyc1containingthebHLH-Zipdomain(amino on macerated Hydra single cells spread onto microscope slides, acidresidues201–314)(Fig.1)wereinsertedintopETvectorsfor permittingunambiguousclassificationofcelltypesbasedoncell recombinantproteinexpressioninEscherichiacoli.Asacontrol, shapeandnuclearmorphology(30).Wefoundmyc1mRNAinall the chicken Max p14 protein containing the bHLH-Zip region interstitial stem cells(Fig. 3CandE), inallproliferating nema- (amino acid residues 22–113) (33) was expressed analogously. toblastnests(Fig.3DandF),andinamajorfractionofglandcells The proteins Hydra Max p22 (Mr 20,234), Hydra Myc1 p16 (Fig.3CandE).Thedifferentiatingandfullydifferentiatedcell (Mr 13,745), and chicken Max p14 (Mr 10,927) were efficiently typesofthenervecellandnematocytepathwaysshowednomyc1 expressed,andthesolublefractionswerepurifiedtohomogeneity expression. Ectodermal and endodermal epithelial cells also byusingliquidchromatographysystems(Fig.4A).Theidentities showednomyc1expressioninbothwholemountandmaceration ofrecombinantHydraMyc1p16andMaxproteinswereverified bymassspectrometry(Fig.S5),fragmentionmapping(Fig.S6), andimmunoblotanalysis(Fig.4A).TotestifHydraMyc1p16and Hydra Max p22 proteins show DNA binding activity, similar to thatofchickenMaxp14(33),electrophoreticmobilityshiftana- lyses (EMSA)were performed. The analysis showed that Hydra Myc1p16bindstodouble-strandedDNAcontainingaconsensus Myc binding site with high efficiency, whereas Hydra Max p22 displayed lower binding affinity (Fig. 4B). The apparent size of theHydraMyc1p16-DNAcomplexishigherthanexpectedpos- siblyduetobindingofhigherorderMycoligomersasproposed previously (29, 34). In agreement with results obtained with chicken proteins (33), the DNA affinity is enhanced when an equimolar mixture of Hydra Myc1 p16 and Hydra Max is used, allowing the formation of heterodimeric protein complexes (Fig. 4B). The presence of both proteins in these complexes wasverifiedbycoincubationwithantibodiesdirectedagainstHy- draMyc1orMaxleadingtopartialsupershift(α-hyMax)orin- Fig.2. ExpressionofHydramyc1andmaxgenesandtheirproteinproducts. hibition (α-hy Myc1) of DNA binding. To quantify the Hydra (A)Northernanalysesusingaliquots(2.0μg)ofpolyðAÞþ-selectedRNAsfrom Myc1orMaxDNAbindingaffinities,increasingamountsofpro- wholeHydraanimalsandHydramyc1ormaxspecificcDNAprobes.Eachfil- teinswereaddedtoconstantamountsofDNAinEMSAanalyses terwasstrippedandrehybridizedwithaHydraCADspecificcDNAprobe.(B) Immunoprecipitationanalysisusingaliquots(5×106cpm)ofboiledcellex- (Fig. S7A), the ratios of bound to total DNAwere determined, tractsfrom½35S(cid:1)methionine-labeledHydraanimalsandapolyclonalantiser- and the dissociation constants (Kd) for the protein-DNA com- umdirectedagainstHydraMyc1recombinantprotein(α-hyMyc1),ornormal plexes were calculated (Fig. S7B). The Kd values for protein- rabbitserum(NRS).Forcomparison,½35S(cid:1)methionine-labeledHydraMyc1p39 DNAcomplexesformedbyHydraMyc1p16/HydraMaxp22,Hy- andp36proteinswerealsoproducedbyinvitrotranslationofcorresponding dra Myc1 p16, and Hydra Max p22 were determined to cDNAs cloned in Bluescript(BS) vectors andimmunoprecipitated.Proteins 1.7×10−8 M, 3.2×10−7 M, and 1.0×10−6 M, resp. Compared w30e-rμegaanliaqluyozetdofbtyotSaDlSc/ePlAlpGrEot(e1i0n%sf,rowmt∕vwohl)o.le(CH)yImdrmaupnoolybplostanadnaolfysiinsvoiftroa with the Kd for the avian Myc/Max heterodimer binding to the sameDNA(33),theDNAaffinityofHydraMyc1/Max isabout translatedHydraMaxusingapolyclonalantiserumdirectedagainstHydra Maxrecombinantprotein(α-hyMax).ProteinswereresolvedbySDS/PAGE 100-fold lower. Specific DNA binding activity could also be (12.5%,wt∕vol). demonstrated for the nearly full-length Hydra Myc1 p36 Hartletal. PNAS ∣ March2,2010 ∣ vol.107 ∣ no.9 ∣ 4053 Fig.3. ExpressionpatternsofHydramyc1andmaxvisualizedbyinsituhybridization.(A,B)myc1andmaxareactivatedincellsbelongingtotheinterstitial stemcelllineageinthegastricregionofintact,buddingpolyps.Inaddition,maxisexpressedatalowerlevelintheepitheliumthroughouttheentirebody column.(C–F)myc1expressionininterstitialstemcells(CandE),proliferatingnematoblastnests(DandF),andaglandcell(InsertinCandE),visualizedbyin situ hybridization in macerated single cell preparations. (C and D) bright field optics; (E and F) phase contrast optics. Ecto: ectodermal epithelial cell; Endo:endodermalepithelialcell;andNV:nervecell.(G)Schemeofthedifferentiationpathwaysintheinterstitialstemcellsystemwithmyc1expressing subpopulationsshadedinYellow. recombinant protein, following solubilization from inclusion ment,tumorigenesis,orboth,isseverelycomplicatedbythelarge bodies and renaturation (Fig. S7C). numberofdirectorindirectMyctargetsidentifiedbyexpression profilingorgenomicDNAbinding(3).Furthermore,thepossible Hydra-Viral Myc Hybrid Proteins Induce Cell Transformation. To ex- roleofMycasacoactivatororcorepressorofothertranscription plore if some of the principal biological functions of vertebrate factors,andtherecentevidencethatmanybiologicalfunctionsof Myc are already associated with their ancestral counterparts, MycareindependentofMaxorevenE-boxbindingamplifythe the Hydra myc1 and max coding regions, and hybrids between range of possible Myc targets (3, 36). Hydraandviralmycwereinsertedintothereplication-competent Identificationandanalysisofmycandmaxgenesandproteins retroviral RCAS vector and tested for their potential to induce fromgeneticallytractableinvertebrateorganismslikeDrosophila celltransformationinavianfibroblasts.Inthehybridconstructs, substantiallyenhancedtheanalysisoftheMyc/Maxnetwork(10, the amino-terminal transcriptional regulation and carboxyl- 36). Hence,characterization ofthesegenes fromyetmuchsim- terminal DNA binding domains had been mutually exchanged pler pre-bilaterianorganismsatthebaseofmetazoanevolution (hy/v-myc, v/hy-myc) (Fig. 5A and Fig. S8A). The empty RCAS mayprovidefurtherinsightintothebasicbiochemistryandbiol- vector and the RCAS-v-myc construct encoding the 416-amino ogyoftheseimportantcellularregulators.Usinginsilicogenomic acidviralMyc(v-Myc)proteinwereusedascontrols.Theiden- analyses,thepresenceofmyc-likeormyc-relatedgeneshasbeen tities of the DNA inserts were verified by sequencing and by in predicted for all sequenced genomes of metazoans with the ex- vitro translation and immunoprecipitation of the protein pro- ceptionofthenematodeCaenorhabditiselegans,wherethelackof ducts by using specific antibodies recognizing the Hydra Myc1 mycgenesisduetosecondaryloss(37,38).Representingthesis- p39, Hydra Max p22, and avian v-Myc proteins (Fig. S8B). The tergrouptothemetazoanclade,thechoanoflagellateMonosiga invitrotranslatedhybridproteinshy/vMyc(Mr 34,910)andv/hy- brevicollis is the most simple organism for which a protein dis- Myc(Mr 47,210),andthev-Mycprotein(Mr 46,095)displayan tantlyrelatedtometazoanMycproteinshasbeenpredictedfrom apparent Mr of 37,000, 53,000, or 52,000, resp. (Fig. S8B). The the genome sequence (37, 39). We have identified, cloned, retroviralconstructsweretransfectedintoprimaryquailembryo andextensivelycharacterizedauthenticmycandmaxgenesfrom fibroblasts(QEF),andcellswerepassagedseveraltimes.Expres- a diploblastic cnidarian organism, Hydra magnipapillata, that sionofectopicviralandhybridMycproteinsandoftheendogen- branched off in metazoan evolution almost 600 million years ous c-Myc protein comigrating with the v-Myc protein was ago. The Hydra Myc1 protein shares the principal topography monitored by immunoprecipitation analysis (Fig. 5B). The c- withvertebrateMycproteins.Adirectcomparisonrevealsshort Mycproteinisnotdetectableincellsthatcontainhighlevelsof conserved amino acid motifs in the N-terminal Myc boxes I, II, v-Mycorv/hy-Myc,whichisduetonegativetranscriptionalreg- IIIa,andIIIb.Hence,thispartoftheproteinevolvedinthecom- ulationofc-mycbyv-Myc(35).EctopicexpressionofHydraMax mon cnidarian-bilaterian ancestor. The C-terminal bHLH-Zip didnotcauseanysignificantcellularalterations,andHydraMyc1 domain represents an ancient class of eukaryotic DNA binding inducedonlyamarginalincreaseincellproliferation.Incontrast, domains, with high sequence identity and structural homology expressionofbothhybridproteins,hy/v-Mycandv/hy-Myc,ledto between Hydra Myc1 and vertebrate Myc proteins (Fig. 1 and cell transformation manifested by focus formation, enhanced Fig. S2). Notably, the position of the exon-exon junction that proliferation, and anchorage-independent growth (Fig. 5C and isfixedacrossbilaterianmycgenes(10)isalsoconservedinthe D).Transformationbybothhybridproteinswaslessefficientthan pre-bilaterian Hydramyc1gene (Fig.S1).TheHydraMyc1pro- thatinducedbytheauthenticv-Myconcoprotein.However,these teindimerizeswithHydraMaxandbindstoE-boxDNAwithhigh resultsshowthatboththeamino-terminalandthecarboxyl-term- affinity,indicatingaveryearlyoriginofthesebasicbiochemical inaldomainofHydraMyc1areprincipallycapabletosubstitute properties. Intriguingly, oncogenic activity of truncated mutant for the correspondingregions inthe highly oncogenicretroviral versions of the retroviral v-Myc protein can, at least partially, v-Myc protein. be rescued bythe corresponding HydraMyc1 protein segments. Hence,evenbasicbiologicalfunctionsofvertebrateMycproteins Discussion emerged very early in their ancestral homologs. Conversetranscriptionalregulationofgrowthpromotingorsup- Recentdatabaseupdatesrevealfourmyc-relatedgenesinthe pressingtargetsisimplicatedinMyc-inducedoncogenesis(3,6– Hydragenome.Twoofthesegenes,myc1isolatedhere,andmyc2, 8).Theidentificationofsuchgenesrelevantfornormaldevelop- areclearmycorthologsdisplayingstructuralconservationintheir 4054 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0911060107 Hartletal. Y R T S MI E H C O BI Fig.5. CelltransformingactivitiesofHydraandviralMychybridproteins. (A)Schematicdiagramofthecodingregionsofv-myc(Blue),andofhy/v-myc Fig.4. HydraMyc1andMaxrecombinantproteinsandtheirbiochemical and v/hy-myc hybrids (Hydra sequences shown in Yellow). The constructs activity.(A)SDS/PAGE(5.0–17.5%gradient,wt∕vol)of2-μg(Coomassiebril- wereinsertedintotheuniqueClaIsiteofthereplication-competentretroviral liantbluestaining)or50-ng(immunoblotting)aliquotsofpurifiedrecombi- pRCASvectorusedforDNAtransfectionintoquailembryofibroblasts(QEF). nantHydraMyc1p16(aminoacids201–314),HydraMax,a1∶1mixtureof (B) Immunoprecipitation of endogenous c-Myc and ectopic Myc proteins bothproteins,andchickenMaxp14(aminoacids22–113).Specificantibodies using 1.0×107-cpm aliquots of lysates from ½35S(cid:1)methionine-labeled QEFs are indicated below the Blots. (B) EMSA using the recombinant proteins transfectedwiththepRCASconstructsshowninA,andantibodiesdirected shown in A and 0.3-ng (25,000 cpm) aliquots of a [32P]-labeled double- againstamino-terminal(N)orcarboxyl-terminal(C)segmentsofv-Myc,or stranded18-merdeoxyoligonucleotide33containingtheMyc/Max-binding normal rabbit serum (NRS). Proteins were resolved by SDS/PAGE (10%, motif5′-CACGTG-3′.Antibodieswereaddedtothebindingreactionsasin- wt∕vol).(C)ProliferationratesofQEFstransfectedwiththepRCASconstructs dicated.Finalproteinconcentrationsareindicatedbelow. showninAandpassagedseveraltimes.Equalnumbers(7.5×105)ofcells were seeded onto 60-mm dishes, and cell numbers were determined at theindicatedtimepoints.(D)Top:QEFson60-mmdishesweretransfected bHLH-ZipdomainsandMyc-boxesItoIII(Fig.1andFig.S1). with4-μgaliquotsofDNAfromthepRCASconstructsshowninA,keptunder Two other predicted genes encode proteins with Myc-related agaroverlayfor2wk,andthenstainedwitheosinmethyleneblue.Numbers bHLH-Zip domains but highly divergent N-terminal parts. Our offociperdishareindicated.Middle:QEFsweretransfectedwiththepRCAS molecular phylogenetic analysis suggests that the diversification constructsshowninAandpassagedseveraltimes.Thedoublingtimes(Td)of of vertebrate myc genes into C/B-, N/S-, and L-myc subfamilies the cell populations are indicated below the phase-contrast micrographs. Bottom:Equalnumbers(1.0×105)oftransfectedandpassagedcellswere doesnotoriginatefromadiversificationinlowermetazoans,but seeded in soft agar and incubated for 2 wk. Numbers of colonies per occured later, presumably at the basis of vertebrate evolu- 1,000cellsseededareshownbelowthebright-fieldmicrographs. tion (Fig. S3). The in situ hybridization shows that myc1 is transcriptionally activated in interstitial stem cells, nematoblasts, and gland cells notypesofmyc1-expressingcells,weproposetwofunctions.First, (Fig.3).Thesecelltypesrepresenttheproliferatingfractionsof interstitialstemcellsandnematoblastsarefastcyclingcellswith theHydrainterstitialstemcellsystemthatevolvedatthebasisof cell cycle lengths three to four times shorter than other Hydra animal evolution (20). Our results corroborate the general re- cells, particularly epithelial muscle cells. Gland cells comprise quirement of Myc transcription factors in stem and progenitor a population of differentiated stem cell products with retained cells to regulate proliferation and self-renewal and to perturb capacity for proliferation. Hence, also in Hydra high levels of orinhibitterminaldifferentiation,asproposedinhighermetazo- Myc1 may act to trancriptionally activate genes involved in cell ans like Drosophila or vertebrates (3). The detailed action of cycleprogressionorconverselytodown-regulategenesinvolved Myc1 and Max in Hydra is yet unknown, but based on the phe- in cell cycle arrest (3). Secondly, Myc1 may directly act in Hartletal. PNAS ∣ March2,2010 ∣ vol.107 ∣ no.9 ∣ 4055 ribosome biogenesis. Under phase contrast optics (Fig. 3E and InsituHydridization.Wholemountinsituhybridizationwithdigoxigenin-la- F), myc1-expressing interstitial stem cells, nematoblasts, and beledRNAprobeswasdoneasdescribed(41).Forinsituhybridizationinsin- glecellpreparations,Hydraweremaceratedfor20min(30).Cellsuspensions gland cells show a characteristic, dark cytoplasm based on the were fixed in 4% paraformaldehyde for 30 min, spread onto microscope presenceofverylargenumbersofribosomes(30).Furthermore, slides,anddriedbriefly.Hybridizationwasasdescribed(42). a recent in silico analysis of metazoan and non-metazoan gen- omes has shown that Myc- and Max-specific bHLH-Zip DNA CellsandRetroviruses.Cellculture,DNAtransfection,andtransformationas- binding domains coevolved with the appearance of E-box sites saysofquailembryofibroblasts(QEF)wereperformedasdescribed(6,40, in the core promoters of nearly all genes involved in ribosome 43). The construction of retroviral and Bluescript vectors carrying Hydra mycandmaxgenesorHydra-viralhybridgenesisdescribedinSIText. biogenesis(38).Theprincipalstructuralandfunctionalsimilari- ties between Hydra Myc and Max proteins and their vertebrate Protein Chemistry. In vitro translation, immunoprecipitation of derivativesprovidethebasisforusingthissimpleorganismnear L-½35S(cid:1)methionine-labeled proteins, SDS/PAGE, and immunoblotting were the base of metazoan evolution as a model system for cellular doneasdescribed(6,40).Expressionandpurificationofrecombinantpro- regulation by these proteins. teins was performed essentially as described previously (33). Construction ofpETexpressionvectorscarryingHydramycandmaxgenesequences,mass Materials and Methods spectrometryandsequencingofrecombinantproteins,generationofpoly- clonalantiseradirectedagainstHydraMycandMaxrecombinantproteins, Animals.HydravulgarisstrainBaselandHydramagnipapillatawildtypestrain andmetaboliclabelingofHydraproteinsaredescribedinSIText. 105wereusedinthisstudy.Masscultureswerekeptat18°Candfeddaily withfreshlyhatchedArtemianauplii.Experimentalanimalswerecollected EMSA. EMSA analysis was performed as described (33, 35). DNA binding 24hafterthelastfeeding(19). reactions(20μL)wereperformedat25°Cfor45mininabuffercontaining 10mMTrisHClpH7.5,0.5mMEDTA,65mMKCl,5mMMgCl2,1mMDTT, DNACloningandNucleicAcidAnalysis.Molecularcloning,DNAsequencing, 100μg∕mL BSA, 10% (vol∕vol) glycerol. For supershift analysis, polyclonal and Northern analysis have been described (6, 40). For RNA isolation, antisera(0.5μL)wereaddedafter15min.Protein-DNAcomplexeswerere- ∼1;500polypsofHydramagnipapillatawerelysedin50mLofabuffercon- solvedbynative6%(wt∕vol)PAGE,andradioactivesignalswerequantified taining 4 M guanidine thiocyanate, 25 mM sodium acetate pH 6.0, and byusingaPhosphorImager(MolecularDynamics). 0.835%(vol∕vol)2-mercaptoethanol.TotalRNAwasisolatedbyCsCldensity centrifugation,andmRNAwasenrichedbypolyðAÞþ-RNAselectionasde- ACKNOWLEDGMENTS.WethankJ.FuchsandK.Liedlfortemplate-basedmod- scribed (40). Cloning of the coding regions of the predicted Hydra myc eling. This work was supported by Austrian Science Fund (FWF) Grants andmaxgenesbycDNAsynthesisandPCRisdescribedinSIText. P17041,P18148,P20734,andY372 1. BisterK,JansenHW(1986)Oncogenesinretrovirusesandcells:biochemistryand 25.BiegalkeBJ,HeaneyML,BoutonA,ParsonsJT,LinialM(1987)MC29deletionmutants moleculargenetics.AdvCancerRes47:99–188. whichfailtotransformchickenmacrophagesarecompetentfortransformationof 2. EisenmanRN(2001)DeconstructingMyc.GenesDev15:2023–2030. quailmacrophages.JVirol61:2138–2142. 3. EilersM,EisenmanRN(2008)Myc’sbroadreach.GenesDev22:2755–2766. 26.StoneJ,etal.(1987)Definitionofregionsinhumanc-mycthatareinvolvedintrans- 4. NesbitCE,TersakJM,ProchownikEV(1999)MYConcogenesandhumanneoplastic formationandnuclearlocalization.MolCellBiol7:1697–1709. disease.Oncogene18:3004–3016. 27.LutterbachB,HannSR(1994)HierarchicalphosphorylationatN-terminaltransforma- 5. DangCV,KimJW,GaoP,YusteinJ(2008)TheinterplaybetweenMYCandHIFincancer. tion-sensitivesitesinc-Mycisregulatedbymitogensandinmitosis.MolCellBiol NatRevCancer8:51–56. 14:5510–5522. 6. HartlM,NistA,KhanMI,ValovkaT,BisterK(2009)InhibitionofMyc-inducedcell 28.SchwinkendorfD,GallantP(2009)TheconservedMycbox2andMycbox3regionsare transformation by brain acid-soluble protein 1 (BASP1). Proc Natl Acad Sci USA important,butnotessentialforMycfunctioninvivo.Gene436:90–100. 106:5604–5609. 29.NairSK,BurleySK(2003)X-raystructuresofMyc-MaxandMad-MaxrecognizingDNA: 7. DangCV(1999)c-Myctargetgenesinvolvedincellgrowth,apoptosis,andmetabo- Molecular bases of regulation by proto-oncogenic transcription factors. Cell lism.MolCellBiol19:1–11. 112:193–205. 8. GrandoriC,CowleySM,JamesLP,EisenmanRN(2000)TheMYC/MAX/MADnetwork 30.DavidCN(1978)Regulationoftheself-renewalprobabilityinHydrastemcellclones. andthetranscriptionalcontrolofcellbehavior.AnnuRevCellDevBiol16:653–699. ProcNatlAcadSciUSA75:886–890. 9. GallantP,ShiioY,ChengPF,ParkhurstSM,EisenmanRN(1996)MycandMaxhomologs 31.PhilippI,HolsteinTW,HobmayerB(2005)HvJNK,aHydramemberofthec-JunNH2- inDrosophila.Science274:1523–1527. terminalkinasegenefamily,isexpressedduringnematocytedifferentiation.Gene ExprPatterns5:397–402. 10. GallantP(2006)Myc/Max/Madininvertebrates:theevolutionoftheMaxnetwork. CurrTopMicrobiolImmunol302:235–253. 32.LindgensD,HolsteinTW,TechnauU(2004)Hyzic,theHydrahomologofthezic/odd- pairedgene,isinvolvedintheearlyspecificationofthesensorynematocytes.Devel- 11. JohnstonLA,ProberDA,EdgarBA,EisenmanRN,GallantP(1999)Drosophilamyc regulatescellulargrowthduringdevelopment.Cell98:779–790. opment131:191–201. 33.FieberW,etal.(2001)Structure,function,anddynamicsofthedimerizationandDNA 12. rdeegulalatCeosvoargCa,nAsbizrielbMy,inBdeullocisntgacPe,llGcaollmanptetPit,ioJonh.nCsetloln11L7A:10(270–10146).DrosophilaMyc 34.bDianndginCgV,dMomcGauinireofMo,nBcuocgkemniircetMra,nLseceripWtiMonF(f1a9c8to9r)Ivn-vMoylvce.mJeMnotloBfitohle3‘0le7u:1c3in9e5–z1ip4p1e0r.’ 13. Orian A, et al. (2003) Genomic binding by the DrosophilaMyc, Max, Mad/Mnt transcriptionfactornetwork.GenesDev17:1101–1114. ruergeio3n37in:66th4e–6o6li6g.omerizationandtransformingactivityofhumanc-mycprotein.Nat- 14. GrewalSS,LiL,OrianA,EisenmanRN,EdgarBA(2005)Myc-dependentregulationof 35.HartlM,KaragiannidisAI,BisterK(2006)CooperativecelltransformationbyMyc/Mil ribosomalRNAsynthesisduringDrosophiladevelopment.NatCellBiol7:295–302. (Raf)involvesinductionofAP-1andactivationofgenesimplicatedincellmotilityand 15. MeinhardtH(2008)Modelsofbiologicalpatternformation:fromelementarystepsto metastasis.Oncogene25:4043–4055. theorganizationofembryonicaxes.CurrTopDevBiol81:1–63. 36.SteigerD,FurrerM,SchwinkendorfD,GallantP(2008)Max-independentfunctionsof 16. HolsteinTW,HobmayerB,TechnauU(2003)Cnidarians:Anevolutionarilyconserved MycinDrosophilamelanogaster.NatGenet40:1084–1091. modelsystemforregeneration?.DevDyn226:257–267. 37.SimionatoE,etal.(2007)Originanddiversificationofthebasichelix-loop-helixgene 17. BoschTCG(2009)Hydraandtheevolutionofstemcells.Bioessays31:478–486. familyinmetazoans:insightsfromcomparativegenomics.BMCEvolBiol7:33. 18. SteeleRE(2002)DevelopmentalsignalinginHydra:whatdoesittaketobuilda 38.BrownSJ,ColeMD,ErivesAJ(2008)Evolutionoftheholozoanribosomebiogenesis “simple”animal.DevBiol248:199–219. regulon.BMCGenomics9:442. 19. HobmayerB,etal.(2000)WNTsignallingmoleculesactinaxisformationinthe 39.KingN,etal.(2008)ThegenomeofthechoanoflagellateMonosigabrevicollisandthe diploblasticmetazoanHydra.Nature407:186–189. originofmetazoans.Nature451:783–788. 20. BodeHR(1996)Theinterstitialcelllineageofhydra:astemcellsystemthataroseearly 40.HartlM,ReiterF,BaderAG,CastellazziM,BisterK(2001)JAC,adirecttargetofonco- inevolution.JCellSci109:1155–1164. genictranscriptionfactorJun,isinvolvedincelltransformationandtumorigenesis. 21. DavidCN,CampbellRD(1972)CellcyclekineticsanddevelopmentofHydraattenuata. ProcNatlAcadSciUSA98:13601–13606. I.Epithelialcells.JCellSci11:557–568. 41.PhilippI,etal.(2009)Wnt/β-cateninandnoncanonicalWntsignalinginteractintissue 22. CampbellRD,DavidCN(1974)CellcyclekineticsanddevelopmentofHydraattenuata. evaginationinthesimpleeumetazoanHydra.ProcNatlAcadSciUSA106:4290–4295. II.Interstitialcells.JCellSci16:349–358. 42.KurzEM,HolsteinTW,PetriBM,EngelJ,DavidCN(1991)Mini-collagensinHydra 23. DavidCN,GiererA(1974)CellcyclekineticsanddevelopmentofHydraattenuata.III. nematocytes.JCellBiol115:1159–1169. nerveandnematocytedifferentiation.JCellSci16:359–375. 43.BisterK,HaymanMJ,VogtPK(1977)Defectivenessofavianmyelocytomatosisvirus 24. BodeHR,HeimfeldS,ChowMA,HuangLW(1987)Glandcellsarisebydifferentiation MC29: Isolation of long-term nonproducer cultures and analysis of virus-specific frominterstitialcellsinHydraattenuata.DevBiol122:577–585. polypeptidesynthesis.Virology82:431–448. 4056 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0911060107 Hartletal. Supporting Information Hartl et al. 10.1073/pnas.0911060107 SI Text passingthefull-lengthHydramaxcodingsequence(hymax),the DNACloning.ForconstructionoftheadaptorplasmidpA-v-myc, Hydra myc codons 26–314 (p36hymyc) or 201–314 (p16hymyc) thecodingregionofthev-mycalleleofavianacuteleukemiavirus were inserted into the pET11d vector (Novagen). In the case MC29 (1,2)wasamplified byPCRbyusingthe v-myc-insert of of the p16hymyc construct, an additional initiating methionine pRc-Myc (3) as a template and 5′-CCGCTCAGCGCCAGCC- codonwasderivedfromthevector.ThepET3d-p14maxconstruct TC-3′ and 5′-TCTAGAGGATCCCTATGCACGAGAGTTCCT- encoding chicken Max has been described previously (5). TA-3′ oligonucleotides as primers. After digestion with BamHI, Fortheexpressionoffull-lengthHydraMaxprotein(176ami- the PCR product was inserted into the adaptor plasmid pA- no acids), the plasmid pET11d-hymax was transformed into CLA12NCO (4). To clone the coding regions of the predicted E.colistrainBL21(DE3)CodonPlus-RIL(Stratagene).Anover- Hydra myc and max genes, cDNA synthesis was performed as nightcultureinLBbrothsupplementedwith2 mg∕mL glucose, described (4), followed by PCR using the primer pairs 5′- 50μg∕mL ampicillin, and 25μg∕mL chloramphenicol was di- TATTTTGAGAAGACATTTAATACAG-3′/5′-AAGCTTGGA- luted 1∶50 to yield a 1-l culture. Bacteria were grown at 37°C TCCTTAAAAGCGAAACTTCATTTCTTCTTGACG-3′(hymyc) toanopticaldensityof0.7at600nm,recombinantproteinsynth- and 5′-AGTGACGAAGACAAAGAAG-3′/5′-CAGCTCGGATC- esiswasinducedbytheadditionofisopropyl-β-D-thiogalactoside CTAATGTTCTGTTTTCACTCG-3′ (hy max). The primer se- (IPTG)toafinalconcentrationof1mM,andincubationwascon- quenceswerededucedfromtheHydramagnipapillatagenome(hy- tinuedfor4h.Thebacterialpelletwasresuspendedin30mLice- drazome.metazome.net) that was searched for sequence coldbufferB(20mMTris-HClpH7.5,1MNaCl, 1mMDTT, contigs(38932and37686)relatedtovertebratemycandmaxgenes, 1mMPMSF)andlysedat1,300psiusingaFrenchPress.Tore- respectively.ThePCRproductsweredigestedwithBamHIandin- duceviscosity,thecellextractwassupplementedwith1.7 μg∕mL sertedintotheNcoI(blunt-ended)/BamHIsitesofpA-CLA12NCO, DNaseIand0.3mMMgCl2andincubatedfor35minonice.The yielding pA-hymyc and pA-hymax. To construct the plasmids pA- sample was then centrifuged at 18;000 × g for 20 min at 4°C. HM-VM and pA-VM-HM encoding hybrid proteins of Hydra Theclarifiedsupernatantwasadjustedto30%ammoniumsulfate (hy) Myc (HM) and v-Myc (VM), the corresponding hy Myc and saturationbyaddingasaturatedsolutionofthesalt,andthemix- v-Myc-specificsegmentscontainingoverlappingsequencesweream- turewasstirredonicefor30min.Theprecipitatedproteinswere plified in four different PCRs using the primer pairs 5′-CACTT- pelletedbycentrifugationat11;000 × gfor30minat4°C.The CAAGATCTTGCAG-3′/5′-GTGCGTTCGCC- supernatantwasadjustedto40%ammoniumsulfatesaturation, TCTTGTCACTTAACGAACCGTTTGA-3′ (HM1), 5′-TCAAA- andincubatedoniceasabove.Theprecipitatewascollectedby CGGTTCGTTAAGTGACAAGAGGCGAACGCAC-3′/5′- centrifugationasaboveanddissolvedin6mLofbufferA(20mM TCTAGAGGATCCCTATGCACGAGAGTTCCTTA-3′ (VM2), Tris-HClpH7.5,80mMNaCl,1mMEDTA,1mMDTT).The 5′-CCGCTCAGCGCCAGCCTC-3′/5′-GTTTTCGAGAGGTC- solutionwasdialyzedagainst1lofthesamebufferfor12hat4°C GAGGGTTCTCCTCTGAGTCTAA-3′ (VM1), 5′-TTAGACT- and loaded onto a Resource™ Q anion exchange column (GE CAGAGGAGAACCCTCGACCTCTCGAAAAC-3′/5′-TCT- Healthcare) equilibrated in buffer A. Chromatography on an AGAGGATCCTTAAAACC-3′(HM2).IntwosubsequentPCRs, ÄKTAPurifier(GEHealthcare)wascarriedoutbyinitialelution dilutedpoolsfrompairsofthefirstPCRswereemployedastem- withbufferA,followedbyalineargradientfrom0to0.5MNaCl plates (HM1þVM2 or VM1þHM2) using the primer pairs inthesamebufferataflowrateof1 mL∕min.HydraMaxcon- 5′-CACTTCAAGATCTTGCAG-3′/5′-TCTAGAGGATCCCTA- taining fractions were concentrated by using an Amicon Ultra TGCACGAGAGTTCCTTA-3′ (HM-VM) and 5′-CCGCT- centrifugalfilterdevice(MWCO10,000)(Millipore)andloaded CAGCGCCAGCCTC-3′/5′-TCTAGAGGATCCTTAAAACC-3′ ontoaSuperdex-75gelfiltrationcolumn(GEHealthcare)equi- (VM-HM).TheresultingPCRproductswerecleavedwithBglII/ librated with buffer C (50 mM NaH2PO4∕Na2HPO4 pH 7.2, BamHIorBamHIandinsertedintotheBglII/BamHI-sitesofpA- 140mMNaCl,1mMEDTA,1mMDTT)andthenelutedwith hymycortheNcoI(blunt-ended)/BamHIsitesofpA-CLA12NCO. the same buffer. Hydra Max containing fractions were pooled, TheinsertsofpA-hymyc,pA-hymax,pA-HM-VM,pA-VM-HM, concentratedandstoredinliquidnitrogen.Thefinalyieldofpur- andpA-v-mycwerereleasedbypartialdigestionwithClaIandin- ifiedHydraMaxproteinwasapproximately3mgperliterofbac- sertedintotheretroviralRCAS-BPvector,orintotheBluescript teria culture. pBSSKIIþvectorforinvitrotranslationasdescribed(4).Toclone FortheexpressionofHydraMycp16(115aminoacids)from thecodingregionofthepredictedHydramyc2gene,cDNAsynth- the pET11d-p16hymyc construct, bacterial culture, and protein esis was performed as above, followed by PCR using the expressionwereperformedasabove.Thebacterialpelletwasre- primer pair 5′-ACTGGTTCAAATTGGTGTACACACG-3′/5′- suspended in 30 mL of buffer D (50 mM NaH2PO4∕Na2HPO4 AGTCAGTCGACGAATTTCAAAAATAAAAAAAATTATT- pH 7.2, 1 M NaCl, 1 mM EDTA, 1 mM DTT) and lysed as TAAAAAGTAT-3′.ThePCRproductwasdigestedwithSalIand describedabove.AfterDNaseItreatment,thelysatewasclarified insertedintotheNcoI(blunt-ended)/SalIsitesofpA-CLA12NCO, by centrifugation and the recombinant protein was precipitated yieldingpA-hymyc2.Toclonepartofthecodingregionofthepre- at 30% ammonium sulfate saturation. The precipitate was dictedHydraCADgene,PCRwasperformedusingtheprimerpair collected by centrifugation, dissolved in buffer E (50 mM 5′-TCGGAATTCGCGGCATTATGTGGTGGAG-3′/5′-TCGG- NaH2PO4∕Na2HPO4 pH 7.2, 80 mM NaCl, 1 mM EDTA, AATTCGTGGTTTCACTTTTGCTTGCTG-3′. The purified 1 mM DTT), and dialyzed against the same buffer overnight 534-bpPCRproductwasdirectlyusedforhybridization,andalso at4°C.Thesamplewasclarifiedbycentrifugationandthesuper- insertedintotheEcoRIsiteofpUC19. natantwasloadedontoaMonoScationexchangecolumn(GE Healthcare)equilibratedwithbufferE.Proteinswereelutedwith Recombinant Protein Expression and Purification. To generate the alineargradientfrom0–0.5MNaClinthesamebufferataflow prokaryotic expression vectors pET11d-hymax, pET11d-p16hy- rateof0.5 mL∕min.FractionscontainingtheHydraMycp16pro- myc, and pET11d-p36hymyc, Hydra myc or max-specific coding teinwerepooledandconcentratedbyusinganAmiconUltracen- regionswereamplifiedfromcDNAs.ThePCRsegmentsencom- trifugalfilterdevice(MWCO3,000)(Millipore).Theproteinwas Hartletal. www.pnas.org/cgi/doi/10.1073/pnas.0911060107 1of9 then purified on a Superdex-75 gel filtration column (GE dra Myc p16 protein, CAD, and ECD gave b, c, y, and z-type Healthcare) and stored as described above. The final yield of fragmentionsfromcleavageat113outof114interresiduesites purifiedHydraMycp16wasapproximately1mgperliterofbac- (Fig.S6A),correspondingtoasequencecoverageof99.1%.For teria culture. theHydraMaxprotein,fragmentionsfromcleavageat139outof Chicken Max p14 protein was purified as described previ- 174 interresidue sites (Fig. S6B) gave a sequence coverage ously (5) with minor modifications. Protein expression from of 79.9%. the pET3d-p14max construct in the E. coli strain BL21 (DE3) CodonPlus-RIL (Stratagene) was induced with 1 mM IPTG, Protein Analysis. The recombinant full-length 176-amino acid and the bacterial culture was incubated for 5 h at 37°C. After HydraMaxprotein,the289-aminoacidHydraMycp36protein, cell lysis, chicken Max p14 protein was precipitated by ammo- anda161-aminoacidpolypeptidecontainingtheamino-terminal niumsulfateprecipitationintwostepsasdescribedaboveforHy- 140 residues from v-Myc and additional 21 residues from the dra Max. The recombinant protein precipitating between 50% Gag-MycborderintheMC29Gag-Mychybridprotein(2)were and60%ammoniumsulfatesaturationwaspurifiedbycationex- purifiedandusedtogeneratetherabbitpolyclonalantiseraα-hy changechromatographyonaMonoScolumn(GEHealthcare), Max,α-hyMyc,andα-Myc-N,resp.,asdescribedpreviously(8). followedbygelfiltrationchromatographyonaSuperdex-75col- Theantiserumα-Myc-Cdirectedagainsta105-aminoacidrecom- umn (GE Healthcare). The final yield of purified chicken Max binant protein encompassing the carboxyl-terminal 103 amino p14proteinwasapproximately1mgperliterofbacteriaculture. acidresiduesofv-MycandtwoadditionalresiduesðM;VÞatthe aminoterminushasbeendescribed(8).Invitrotranslation,im- MassSpectrometry(MS)ofHydraMycandMaxRecombinantProteins. munoprecipitationofL-½35S(cid:2)methionine-labeledproteins,immu- Proteins were desalted by using Vivaspin 500 PES centrifugal noblotting, and SDS/PAGE were done as described (3, 4). For concentrators (MWCO 5,000) (Sartorius). Centrifugal concen- metaboliclabelingofHydraproteins,20animalswereincubated tration and addition of 100 mM ammonium acetate in H2O for3hat18°Cin1mLofHydrasolution(1mMCaCl2,1mM (18MΩ)tothesupernatantwasrepeatedfivetimes,followedby TrisHClpH7.5,0.1mMMgCl2,0.1mMKCl,1mMNaHCO3) sixcyclesofconcentrationanddilutionwithH2O(18MΩ).Final supplemented with 20 μM reduced glutathione, and 200 μCi of protein concentration of the electrospray ionization (ESI) solu- L-½35S(cid:2)methionine (1;000Ci∕mmol). The polyps were washed tion (H2O∶MeOH 1∶1, 1% vol∕vol acetic acid) was 1 μM. ESI three times in Hydra solution. Lysis was performed in 0.3 mL MS using a 7 Tesla Fourier transform ion cyclotron resonance of a buffer containing 10 mM sodium phosphate pH 7.2, 0.5% (FT-ICR) instrument (Bruker) gave mass values for the most (wt∕vol) SDS, 2μg∕mL aprotinin, and the lysate was boiled abundant isotopic peak of 13;613.364(cid:1)0.016Da for Hydra for5min.Thecooledextractwasdilutedwith1.2mLofabuffer Myc p16 (theoretical mass without initiating methionine: containing 10 mM sodium phosphate pH 7.2, 187.5 mM NaCl, 13,613.357Da),and20;102.074(cid:1)0.010DaforHydraMax(the- 1.25%(vol∕vol)IgepalCA630,1.25%(wt∕vol)sodiumdeoxycho- oreticalmasswithoutinitiatingmethionine:20,102.071Da)with late,2 μg∕mLaprotinin,andthesolutionwasclarifiedbycentri- internal calibration (error<1 ppm) using polyethylene glycol fugationat20;000 × gfor1hat4°C.Thesupernatantwasused 1000ascalibrant.TheESImassspectraofproteinwithoutinter- forimmunoprecipiationanalysisasdescribed(3).Cellextractsfor nal calibrant (Fig. S5) show high protein purity; ions of lower immunoblotting were prepared from 30 animals by lysis for abundance correspond to protein adducts from residual phos- 20 min on ice in 1.2 mL of a buffer containing 20 mM Tris phate buffer. HCl pH 8.0, 200 mM LiCl, 0.5% (vol∕vol) Igepal CA-630, 1 HydraMycandMaxproteinsequenceswereanalyzedintop- mM EDTA, 2 μg∕mL aprotinin, 1 μg∕mL leupeptin, and 1 μg/ downMSexperiments(6,7)usingcollisionallyactivateddissocia- mLpepstatinA.Thelysatewasclarifiedasabove,andthesuper- tion(CAD)andelectroncapturedissociation(ECD).FortheHy- natant was used for immunoblot analysis. 1.BisterK,JansenHW(1986)Oncogenesinretrovirusesandcells:biochemistryand 10. DangCV,LeeWM(1988)Identificationofthehumanc-mycproteinnucleartransloca- moleculargenetics.AdvCancerRes47:99–188. tionsignal.MolCellBiol8:4048–4054. 2.BisterK,HaymanMJ,VogtPK(1977)Defectivenessofavianmyelocytomatosisvirus 11. HenikoffS,HenikoffJG(1992)Aminoacidsubstitutionmatricesfromproteinblocks. MC29:Isolationoflong-termnonproducerculturesandanalysisofvirus-specificpoly- ProcNatlAcadSciUSA89:10915–10919. peptidesynthesis.Virology82:431–448. 12. NairSK,BurleySK(2003)X-raystructuresofMyc-MaxandMad-MaxrecognizingDNA: 3.HartlM,NistA,KhanMI,ValovkaT,BisterK(2009)InhibitionofMyc-inducedcell Molecular bases of regulation by proto-oncogenic transcription factors. Cell transformation by brain acid-soluble protein 1 (BASP1). Proc Natl Acad Sci USA 112:193–205. 106:5604–5609. 13. WangJM,CieplakP,KollmanPA(2000)Howwelldoesarestrainedelectrostatic 4.HartlM,ReiterF,BaderAG,CastellazziM,BisterK(2001)JAC,adirecttargetof potential(RESP)modelperformincalculatingconformationalenergiesoforganic oncogenictranscriptionfactorJun,isinvolvedincelltransformationandtumorigen- andbiologicalmolecules?JComputChem21:1049–1074. esis.ProcNatlAcadSciUSA98:13601–13606. 14. TironiIG,SperbR,SmithPE,vanGunsterenWF(1995)Ageneralizedreactionfield 5.FieberW,SchneiderML,MattT,KräutlerB,KonratR,BisterK(2001)Structure,func- methodformolecular-dynamicssimulations.JChemPhys102:5451–5459. tion,anddynamicsofthedimerizationandDNAbindingdomainofoncogenictran- 15. DeLanoWL(2002)ThePyMOLMolecularGraphicsSystem(DeLanoScientificLLC, scriptionfactorv-Myc.JMolBiol307:1395–1410. PaloAlto). 6.BreukerK,JinM,HanX,JiangH,McLaffertyFW(2008)Top-downidentificationand 16. RonquistF,HuelsenbeckJP(2003)MrBayes3:Bayesianphylogeneticinferenceunder characterizationofbiomoleculesbymassspectrometry.JAmSocMassSpectrom mixedmodels.Bioinformatics19:1572–1574. 19:1045–1053. 17. WhelanS,GoldmanN(2001)Ageneralempiricalmodelofproteinevolutionderived 7.HanX,JinM,BreukerK,McLaffertyFW(2006)Extendingtop-downmassspectrometry frommultipleproteinfamiliesusingamaximum-likelihoodapproach.MolBiolEvol toproteinswithmassesgreaterthan200kilodaltons.Science314:109–112. 18:691–699. 8.HartlM,KaragiannidisAI,BisterK(2006)CooperativecelltransformationbyMyc/Mil 18. PhilippI,HolsteinTW,HobmayerB(2005)HvJNK,aHydramemberofthec-Jun (Raf)involvesinductionofAP-1andactivationofgenesimplicatedincellmotilityand NH2-terminalkinasegenefamily,isexpressedduringnematocytedifferentiation. metastasis.Oncogene25:4043–4055. GeneExprPatterns5:397–402. 9.SearsR,etal.(2000)MultipleRas-dependentphosphorylationpathwaysregulateMyc 19. EngelU,etal.(2002)Nowa,anovelproteinwithminicollagenCys-richdomains,is proteinstability.GenesDev14:2501–2514. involvedinnematocystformationinHydra.JCellSci115:3923–3934. Hartletal.www.pnas.org/cgi/doi/10.1073/pnas.0911060107 2of9 Fig.S1. StructuralrelationshipofHydraMyc1andMyc2proteins.(A)Alignmentofaminoacidsequencesofhuman(hu)c-MycandHydra(hy)Myc1andMyc2 proteins(GenBankaccessionnos.:huc-Myc,NP_002458;hyMyc1,GQ856263;hyMyc2,GU199337),usingtheClustalWalgorithmwithadditionalmanual adjustments. Identical and BLOSUM62 matrix-defined similar residues are shaded in Blue, gaps are indicated by Dashes. Annotations of Myc boxes, bHLH-Zipregions,andpositionscorrespondingtoexon-exonjunctionsareasinFig.1.ConservedphosphorylationsitesinMBI(9)andtheprimarynuclear localizationsignal(10)arehighlightedbyGreenandOrangeBoxes,resp.(B)Nucleotideandaminoacidsequencesaroundtheexon-exonjunctions.(C)Overall andsegment-specificsequenceidentitiesderivedfrompairwisealignmentsoftheproteinsindicated.(D)TopographyofHydramagnipapillatagenomicloci (accession nos. NW_002158519, NW_002159544) containing the Hydra myc1 and myc2 genes. Adjacent genes encoding Hydra proteins similar to CAD (carbamoyl-phosphatesynthetase/aspartatetranscarbamoylase/dihydroorotase),E2F-7(E2Ftranscriptionfactor7),andCHDH(cholinedehydrogenase)are alsoshown.GeneorientationsareindicatedbyArrows. Hartletal. www.pnas.org/cgi/doi/10.1073/pnas.0911060107 3of9 Fig.S2. Template-basedmodelingofthebHLH-ZipregionsofHydraMyc1andMax.(A)HomologymodelofaheterodimerformedbyMyc1(Red,residues P220–Q307)andMax(Blue,residuesD30–A112)incomplexwiththedouble-strandeddeoxyoligonucleotide5′-CGAGTAGCACGTGCTACTC-3′(E-boxunder- lined).Residueschangedincomparisontothehumanproteinsequencesareshowninbrightercolors.(B)HomologymodeloftheHydraMyc1/Maxhetero- dimerasinA,withresiduescoloredaccordingtotheirBLOSUM62score(11):conservedandevolutionarysimilarresiduesareshowninGreen,andincreasing evolutionarydissimilarityisindicatedbyspectralchangesviaYellowtoRed.ThemodelswerebuiltinMOE(MolecularOperatingEnvironment2008.10;Che- micalComputingGroup,Inc.)usingthestructure(PDBcode1NKP)ofthehumanMyc/Max/DNAcomplex(12)asthetemplatewiththehighestsequence identity(Fig.S1C).ThemodelwasbuiltinpresenceoftheDNAtorefinecontacts.ThestructurewasoptimizedbyusingtheAMBER99-forcefield(13)with reactionfieldsolvationmodel(14)yieldingafinalstructurewitharmsgradientbelow1.0kcal∕ðmolÅÞ.ThermsdforthematchedCαatomsoftargetand templateis0.255Å.PicturesweregeneratedusingPyMOL(15). Hartletal.www.pnas.org/cgi/doi/10.1073/pnas.0911060107 4of9
Description: