A&A582,A14(2015) Astronomy DOI:10.1051/0004-6361/201425582 & (cid:2)c ESO2015 Astrophysics Stellar populations of galaxies in the ALHAMBRA survey up ∼ to z 1 I. MUFFIT: A multi-filter fitting code for stellar population diagnostics L.A.Díaz-García1,A.J.Cenarro1,C.López-Sanjuan1,I.Ferreras2,J.Varela1,K.Viironen1,D.Cristóbal-Hornillos1, M.Moles1,3,A.Marín-Franch1,P.Arnalte-Mur4,B.Ascaso5,3,M.Cerviño3,6,7,R.M.GonzálezDelgado3, I.Márquez3,J.Masegosa3,A.Molino8,3,M.Povic´3,E.Alfaro3,T.Aparicio-Villegas9,3,N.Benítez3, T.Broadhurst10,11,J.Cabrera-Caño12,F.J.Castander13,J.Cepa6,7,A.Fernández-Soto14,15,C.Husillos3,L.Infante16, J.A.L.Aguerri6,7,V.J.Martínez4,17,15,A.delOlmo3,J.Perea3,F.Prada3,18,19,J.M.Quintana3,andN.Gruel20 (Affiliationscanbefoundafterthereferences) Received24December2014/Accepted26May2015 ABSTRACT Aims.WepresentMUFFIT,anewgenericcodeoptimizedtoretrievethemainstellarpopulationparametersofgalaxiesinphotometricmulti-filter surveys,andcheckitsreliabilityandfeasibilitywithrealgalaxydatafromtheALHAMBRAsurvey. Methods.Makinguseofanerror-weightedχ2-test,wecomparethemulti-filterfluxesofgalaxieswiththesyntheticphotometryofmixturesoftwo singlestellarpopulationsatdifferentredshiftsandextinctions,toprovidethemostlikelyrangeofstellarpopulationparameters(mainlyagesand metallicities),extinctions,redshifts,andstellarmasses.Toimprovethediagnosticreliability,MUFFITidentifiesandremovesfromtheanalysis thosebandsthataresignificantlyaffectedbyemissionlines.ThefinalparametersandtheiruncertaintiesarederivedbyaMonteCarlomethod, usingtheindividual photometricuncertainties ineach band. Finally,wediscusstheaccuracies, degeneracies, andreliabilityof MUFFITusing bothsimulatedandrealgalaxiesfromALHAMBRA,comparingwithresultsfromtheliterature. Results.MUFFIT is a precise and reliable code to derive stellar population parameters of galaxies in ALHAMBRA. Using the results from photometric-redshiftcodesasinput,MUFFITimprovesthephotometric-redshiftaccuracyby∼10–20%.MUFFITalsodetectsnebularemissions ingalaxies,providing physicalinformationabout theirstrengths. ThestellarmassesderivedfromMUFFITshow excellent agreement withthe COSMOS and SDSS values. In addition, the retrieved age-metallicity locus for a sample of z ≤ 0.22 early-type galaxies in ALHAMBRA at differentstellarmassbinsareinverygoodagreementwiththeonesfromSDSSspectroscopicdiagnostics.Moreover,aone-to-onecomparison betweentheredshifts,ages,metallicities,andstellarmassesderivedspectroscopicallyforSDSSandbyMUFFITforALHAMBRArevealsgood qualitativeagreements inallthe parameters, hence reinforcing thestrengths of multi-filtergalaxy dataand optimized analysis techniques, like MUFFIT,toconductreliablestellarpopulationstudies. Keywords.galaxies:stellarcontent–galaxies:photometry–galaxies:evolution–galaxies:formation–galaxies:high-redshift 1. Introduction front,itisworthnotingtheLicksystemofindices(Gorgasetal. 1993;Wortheyetal.1994),whichforthepastdecadeshasbeen Studyingthestellarcontentofgalaxiesiscrucialtounderstand- the standard for most spectroscopic studies in stellar popula- ingtheirstarformationhistories(SFH),whichinturnprovides tions in the optical (e.g. Trager et al. 1998; Jørgensen 1999; uswithvaluableinformationaboutthepossibleevolutivepaths Kuntschneretal.2001;Thomasetal.2005;Bernardietal.2006; from their formationat high redshiftdown to the presenttime. Sánchez-Blázquez et al. 2006a; Gorgas et al. 2007). The com- Despite the strong efforts and advances achieved in this topic bination of a certain number of absorption lines mainly sensi- duringthepastdecades,itstillremainsasoneofthemostchal- tive to age, such as the Balmer lines, or to the metallicity, as lengingandpromisingwaystounderstandgalaxyevolution. tracedbycertainelementssuchasFe,Mg,Ti,C,Ca,andNa, Early attempts to study the stellar content of early-type wereproventobeanefficientwaytobreakthewellknownde- galaxies were based on colours from wide and narrow band generacybetweenthesetwoparameters,atleasttosomeextent photometry (Baum 1959; Tifft 1963; Wood 1966; McClure & (Worthey1994).Thewaytomeasurethesefeaturesisdelicately vandenBergh1968;Faber1973)andonempiricalsynthesisof chosentobeverysensitivetoaparameterofinterest,focusingits thepopulationsusingtheobservedcoloursofnearbyearly-types study on narrow spectralranges. By construction,line-strength asbasis.Theseearlymethodscanbeconsideredasthepioneers indices are quite insensitive to the influence of extinction, and of the current photo-spectral fitting techniques, which are the by fine-tuningtheir definition or combining the sensitivities of maintopicofthepresentpaper.Theabovemethodsweregrad- different indices, some of them may end up being almost in- ually displaced by techniques based in more specific features dependentofotherparameters,suchasmetallicity(Vazdekis& (Faber1973;Pritchet1977)thatweredefinedinnarrowspectral Arimoto1999;Cervantes&Vazdekis2009)andα-elementover- ranges. abundances(Thomasetal.2003). The arrival of absorption line-strength indices to study the Inthepastfifteenyears,thedevelopmentofstellarlibraries stellar content of galaxies (Burstein et al. 1984; Faber et al. inspectralrangesotherthantheopticalhasdriventhedefinition 1985) brought a significant breakthrough in the field. On this ofnewindicesthatallowedthiskindofstudytobeextendedto ArticlepublishedbyEDPSciences A14,page1of31 A&A582,A14(2015) otherregionswithunexploredsensitivities(Cenarroetal.2002; providingcompleteandhomogeneoussetsofgalaxySEDsdown Mármol-Queraltóet al. 2008).In addition,the indexsystem of to a certain magnitude depth. Although there are several SED- referenceintheopticalspectralrangehasbeenrevisitedandim- fittingcodesavailable,tocopewiththecalibrationparticularities proved(see e.g.Vazdekiset al. 2010)thanksto the availability ofmulti-filtersurveys(seee.g.Molinoetal.2014),andgiventhe ofmuchbetterstellarlibrariesatmuchbetterspectralresolution. vast amountof high-qualityphotometricdata already available It was with the arrivalof improvedstellar libraries,such as intheliteratureandstilltocomeinthenextyears,inthispaper CaT (Cenarro et al. 2001a,b), ELODIE (Prugniel & Soubiran wepresentMUFFIT(MUlti-FilterFITtingforstellarpopulation 2001),STELIB(LeBorgneetal.2003),INDO-US(Valdesetal. diagnostics),acodespecificallydesignedforanalysingthestel- 2004), Martins et al. (2005), and MILES (Sánchez-Blázquez larcontentofgalaxieswithavailablemulti-filterdata. etal.2006b;Cenarroetal.2007),andtheconsequentevolution- This paper mainly aims to describe the code and its func- arystellarpopulationsynthesismodels(e.g.Bruzual&Charlot tionalities, set the accuracy and typical uncertainties in the re- 2003;Vazdekisetal.2003,2010,2012;GonzálezDelgadoetal. trievedstellar populationparameters,anddemonstrateitsrelia- 2005;Marastonetal.2009;Conroy&vanDokkum2012),that bility compared with already existing stellar population results fittingtechniquesoverthefullspectralenergydistribution(SED) intheliterature.MUFFITwasdevelopedwithintheframework of galaxies appeared as an alternative to line-strength indices. of the ALHAMBRA survey (see Sect. 2), so even though the SED-fitting can also be used to derive severalphysical proper- codeisgenericandcanbeeasilyemployedforanykindofpho- tiesof galaxies(Mathisetal. 2006;Kolevaetal. 2008;Coelho tometricsystem, manysectionsin thispaperare specific to the et al. 2009;Walcher et al. 2011;Liu et al. 2013).In fact, there ALHAMBRA dataset. This allows us to show the code’s per- is a growing number of public codes specifically devoted to formanceonrealgalaxydata, whichis ultimatelythe bestsan- carryingout SED-fitting with differentprocedures,such as hy- ity check for any stellar population code. Even though in this perz(Bolzonellaetal. 2000),Le PHARE (Arnoutsetal. 2002; paper we use galaxy data from ALHAMBRA, it is not our in- Ilbert et al. 2006), STARLIGHT (CidFernandes et al. 2005), tention to scientifically exploit the dataset here. In subsequent STECKMAP(Ocvirketal.2006),VESPA(Tojeiroetal.2007), papersinthisseries,wewillprovideandexploitthestellarpop- ULySS (Koleva et al. 2009), FAST (Kriek et al. 2009), and ulationparametersretrievedforthewholegalaxysampleinthe SEDfit(Sawicki2012). ALHAMBRAsurvey. Nowadays, there is an increasing number of present and Thispaperisorganizedasfollows.Section2presentsaquick future multi-filter surveys, including COMBO-17 (Wolf et al. overview of the ALHAMBRA survey, that is, the photometric 2003),MUSYC(Gawiseretal.2006),COSMOS(Scovilleetal. dataset employed to develop the present work. In Sect. 3, we 2007), ALHAMBRA (Moles et al. 2008), CLASH (Postman summarisethemaintechnicalaspectsofourcode,MUFFIT,as et al. 2012), SHARDS (Pérez-González et al. 2013), J-PAS well as the processes for obtaining photometric colour predic- (Benitez et al. 2014), and J-PLUS (Cenarro et al., in prep.), tions from models of single stellar populations (SSP) and the eachofthemwithavastvolumeofhigh-qualitymulti-filterdata. MilkyWay(MW)extinctioncorrections.Weshowtheaccuracy Thesekindsofsurveyspursuediversegoalswithacommonfea- andreliabilityofthestellarpopulationparametersretrievedwith ture:samplingtheSEDsofgalaxiesusingtop-hatand/orbroad- our code, together with the uncertainties and degeneracies ex- band filters that mainly cover the optical range. Owing to this pected for ALHAMBRA data in Sect. 4. Section 5 presents a configuration,the retrieved SEDs are half-way between classi- comparison study of the results retrieved from ALHAMBRA cal photometry and spectroscopy, because in practice they are galaxy data using MUFFIT with previous studies, including likealow-resolutionspectrumwhoseresolutiondependsonthe spectroscopiconesand data fromthe literature,therebytesting filtersystem(e.g.R∼20forALHAMBRA;R∼50forJ-PAS). the reliability of our results. Finally, we provide the summary Although multi-filter observing techniques suffer from the andconclusionsofthisresearchinSect.6. lack of high spectral resolution,their advantagesover standard ThroughoutthispaperweassumeaΛCDMcosmologywith spectroscopyareworthnoting:(i)thegalaxysamplesofmulti- H0 =71kms−1,ΩM =0.27,andΩΛ =0.73. filtersurveysdonotsufferfromselectioncriteriaotherthanthe photometricdepth in the detectionband of the survey,because alltheobjectsinthefieldofviewareobserved.Forafixedob- 2. TheALHAMBRA survey servationaltimeandsimilartelescopes,thisleadstomuchlarger galaxysamplesthaninmulti-objectspectroscopy,whereachiev- Thestellarpopulationcodethatwepresentinthispaperisgener- ing multiplexitiesgreater than ∼1000is a challengeat present. ically designed for all types of multi-filter surveys. However, (ii)Unlikestandardspectroscopy,theSEDofgalaxiesobserved we makeuse of the data in the ALHAMBRA survey1 to prove inmulti-filtersurveysdoesnotsufferfromthetypicaluncertain- and test the reliability of our techniques, as in fact this code ties in the flux calibration that lead to systematic colourterms, will be employed to analyse the stellar population properties since the photometriccalibrationofeach individualbandis in- of ALHAMBRA galaxies in forthcoming papers (Díaz-García dependentoftherest.Thisadvantageiscrucial,becauseitisthe et al., in prep.). Throughout this work, therefore, we mainly overall continuum of the stellar population that in most cases presentresultsfrombothsimulationsandrealobservationsthat dominatesthediagnosticwithSED-fittingtechniques.(iii)With are based either on the ALHAMBRA data or on its technical similar telescopes, the depth of multi-filter surveys is usually setup.Inthefollowingparagraphswepresentashortsummary much greater than for spectroscopic survey, since direct imag- oftheALHAMBRAsurvey. ing is much more efficient than spectroscopy. (iv) Multi-filter The ALHAMBRA survey provides a photometric dataset surveys provide spatially resolved photo-spectra, similar to an of20contiguous,medium-band(FWHM ∼ 300Å),top-hatfil- integralfieldunit(IFU),allowingustoperform2Dstellarpopu- ters,thatcoverthecompleteopticalrangeλλ3500–9700Å(see lationstudiesingalaxieswhoseapparentsizesarenotdominated AparicioVillegasetal.2010,forfurtherdetails)overeightnon- bythepointspreadfunction(PSF)ofthesystem. contiguousregionsof the northernhemisphere,amountingto a Itisthereforeclearthatmulti-filtersurveysopenaprofitable way to advance in our understanding of galaxy evolution by 1 http://www.alhambrasurvey.com A14,page2of31 L.A.Díaz-Garcíaetal.:MUFFIT:Amulti-filterfittingcodeforstellarpopulationdiagnostics totalareaof4deg2 ofthesky(includingareasincommonwith COMBO-17.Theyofferahugeamountofphotometricdatathat othercosmologicalsurveyssuchasCOSMOS,see Molinoetal. wecanexploittostudytheevolutionofgalaxies,openinganew 2014,forotheroverlappingareas).Allfiltersintheopticalrange pathtoexploringthestellarpopulationofgalaxies,overallatin- have very steep side transmission slopes, close to zero overlap termediateandhighredshifts.Althoughthese photometricdata in wavelength,a flat top, and transmissions of 80–95%(Moles arelikelow-resolutionspectra,thesetechniquespresentremark- et al. 2008).The magnitudelimit is m ∼ 24 (5-sigma, mea- able advantagesin comparisonwith spectroscopy.Theycango AB sured on 3(cid:5)(cid:5)) for the 14 filters ranging from 3500 to 7700 Å, deeperwithabetterfluxcalibration(thecalibrationofeachfilter decreasingsmoothlyin the six reddestfilters reachingdown to isindependentoftherestofthem),wecanstudythestellarcon- m ∼21.5inthereddestone(Molinoetal.2014),whichiscen- tentineachresolutionelement(similartoIFUtechniques)with AB tred at 9550 Å. The optical coverageis supplementedwith the oneexposure,andwecanworkwithlargergalaxysamples;asa standardNIRJ,H,andK filters,whichhavea50%detectionef- result, it wouldbe a pitynotto take advantageofthese studies s ficiencydepth(point-likesources,ABmagnitudes)ofJ ∼ 22.4, andnotexploitalltheopportunitiesthattheyoffer. H ∼ 21.3,and K ∼ 20.0,analysedinCristóbal-Hornillosetal. The collection of analysis techniques, routines, and other s (2009).TheALHAMBRAfilterset2 isdesignedtooptimizethe tools that we are using, are collected under the code name accuracyofphotometricredshifts(photo-z,Benítezetal.2009), MUFFIT, which is written in Python language, and it mainly but due to their characteristics, it also provides low-resolution focuses on retrieving the stellar populations of galaxies whose photo-spectracomposedof23bands,correspondingtoaresolv- SEDsaredominatedbytheirstellarcontent. ingpowerR ∼20intheoptical.Alltheobservationsweredone Thissectionissubdividedintwoextendedsections.Onthe undera qualitycriterionofseeing <1.6(cid:5)(cid:5) andairmass<1.8,us- one hand, we show in Sect. 3.1 the main ingredients or inputs ingthe3.5mtelescopeintheCalarAltoObservatory3(CAHA) requiredtodeveloptheanalysis.Thesepreliminaryelementsare with two cameras, the imager LAICA in the optical range and basicallycomposedoftheSSPmodels,thephotometricsystem, Omega-2000 for the NIR filters. The actual area for this work andthe selectionof a dustextinctionlaw to treatthe impactof is 2.8 deg2 with a total on-target exposure time of ∼700 h dust on the modelSEDs properly.On the other hand,the code (∼608 h were dedicated for the optical bands, and ∼92 h for is described in Sect. 3.2, emphasizing the description of some theNIRones)becausepartoftheALHAMBRAfieldshavenot specifictasks. beenimagedyet,althoughtherestofthefieldswillbecompleted InFig.1,weoutlinethemainstructureofthecodebyabrief reachingtheexpectedtotalareaof4deg2. flowchartthatsummarisesthemainfeaturesofthefollowedpro- The ALHAMBRA Gold catalogue4 (Molino et al. 2014, cesses to set constraints on the stellar populations. We caution hereafter Gold catalogue), is the reference catalogue for that the purposes of the flowchart are to help the reader fol- this work. As explained in Molino et al. (2014), synthetic low the developmentof Sects. 3.1 and 3.2 and to support the F814W images were created, as a linear combination of indi- schematiccomprehensionoftheseveralstages. vidual filters, to be used for both detection and completeness Thereaderwhoisprimarilyinterestedeitherinthereliabil- purposes,emulatingthe F814W bandoftheAdvancedCamera ityofthecodeorinthecomparisonwithresultsretrievedfrom for Surveys (ACS) in the Hubble Space Telescope (HST). the literature may skip this section to continue with the self- Therefore,theGoldcatalogueprovides23+1photometricAB containedSects.4and5. magnitudes(Oke & Gunn 1983) and errors for ∼95000 bright galaxies (17 < m < 23), which are complete up to F814W 3.1.Mainingredientsofthestellarpopulationcode m = 23.Throughoutthiswork,thesyntheticF814W pho- F814W tometryisremovedfromtheanalysis.Duetotheexistenceofa In this section we describe the main input ingredients and PSF variability among different filters, the photometry is cor- preparatorytasks that are considered for developingthe stellar rected for PSF and aperture effects. In addition, and for the populationanalysis codethat is presentedin this paper.In par- specificALHAMBRAcase,wequadraticallyaddanextrauncer- ticular, ourcode requiresan inputset of referenceSSP models taintyof∼0.025(ABmagnitudes)ineachphotometricmeasure- (Sect. 3.1.1), the photometric system of the data (Sect. 3.1.2), menttoaccountforpotentialcalibrationissuesoruncertainties. alongwith a set of recipesto take the intrinsic and MilkyWay For further details of the ALHAMBRA survey, we refer extinctionintoaccount(Sect.3.1.3).Theredshiftsofthe target readerstoMolesetal.(2008)andMolinoetal.(2014). galaxydatacanbemanagedasaninputingredientoranoutput of the code, as explained in Sect. 3.1.4. The flowchart on the left-handsideofFig.1particularlyillustratesthemainingredi- entsandpreliminaryworkcarriedoutbythecodebeforestarting 3. Thecode withtheanalysisofthedata. Although there are many public codes devoted to carrying out SED fitting in manydifferentways, e.g. hyperz,STARLIGHT, 3.1.1. TheSSPmodels ULySS, VESPA, Le PHARE, FAST, or SEDfit; we are per- forming our own analysis techniques to retrieve stellar pop- The code has been designed to use SSP models as input tem- ulation parameters from photometric SEDs, specifically de- platesforthecomparativeanalysisof thestellar populationsof signed for analysing the stellar content of galaxies from the galaxies.Currently,thecodeisreadytoaccountfortheBruzual ALHAMBRAsurvey,butbeinggenericandeasilyadaptableto & Charlot (2003, hereafter BC03)5 and MIUSCAT6 (Vazdekis anymulti-photometricsurvey.Secondarily,thereisanincreasing et al. 2012;Ricciardelli et al. 2012)SSP models, althoughany number of large-scale multi-filter surveys; e.g. ALHAMBRA, otherSSPspectraldatasetcanbeeasilyimplemented. J-PLUSandJ-PAS,SHARDS,CLASH,MUSYC,COSMOS,or BC03isperfectlysuitedtoSEDfittinggiventhelargespec- tralcoverageofthemodels,from91Å to160μm, allowingus 2 http://svo2.cab.inta-csic.es/theory/fps3/ 3 www.caha.es 5 http://bruzual.org/ 4 http://cosmo.iaa.es/content/alhambra-gold-catalog 6 http://miles.iac.es/ A14,page3of31 A&A582,A14(2015) Fig.1.Flowchartsofthephotometricmodelpredictions(left)andtheanalysistechniques(right).Amoredetailedexplanationofeachstepcan befoundinSects.3.1.2,3.1.3,and3.2.Thedashedrowindicateswherebothprocessesarerelated.Flowchartsymbolsrepresentstandardtasks: ovals,start/endofaprocess(red);arrows,thedirectionoflogicflowintheprocess; parallelograms,input/ouput operation(cyan);diamonds, a decisionorbranchtobemade(yellow);andrectangles,aprocessingstep(green). to cope with most kinds of multi-filter galaxy data, irrespec- butconcentrateon the performanceof the code on the basis of tive of the redshift. For the present work, we assume ages up thetwoSSPmodelsetsmentionedabove. to14Gyrandmetallicities[Fe/H]= −1.65,−0.64,−0.33,0.09, and0.55,Padova1994tracks(forfurtherdetailsandreferences, seeBruzual&Charlot2003),andaChabrier(2003)initialmass 3.1.2. Photometricsystemandsyntheticphotometry function(IMF). ForapropercomparisonbetweeninputSSPmodelsandgalaxy MIUSCATprovidesasampleofSEDswithaspectralrange data, it is essential to build a reliable estimation of the syn- λλ 3465–9469 Å and a resolution of FWHM ∼ 2.5 Å, almost thetic magnitudes (or integrated fluxes) of the SSP template constantwithwavelength(Falcón-Barrosoetal.2011).Despite models in the same photometric system of the galaxies as the the great colour calibration of these models, its spectral range onethatneedsto be analysed.Thisis computedby convolving is not enough for galaxies at intermediate redshift and further, the SSP model or galaxy reference spectra with the response missing the observed ALHAMBRA colours in the UV range. functions of the photometric system. In addition to taking the Forthispurpose,weextendthelowerendofMIUSCATmodels empirical filter transmission curves into account, in order to up to 1860 Å (A. Vazdekis2015,priv.comm.),using the Next obtain a reliable photometric prediction it is advisable to ac- GenerationSpectralLibrary(NGSL,Heap& Lindler2007).In countforspecificcharacteristicsoftheobservingconditionsand addition, we complement these models with their photomet- the instrumental setup employed for the photometric observa- ric predictions for J, H, and K, which are adapted to predict tions of the galaxiesto be analysed, for example,the transmit- the ALHAMBRA NIR bands. Throughout this work, we use tance of the optical system and/orthe sky absorptionspectrum the models up to 14.13 Gyr with metallicities [Fe/H] = −1.31, wheretheobservationsweredone.Thewavelengthdependence −0.71,−0.40,0.0,and0.22.WeassumeaKroupaUniversal-like ofthe quantumefficiencyofcharge-coupleddevices(CCDs) is initialmass function(Kroupa2001),eventhoughits universal- remarkable,sincetypicallylesssensitiveinthebluerandredder ity is a currentmatter of debate(see, e.g. Ferrerasetal. 2013). ends. If not accounted for properly,this effect modifies the ef- In future works, we will shed light on the systematic variation fectivewavelengthofsuchfilterbandpasses,creatingafictitious of the IMF for the more massive galaxiesin the ALHAMBRA colourterminthesyntheticphotometryofthereferencemodels. database. Figure 2 presents the response functions of the ALHAMBRA By construction, the code can also use not only any other photometric system. It consists of 20 optical bands (left-hand set of SSP models, but also any other kind of reference tem- side)andtheALHAMBRAJ,H,andKs NIR-bands(right-hand plate spectra; for example, as long as their main stellar popu- side). In this figure, all the effects explained above are already lation parameters (age, metallicity, IMF, extinction, and over- embedded. abundances), the spectra of real galaxies are assigned by the Wecomputethesyntheticphotometryfollowingthemethod- user. Throughoutthis paper we do not present this possibility, ologydescribedinPickles&Depagne(2010),whichisbasedon A14,page4of31 L.A.Díaz-Garcíaetal.:MUFFIT:Amulti-filterfittingcodeforstellarpopulationdiagnostics Fig.2.ResponsecurvesoftheALHAMBRAfiltersetfortheCCD1intheopticalrange(LAICAcamera;onecolourfrombluetoredperband), togetherwiththeALHAMBRAJ,H,andK filters(Omega-2000camera;darkred)tomakethemodelsyntheticphotometry. s 1.0 0.9 ] 0.8 s nit 0.7 u 0.6 y ar 0.5 r t bi 0.4 r A 0.3 [ λ 0.2 F 0.1 350 550 750 950 1150 1350 1550 1750 1950 2150 λ [nm] Fig.3. Synthetic photometry of a SSPusing the ALHAMBRA photometric system. Theblack lineis the SSPflux, the colour squares are the expectedpassbands,andthehorizontalbarsrepresenttheFWHMofeachfilter. theHSTsynphot7packageandinBessell(2005).Sincecurrent where fν is the flux in ergs cm−2 Hz−1 s−1. To transform the detectorsarephoton-countingdetectors,thenumberofphotons weighted mean photon flux density into AB magnitudes, we detectedacrossapass-bandXis compute the magnitude of the flux in the STMAG system (cid:2) (system for calibrating HST stars, Stone 1996), which can be λ NXph = hcFλRX(λ)dλ, (1) einatseirlymetrdainastefosrtmepedistonetcheessAaBrymbeacganuitsuedtehesywsteeimgh(teEdq.m(e5a))n.pThhois- tonfluxdensityisestablishedperunitwavelength,whereasthe whereFλisthespectrumtoconvolve,andRX(λ)istheresponse AB magnitude system is given per unit frequency.The magni- functionofthefilter X (alsocalled sensitivityfunctioninsome tudeacrossthebandpassXintheSTMAGsystem,mST,X,andin previouswork).NormalizingEq.(1),wegettheweightedmean theABsystem,mAB,X,is photonfluxdensity, FXph = (cid:3)(cid:3)λλFRλR(Xλ()λd)λdλ· (2) mmSATB,,XX == −m2ST.5,Xlo−g510loFgXp1h0−λp2iv1o.t1+, 18.692, ((54)) X whereλ is the source-independentpivotwavelength,which pivot SomecataloguesprovidephotometryinABmagnitudes,defined isdefinedas (cid:4)(cid:5) (cid:3) as λR (λ)dλ mAB =−2.5log10 fν−48.6, (3) λpivot = (cid:3) RX(Xλ)dλ/λ· (6) 7 http://www.stsci.edu/institute/software_hardware/ To illustrate this, Fig. 3 shows an example of a SSP spec- stsdas/synphot trum taken from the model set of BC03 (rest frame, solar A14,page5of31 A&A582,A14(2015) metallicity, intermediate age of 5 Gyr, Chabrier IMF, and no observedgalaxy,whichisredshiftedwiththegalaxysystem;on intrinsic extinction) along with its synthetic photometry us- theother,theforegrounddustoftheMW,whichreddentheob- ing the ALHAMBRA filter set. The spectrum synthetic pho- servedgalaxySEDintheobserver’sreferencesystem.Itisim- tometry was computed following the process explained above, portanttonotethatthislocalMWextinctioncannotbecorrected where ea(cid:3)ch bandpass(cid:3)is centred at their effective wavelengths with the intrinsic galaxy reddening as the emitted flux is red- (λeff = λRX(λ) dλ/ RX(λ) dλ) and the horizontal bars rep- shifted beforebeingscattered by the dustin our galaxy.As we resent the FWHM of each filter. This example is also useful presentbelow,weseparatelydealwithbothextinctioneffects. for showing that the main, broader spectral features are easily Following a given extinction law, the intrinsic extinction is distinguished after convolving, emphasizing the power of the applied to the SSP template models before they are redshifted ALHAMBRA photo-spectraashalfwaybetweenclassicalpho- and convolved with the photometric system. Throughout this tometryandspectroscopy. work the values of AV range from 0.0 to 3.1 (in bins of 0.1 in For the specific case of ALHAMBRA, and because of therange0.0–1.0,andinbinsof0.3from1.0–3.1).Theintrinsic the configuration of LAICA, we computed four photometric extinctioncanbeaddedas databasesfortheopticalbands,oneperCCD,becausethereare Fλ = Fλ,0×10−0.4Aλ, (7) discrepancies among CCD sensitivities and each CCD has its ownsetoffilters.FortheNIR-filtersJ,H,andKs,werepeatthis whereFλ,0istheSSP-model/templatefluxatrestframeFλafter processtakingtheOmega-2000configuration(onlyonedetector adding extinction, and Aλ is determined by the extinction law, plate).InbothopticalandNIRsyntheticphotometry,wetakethe which can be chosen by the user. Since it is not clear how R V filtertransmissioncurvesintoaccount,thequantumefficiencyof varieswithinahostgalaxyandamongstdifferenttypesofgalax- everyCCD/camera,theskyabsorptionspectrumatCAHA,and ies,wekeepthevaluetoR =3.1constant,i.e.themeanvalue V the reflectivity of the 3.5 m-telescope primary mirror with the in the MW. This helpsto avoid degeneraciesand to reduce the transmittanceoftheopticalsystem. numberoffreeparameters,whichisalreadyveryhighandtime Owing to boththe largenumberof inputmodelparameters consuming. Even though the different reddening laws have in- (ages, metallicities, extinctions, IMF slopes, and redshifts) and trinsicdifferences(seeFitzpatrick1999),we donotassumeer- the intermediate-high spectral resolution of current SSP mod- rorsintheSSPtemplatemodelsowingtosuchuncertainties. els, it is in general more efficient to build up our set of con- We use the dust maps of Schlegel et al. (1998, hereafter volved models once at the beginning, rather than recomputing SFD), in order to deal with the MW reddening in the line of themodelsyntheticphotometryeverytimethecodeisrun.After sightofeachgalaxyinoursample.TheSFDdustmapsprovide computing the synthetic photometry of all models, the photo- E(B−V) valuesin differentpositionsof the sky by estimating metricpredictions(fluxesandmagnitudes),alongwiththemain the dust column density.These estimations were calibrated us- characteristics of each model, are stored in a structured query inggalaxiesandassumingastandardreddeninglawtoinferthe language (SQL) database. A straightforward flowchart of the existenceofgalacticdustbetweentheobserverandthesources processforestimating photometricpredictionsis shown on the beyond the MW limits. Since the spatial resolution of SFD is left-handsideofFig.1. low, FWHM ∼ 6.1(cid:5) and pixel size (2.372(cid:5))2, MUFFIT makes a bilinear interpolation in the E(B−V) grid for all the galaxy coordinatesinthesample. 3.1.3. Dust-extinction MUFFITappliesaforegroundextinctioncorrectionforeach individualgalaxyphoto-spectrumusingan extinctionlaw fora Stellar population diagnostic techniques based on SED fitting value of E(B− V) and R . The simplest way to deredden the V overa broad spectralcoverage,as in this case, requirethe red- photo-spectrumofagivengalaxyistocomputetheextinctionin dening by extinction to be thoroughly considered to avoid po- theeffectivewavelengthsofthedifferentfiltersandthencorrect tentialmisinterpretationsoftheintegratedcoloursofthepopula- thesourcephotometryusingtheequation tion,e.g.olderagesorhighermetallicities,aswellastoderive reliablestellarmasses. Fλ,c = Fλ,red×100.4Aλ, (8) Manyauthorshavetriedtoparametrizetheshapeofthedust extinction curve (e.g. Prevot et al. 1984; Massa 1987; Mathis where Fλ,c is the flux correctedfor MW extinction for a given 1990;Cardellietal.1989;Calzettietal.2000;O’Donnell1994; wavelength, Fλ,red is the observed flux (reddened), and Aλ the extinction factor given for a extinction law. Since the trans- Fitzpatrick1999),overallonthebluerpartswherethedustred- mission curves of the filters are not completely flat and the deningismorecomplex.Thedustextinctioncurveisreproduced shapeofthecontinuumissourcedependent,thisapproximation well using the parameter R ≡ A /E(B − V) (Cardelli et al. V V may be inappropriatefor those filters that exhibit a gradientin 1989),which varies between 2.2 and 5.8 dependingon the en- their transmission curves(e.g. the lower and upper ends of the vironmental characteristics of the diffuse inter stellar medium ALHAMBRAopticalbands,seeFig.2),especiallyinthespec- (ISM).AlthoughthevaluesofRV maychangedependingofthe tral rangeswhere the observed spectrum is not flat. This effect line ofsight, throughoutthisworkwe assume thatthe valueof wouldbeinterpretedasashiftinthefiltereffectivewavelength thisparameteris R = 3.1,whichis the meanvaluein thedif- V (Fitzpatrick 1999) and, finally, as a colour term in the spectral fuseISMoftheMW(Cardellietal.1989;Schlafly&Finkbeiner regionswithstronggradientsinflux,suchasthe4000Å-break. 2011).Amongsttheavailableextinctionlawsinourcode(Prevot To geta morereliablecorrectionin thissense, the codecarries etal.1984;Cardellietal.1989;Fitzpatrick1999;Calzettietal. outthedereddeningprocessofthedatainthreesteps: 2000),throughoutthisworkwehavechosentheFitzpatrickred- deninglaw(Fitzpatrick1999)becauseitreproducestheextinc- – First, we pick up a set of models from BC03 (29 ages, tion observed for MW stars well with a preferred mean value from 0.1 to 10 Gyr, four metallicities, [Fe/H] = −0.64, aroundRV =3.1(Schlafly&Finkbeiner2011). −0.33,0.09,and0.56,andaChabrierIMF)toberedshifted For extragalacticobjects,thereare two mainsourcesof ex- (redshiftbin0.01)andconvolvedwiththesurveyphotomet- tinctiontoaccountfor:ontheonehand,thedustintrinsictothe ric system. Before redshifting and computing the synthetic A14,page6of31 L.A.Díaz-Garcíaetal.:MUFFIT:Amulti-filterfittingcodeforstellarpopulationdiagnostics photometry, we add the intrinsic extinction (A from 0.0 3.2.ThecoreoftheMUFFITanalysistechniques V to1.0,inbinsof0.2)totherest-frameBC03models.Then, we carry out an error-weighted χ2 test to find the best fit This section is devoted to the main technical features and pro- cesses carried out by our code to constrain the stellar popula- betweentheabovemodelsandtheobservedgalaxyphotom- tionparametersofgalaxiesinmulti-filterdatasamples.Wefirst etry.Theaimofthisstepisnottoderivephysicalparameters describetheway inwhichthe χ2 minimizationis performedin fromthebestfitting,buttosetconstraintsontheshapeofthe Sect.3.2.1,withtheadditionofamixtureofSSPsgivingremark- continuum. able improvement, which was specifically computed for each – Second,were-normalizetheBC03spectroscopicmodelas- galaxy,inordertosetmorepreciseconstraintsonthestellarpop- sociated to the best-fitting photo-spectrum. The synthetic ulations.InSect.3.2.2weexplaintheprocessofdetectingthose photometryofthisre-normalizedmodelhastoreproduceall bands that may be affected by strong emission lines in detail, theobservedphotometricbandsexactly. helping to understand the overall fitting process. Section 3.2.3 – Finally,weapplyEq.(8)tothere-normalizedmodelderived explainshowthestellarmassesarecalculatedfromthefittings. inthepreviousstep,inordertoobtainadereddenedspectrum Inaddition,aMonteCarloapproachisusedtosetconstraintson that we convolve with its related filter response curve. We theconfidenceintervalsoftheparametersprovidedbythecode, usetheFitzpatrick(1999)extinctionlawstocalculateAλ,the valueE(B−V)providedbySFDandR =3.1,toderedden detailedinSect.3.2.5.Finally,wedescribehowwemanagethe V k-correctionsasaresultofthefittingsinSect.3.2.6.Thecontent allthegalaxiesofoursample. ofthissectionisoutlinedontheright-handsideoftheflowchart (seeFig.1). Inparticular,theFitzpatrick(1999)extinctionlawwasbuiltfrom the superposition of the extinction curves derived for a set of stars.Consequently,thisextinctionlawcontainsintrinsicuncer- 3.2.1. Theχ2 minimizationandmixtureofSSPs tainties, although we would accurately know the values of R V Our stellar population analysis technique is based on error- andE(B−V).Weaccountfortheparticularuncertaintiesofthis weighted χ2 tests between the multi-filter galaxy data and the law,addinganerrortothedereddenedphotometryofMWdust, template SSP models of choice. Since SSP models are usually Fλ,c,followingthemethodologyexplainedinFitzpatrick(1999) normalizedtoainitialstellarmassandboththegalaxydistance andassumingσ =0. RV and its luminosityare uncertainin a generalcase (in fact these Cosmological fields, often the targets of multi-filter photo- are parameters generally derived from the fit), it is required to metricsurveys,usedtoberegionsoftheskywithlowextinction add a normalization term, ε, in the classical χ2 equation. This values.IntheparticularcaseofALHAMBRA,ourmaingalaxy termminimisestheχ2 valueforeverymodel-galaxypairandit sample has MW extinction values of E(B − V) down to 0.04 takes all observed bandsand associated errors into account, so (AV <0.12forRV =3.1)inallthecases.Thecolourtermdueto that the result is only colour dependent. It is more robust for theMWdustintheALHAMBRAsurveymayreachamaximum multi-filter surveys because, at most, they only contain a few ofΔmAB ∼ 0.15,andthestellarmassesmaybeunderestimated dozenfilters(e.g.23inALHAMBRA).Thisway,allthemean- by3%(8%)ifweusetheKs(R)filtertoestimateit.Althoughthe ingful filters contribute to determining the best solution of the stellarmassisnotprimarilyaffectedbyMWextinctioninthese fitting(withoutgivinguponeofthebestbandsinordertonor- fields,thecolourtermmightchangetheretrievedstellarpopula- malise), and there is no risk that the normalisation band is af- tionsandconsequentlythederivedstellarmass(seeSect.3.2.3). fectedbyemissionlinesorcosmeticdefects. InALHAMBRAtherearenogalaxiesatlowGalacticlatitudes, Because the number of reliable bands in each source may |b| < 5, where the MW temperature structuresare not duly re- bedifferentfromoneobjecttothenext(forsomeobjects,some solvedintheSFDmaps(Schlegeletal.1998). filters may be rejected for observational, cosmetic, or calibra- tionproblems),ingeneralwedivideeveryχ2 bythenumberof available,safefiltersineachcase.Dependingonwhetherweare 3.1.4. Redshifts working with bandpass fluxes or magnitudes, the χ2 definition canbeexpressedas Togetherwiththemassandthestellarpopulationparametersof (cid:7) (cid:8) tmhaetigoanlaoxfyt,htehephcootdoe-zi.sItgiesnweroicrtahllnyoptirnegp,ahreodwteoveprr,othvaidtethainsceosdtie- χ2 = 1 (cid:6)Np OmX −(εm+mX) 2,and (9) is not intended to be a photo-z code. The large number of po- m Np X=1 σmX tsehnifttiailsmseotdaeslapacroammpelteetresltyhfartetehepacroadmeeptelaryisnwthiethfiwttihnegnpthroecreesds-, χ2 = 1 (cid:6)Np ⎡⎢⎢⎢⎢⎣OfX −εffX⎤⎥⎥⎥⎥⎦2, (10) means that there is a slight degeneracy with other parameters f N σf p X=1 X (likeextinction;seeSect.4.4)thattendstooverestimatethede- rivedphoto-z.Toovercomethiseffect,thecodeisalsoprepared whereNpisthenumberofavailablefiltersinanobservedgalaxy, to accept a list of redshift values for each target galaxy as ini- Om,f is the observed X-filter(magnitudeor flux),σm,f its error, X X tial constraint: either a list of nominal redshift values, so that m (f ) the X-filter model prediction (single SSP or SSP mix- X X the code only performsthe fitting process at exactly these red- ture, more details below) and ε (ε ) the normalization term. m f shifts, or complete probability distribution functions (PDF) of Forourpurposes,ε andε arewrittenas m f redshifts. Then the code only accounts for the model redshifts ⎛ ⎞ ⎛ ⎞ wweithuisneththeePpDhFotion-tzerPvDalF.sBepcroauvsideeodfbthyethgeooAdLreHsAulMtsBwReAobGtaoilnd, εm =⎜⎜⎜⎜⎜⎜⎝(cid:6)Np OmXσ−m2mX⎟⎟⎟⎟⎟⎟⎠×⎜⎜⎜⎜⎜⎜⎝(cid:6)Np σ1m2⎟⎟⎟⎟⎟⎟⎠−1,and (11) catalogueasinputredshiftconstraintsusingBPZ2.0throughout X=1 X X=1 X ⎛ ⎞ ⎛ ⎞ tbihminispartwoiovonerskotf(hMoeuqorulicanoloidtyeetwoafiltt.hh2eth0ie1n4pA)u.LtIpHthAiosMton-BoztRe(swAeoeprSthheoyctott.-hz4a.ct3o)tnh.setrcaoinmts- εf =⎜⎜⎜⎜⎜⎜⎝(cid:6)Np OσfXff2X⎟⎟⎟⎟⎟⎟⎠×⎜⎜⎜⎜⎜⎜⎝(cid:6)Np σffX22⎟⎟⎟⎟⎟⎟⎠−1, (12) X=1 X X=1 X A14,page7of31 A&A582,A14(2015) which correspondrespectivelyto minimizingEqs. (9)and (10) 14 for each galaxy, i. e., ∂χ2m,f/∂εm,f = 0. As we show later (Sect.3.2.3),byfindingthebeststellarpopulationsolutionsfor eachgalaxy,wecanestimateitsstellarmassfromtheεvalues. 12 Equation (9) (the equation used throughout this work) as- sumesthat the distributionof errorsis Gaussian, whenthe dis- 10 tribution of magnitudes is generally not Gaussian since these r] y are logarithmic measurements of flux. From certain signal-to- G noiseratios,S/N >∼ 5(oruncertaintiesσm <∼ 0.22),themagni- [ 8 X P tudeuncertaintiesarequasi-normallydistributed,andtherefore, S S this approach is valid. Consequently, we encourage potential ,L 6 MUFFIT users to take fluxes instead of magnitudeswhen sev- e g eralgalaxybandsarecompromisedbyverylowsignal-to-noise A ratios,S/N <∼ 4–5.Itmustbealsotakenintoaccountthatacer- 4 tain minimum signal-to-noise ratio is required for determining reliable stellar population parameterswithout being dominated bydegeneracies,asshownlaterinthispaper. 2 Oncewehavedefinedhowtocomputethefittinggoodness, thenextstepistocompareoursetofmodelstoretrievethemost likelystellarpopulationparameters.Wecarryoutthisprocessin 0 2 4 6 8 10 12 14 twodifferentsteps. AgeL, mock [Gyr] – First, we run the χ2-test described above with the set of Fig.4. Empirical relation between the luminosity-weighted ages of SSP models selected by the user (base models), making a mockgalaxiesmadeofrandommixturesoftwoSSPs,AgeL,mock,and first determination of the bands that may be affected by thebestagedeterminationforsuchmockgalaxiesderivedfromasin- strong emissionlines. In short, foreach redshiftstep of the gleSSPfitting,AgeSSP.TheyellowcurveistheAgeL,mock medianfor agivenvalueofAge ,anditrepresentsthetypicaloffsetinagethat SSP models, the code looks for a flux excess in the galaxy SSP onemayexpectwheninterpretingtheSEDofamixtureoftwoSSPsby SEDwithrespecttotheSSPmodelSEDs,forallthosebands fittingauniqueSSP. thatcouldbeaffectedbyemissionlinesatthegivenredshift. A moreextensiveexplanationofourtechniqueofdetection ofemissionslinesin multi-filtergalaxydatais presentedin twoSSPs,age ,andthebestagedeterminationforsuch Sect. 3.2.2. When this is the case, those bands potentially L,mock affectedbyemissionlinesareremovedfromthefittingpro- mock galaxiesderivedfrom a single SSP fitting, ageSSP. In cess, and the χ2-test is repeated again without the affected Fig. 4 we present the result of this study. As expected, we observethatage underestimatestherealage,inparticular bands. In addition, rather than taking the parametersof the < SSP forage ∼6Gyr.TheyellowcurveinFig.4represents bestSSPfitting,wecarryoutaMonteCarlosimulationus- L,mock age as a function of age . Once the age threshold is es- ingthepropersignal-to-noiseratiosineachfilter(furtherde- T SSP tablished, we generate all the possible SSP combinations tailsinSect.3.2.5).Fromthesetofparametersretrieveddur- (younger and older than age ), including the stellar mass ingtheMonteCarloapproach,wemaptheparameterspace T weightofeachcomponentasanewdegreeoffreedom.Fora ofcompatiblesolutions(overallage,metallicity,extinction, generalcasewithncomponentspermixture,eachmagnitude redshift, stellar mass, and IMF), although at this stage we inthebandXofthenewmixturemodelisexpressedas onlyfocusonthe retrieveddistributionsofageandredshift ⎛ ⎞ tsoubcsaerqryueonuttStEhDe-nfietxtitnsgteppr:octheessm. ixture of two SSPs and its mX,mix =−2.5log10⎜⎜⎜⎜⎜⎝(cid:6)n αi10−0.4miX⎟⎟⎟⎟⎟⎠, (13) – Second, according to the age and redshift distributions de- i=1 rivedfromtheinitialSSPanalysis,wemakeanewdatabase (cid:6)n of models consisting of a mixture of two individual base fX,mix = αifXi, (14) SSPmodels.Themixtureisonlycomputedforthebestred- i=1 shiftsolutionsdeterminedinthepreviousstep.Foreachred- shiftvalue,thetwo-modelmixtureisconstrainedtocombine wheremi (fi)isthemagnitude(flux)inthebandX forthe X X two SSPs, younger and older than a certain age thresh- ith SSP model, and α the relative flux contribution of the old, ageT, that is related to the most likely age, ageSSP, in- SSP model in the ith ciomponent, with (cid:21)n α = 1 and 0 ≤ ferredfromtheMonteCarloanalysisperformedinthe pre- i=1 i vious step. This is a reasonable assumption given that the α ≤ 1. In our case, we are mixing two SSPs and conse- i stellar content of galaxies are usually the result of com- quentlyn=2. plexSFHswithmultiplestellarpopulations(Ferreras&Silk After mixing the SSP models as explained above,the code 2000;Kaviraj et al. 2007;Lonoce et al. 2014),and the age againsearchesforthebest-fittingsolution,repeatingthede- solutionsderivedfromcomparisonswithsingleSSPscanbe tection of emission lines with the mixtureof modelsas ex- considered to be, in first order, luminosity-weightedmeans plainedinSect.3.2.2.AsinthefirststepusingasingleSSP, of the ages of the individual, true populations. To deter- we not only provide the best solution but also map the mine the age value that allows us to define the limit be- compatible stellar-populationparametersby a Monte Carlo T tween youngerandolderSSP mixturesforeachgalaxy,we approach,treatingtheerrorsproperlyineachband.Thispro- havestudiedthe empiricalrelationbetweentheluminosity- videsanextraadvantagewhencarryingoutastatisticaltreat- weightedagesofmockgalaxiesmadeofrandommixturesof ment of the results. We devote Sect. 3.2.5 to explaining in A14,page8of31 L.A.Díaz-Garcíaetal.:MUFFIT:Amulti-filterfittingcodeforstellarpopulationdiagnostics detail how we explore the compatible space of derived pa- ALHAMBRA filters, so the AGN emission line detection cri- rametersforeachgalaxy. teriainMUFFITmightfailorbeinaccurate.Itisveryimportant tonotethatanexcessivelistofemissionlines,mostlywhenthey With this method and two SSPs, one database of mixed SSPs arespreadinthebroadwavelengthranges,willeventuallyderive is particularly created for each galaxy, because it is more ade- incorrectresults, sincetoomanybandsmightberemoved.Itis quate and realistic than a single SSP fitting. As shown above, thereforeadvisabletorestrictthislisttothelinesthatcanpresent foranon-parametricSFH,thisrepresentsasubstantialimprove- ameasurableexcessinflux,whichmainlydependsonboththe ment over using only one SSP, which is not able to reproduce filter widths andthe line intensity.For thisreason, some bands thecolourofanunderlyingmainredpopulationplusless mas- can be forced by the user to remain in the SED-fitting analy- siveandlatereventsofstarformation.Themixtureoftwopop- sis irrespective of whether they can be potentially affected by ulationsisareasonablecompromisethatsignificantlyimproves emissionlines.Forinstance,inALHAMBRAweexpectthatthe the reliability of determining the stellar population parameters NIRbandsaretoowidetobesensitivetothepresenceofemis- of multi-filter galaxydata (Ferreras& Silk 2000;Kaviraj et al. sion lines, so they are neverremovedduringthe fitting process 2007;Lonoceetal.2014).Infact,ithasbeendemonstrated(e.g. evenifthecodedetectsafluxexcessinanyofthem. Rogers et al. 2010) that the mixture of two SSPs turns out to Once we specify the emission line list in the code, the be the most reliable approach to describing the stellar popula- emission line detection process is carried out in two steps. tionsofyoungearly-typegalaxies,aswellasaveryreasonable First, taking the modelredshiftinto account,we fit ourmodels approachforoldergalaxieswherethelattercaseisonlyslightly (singleSSPorSSPmixture)withoutallthebandsthatcouldbe surpassedbytheuseofchemicallyenrichedexponentialmodels. potentiallyaffectedbythespecifiedemissionlines,andexplore ThetwoSSPmodelfittingapproachmaythereforebegenerally the residuals of the best fitting. If the residuals of any of the consideredasareasonablemethodforanalysingthestellarpop- potentially affected bands present an excess in flux/magnitude ulationsofmostkindsofgalaxiesinaconsistentway.Moreover, greaterthanalimitvalueprovidedbythecodeuser,Δm ,and EL giventhatMUFFITdoesnotimposeconstraintsonthemetallic- theseresidualsaredeviatedbeyondaband-errorfactor,σ ,the EL itiesofthetwo-SSPmixture,thiscanprovidehintsnotonlyof bandsareconsideredtobeaffectedbyemissionlinesandarere- ageevolutionbutalsoofametallicitybuild-up.Thatbeingsaid, movedfromthefittingprocess.Bothconstraints,Δm andσ , EL EL futureversionsofMUFFITwillalsoaccountfortheuseofdif- arerequired:thelattertoassurethattheexcessinfluxisnotdue ferentsetsofSSPorτ-modelsforthebestchoiceoftheuser. to photometricuncertainties,andthe formerto avoidremoving thosebandswithtinyobservationalerrorsthatpresentlittledis- crepancieswithrespecttothemodels.Finally,werepeatthefit- 3.2.2. Emissionlines ting withoutthe bandsidentifiedin the previousstep, gettinga NebularemissionlinesappearfrequentlyintheSEDsofgalax- newsetofreliableχ2values,freeofnebularcontributions. ies,evenifthesearedominatedbythelightcontributionoftheir FortheALHAMBRAcase,weuseΔm =0.1,becausefor EL stellar content. In particular, dealing with multi-filter galaxy lowercontributions,theaffectedbandsdonotsignificantlyaffect data, filters affected by emission lines may present a substan- theSED-fittingresultsretrievedwith MUFFIT.Inaddition,we tialexcessinfluxwithrespecttoanycombinationofSSPmod- setσ =2.5asareasonablestatisticalthresholdtodetectemis- EL els, because the latter typically do not account for the nebular sion lines over the noise. Figure 5 illustrates two SED-fitting emission physics. To guarantee the accuracy and reliability of examplesoftwogalaxiesfromALHAMBRA.Thetoppanelof thestellar populationparametersderivedduringthe fittingpro- Fig.5illustratesafittingofaquiescentgalaxyinALHAMBRA cess, it is crucialto detect and removethose bands that can be without strong nebular emissions, whereas the bottom panel significantly affected by emission. Not only because they are showsagalaxyforwhichMUFFITdetectsthatsomebandsmay not comparable to SSP models, but also since filters contami- be affected by emission lines (yellow squares). The red curves nated by strong emission lines tend to exhibitmuch higher lu- represent the observed photo-spectra, while the blue curve is minositiesandlowerphotonicerrorsthantherestofbands,and the best-fitting modelafter the detection of emission lines pro- therefore,thesebandswoulddominateourerror-weightedSED- cess.Theyellowsquaresarethebandswheretheinfluenceofan fitting techniques (see Eqs. (9) and (10)). On the other hand, emission line is ticked, in this particular case Hβ, Hα+[Nii], ii it is worth recalling that the presence of strong emission lines and [S ]. The dashed black lines point out the wavelengths may also provide fruitful information, since they contribute to for Hα, Hβ, and [Sii] at the galaxyphoto-z.Forthis case, the restrictingthefeasibleredshiftintervalsofthegalaxy.Thered- detectionoftheemissionlinescontributeparticularlytostrongly shift constraints due to nebular emissions are also considered constrainingtheredshiftrange.DespitetheALHAMBRAreso- duringtheanalysis. lution(FWHM ∼300Å),wenotethatstrongemissionlinescan Theemissionlinedetectionprocessofourcodedependson modifythefittingresults.Insomecases,evenHβshowssignif- thespecificphotometricsystemofthegalaxysample,becauseit icantcontributionsintheALHAMBRAdataset. only accountsfor those emission lines that are typically strong Sinceweareprovidingboththosebandsthatmaybeaffected enoughtoaffectthephotometryofthegivenfilterset.Itisobvi- bystrongemissionlinesandtheresidualsfromtheSEDfittings, ousthatthebroaderthespectralfilterwidth,thelargertheequiv- we can easily estimate the flux excesses in orderto later trans- alent width (EW) of the line that may be potentially detected formthemtoEWs.Theadvantageofthismethodisthatourbest ata fixedsignal-to-noise.In this sense, thecode isinitially fed SED-fittingsaremixturesofSSPs thatalreadyincludethe cor- with a list of targetemission lines that dependsparticularlyon responding stellar absorptions, so the residuals can be directly thefilterset,customizablebytheuser,withemissionlines,such relatedtotheabsolutenebularemission.Themainlimitation,in as[Oii]λλ3726,3729,[Oiii]λλ4959,5007,H Balmer’sseries, general, comes from the low resolution of the data, because in and[Sii]λλ6717,6731. manycasessomefilterscanbeaffectedbymorethanoneemis- Thanks to the design of MUFFIT, we can also provide sionline,suchasHαand[Nii].Still,aspresentedinSect.5.2, a list of typical AGN emission lines to reduce their effects thistechniqueopensnewpathsforfutureworkonemission-line on the fittings, but broad AGN lines may affect two or more galaxieswithmulti-filterdata. A14,page9of31 A&A582,A14(2015) 3.2.4. StellarpopulationparametersoftheSSPmixture 21.0 21.5 The stellar-population parameters of the mixture of SSPs are B 22.0 estimated from the parameters of each component in the mix- A m 22.5 ture. This can be donein differentways, which mainly depend 23.0 of the weightsassignedto the parametersof the differentcom- 23.5 z =0.818 ponents. The most common definitions, provided by MUFFIT phot duals 00..02 awnedigehmtepdl.oTyehdeilnatttehrispproavpiedre,sarmeoluremrienaolsisittyic-winefiogrhmteadtioanndsimncaessi-t si −0.2 accountsforthetotalmassofstarsineachpopulation,henceas- e R 500 1000 1500 2000 signinglargerweightstothemoreabundantordominantstellar λeff[nm] populations. However, these populationsmay have very differ- entluminosities.In this sense, luminosity-weightedparameters 21.0 zphot=0.258 aremorerepresentativeofthepopulationsthatdominatetheob- served spectrum, since the galaxy SEDs are predominantlyled 21.5 B bythebrighterpopulations,eveniftheyarenotdominantinrel- A m 22.0 ativemass. Best-fittingmodel Throughout this work, the luminosity-weighted and mass- 22.5 Emissionlines weighted stellar population parameters of a mixture of n SSPs ALHAMBRAgalaxy (forthisworkn = 2), p and p ,respectively,aredefinedfrom als 0.2 thestellarpopulationpaLrameterMsofeachithcomponent(p;age, sidu −00..20 metallicity,extinction,IMFslope,or[α/Fe])as i e R 500 1000 1500 2000 (cid:21)n λeff[nm] αi×Li×pi p = i=1 , (16) Fig.5. Spectral fitting examples for galaxies from the ALHAMBRA L (cid:21)n α ×L survey using MUFFIT and the MIUSCAT SSP models. The galaxy i i i=1 photo-spectraandtheirerrorsaregiveninred,whereasthebest-fitting (cid:21)n gmaoladxeylsfaorrewghivicehnnionebmluies.sioTnhelintoepsapraendeelteccotrerdes.pTohnedsbottotoamqpuaiensecleinl-t p = (cid:6)n M(cid:12),ip = i=1αi×κi,SSP× pi, (17) ltuhsretreabteasndthseaffcaesceteodfbaysetmari-sfsoiromnilningegsa,lianxyyelfloorww.ThhicehdMashUeFdFbIlTacdkeltiencetss M i=1 M(cid:12),T i (cid:21)n αi×κi,SSP indicatethewavelengthsforHβ,Hα,and[Sii].Photometricredshifts i=1 aregivenintheinsetsinthefigure. whereα istherelativeflux-contributionoftheSSPmodelinthe i ithcomponent,κi,SSP therelativestellarmasscorrectionforthe 3.2.3. Stellarmasses ith component in the SSP mixture, and Li the luminosity of the SSP modelin the observedspectral range.Both definitions As we explainin Sect. 3.2.1,boththe normalizationterm ε in- agreewhentheparametervalueisthesameineachcomponent. troduced in the χ2 minimization equation and the intrinsic lu- minositiesofthetwobest-fittedSSPsaredirectlyrelatedtothe 3.2.5. Determiningthespaceofbestsolutions totalstellarmassofthegalaxy.SSPmodelsareusuallynormal- ized to an initial stellar mass of 1 M(cid:7), but this decreases with Becauseof thewellknowndegeneraciesamongstellar popula- time, therebyaccountingfor the evolutionof the most massive tion parameters, it is essential to perform a reliable analysis of stars.Thiseffectisproperlytakenintoaccountfordetermining thepossiblesolutions(asmixturesoftwoSSPs)foreachgalaxy thefinalgalaxymassbyapplyingacorrectiontermtoeachSSP, accordingtotheuncertaintiesofthedata.Forthisreason,rather κ ,whichisusuallyprovidedbythemodels. than providingonly the best-fitting solution for each galaxy (it SSP Whentakingtheaboveconsiderationsintoaccount,thetotal iswellknownthatthemostlikelyparametersarenotalwaysthe stellarmass, M(cid:12),T,ofamixtureofnSSPs(forthisworkn = 2) best-fitting model parameters), our code accounts for the pho- canbeexpressedas tometric errors of the multi-filter galaxy data to provide a set ofthebest-fittingsolutions,therebyprovidingasetofprobable (cid:6)n (cid:6)n M(cid:12),T = M(cid:12),i =10−0.4εm ×4πdL2× κi,SSPαi vualalutieosnopfarreadmsehtiefrtss,(satgeellsa,rmmeatasslleisc,iteiexst,inacntdionIMs,Fasn)dfostreellaacrhpoobp-- i=1 i=1 ject.Thesevaluescanultimatelybeaveragedaccordingtotheir (cid:6)n weights and frequencies to derive the average final parameters =εf ×4πdL2 × κi,SSP αi, (15) assigned to each galaxyand their errors. In this section we ex- i=1 plain the processes and the applied criterion used to carry out whereM(cid:12),iisthestellarmassofeachpopulationinthemixture, thisanalysis. ε is the normalization term defined in Eq. (12), d the lumi- The determination of the best solution space is based on a m L nositydistancein cm units(seeHogg1999),κi,SSP the relative MonteCarlomethodthat,usingthepropersignal-to-noiseratio stellar mass correction for the ith component in the SSP mix- ofeachfilter,seekstofindwhichparametervaluesarecompati- ture,andα therelativefluxcontributionoftheSSPmodelinthe blewithinthephotometricerrorsofthedata.Sincephotometric i ith component(see Eqs. (13) and (14)).Throughoutthis work, uncertaintiesusuallyfollowanormaldistribution(orGaussian), thederivedstellarmassesarequotedincludingstellarremnants we assume an independentGaussian distribution in each filter, throughκi,SSP,butfora moregeneralcase,thisparametermay centred on the band flux/magnitude, with a standard deviation notincluderemnants. equalto itsphotometricerror.Itis worthnotingthateach filter A14,page10of31
Description: