STEADY-STATE METHODS FOR SIMULATING ANALOG AND MICROWAVE CIRCUITS THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE VLSI, COMPUTER ARCHITECTURE AND DIGITAL SIGNAL PROCESSING Consulting Editor Jonathan Allen Other books in the series: Logic Minimization Algorithms for VLSI Synthesis. R.K. Brayton, G.D. Hachtel, C.T. McMullen, and Alberto Sangiovanni-Vincentelli. ISBN 0-89838-164-9. Adaptive Filters: Structures, Algorithms, and Applications. M.L. Honig and D.G. Messerschmitt. ISBN 0-89838-163-0. Introduction to VLSI Silicon Devices: Physics, Technology and Characterization. B. EI-Kareh and R.J. Bombard. ISBN 0-89838-210-6. Latchup in CMOS Technology: The Problem and Its Cure. R.R. Troutman. ISBN 0-89838-215-7. Digital CMOS Circuit Design. M. Annaratone. ISBN 0-89838-224-6. The Bounding Approach to VLSI Circuit Simulation. C.A. Zukowski. ISBN 0-89838-176-2. Multi-Level Simulation for VLSI Design. D.D. Hill and D.R. Coelho. ISBN 0-89838-184-3. Relaxation Techniques for the Simulation of VLSI Circuits. J. White and A. Sangiovanni-Vincentelli. ISBN 0-89838-186-X. VLSI CAD Tools and Applications. W. Fichtner and M. Morf, Editors. ISBN 0-89838-193-2. A VLSI Architecture for Concurrent Data Structures. W.J. Dally. ISBN 0-89838-235-1. Yield Simulation for Integrated Circuits. D.M.H. Walker. ISBN 0-89838-244-0. VLSI Specification, Verification and Synthesis. G. Birtwistle and P.A. Subrahmanyam. ISBN 0-89838-246-7. Fundamentals of Computer-Aided Circuit Simulation. W.J. McCalla. ISBN 0-89838-248-3. Serial Data Computation. S.G. Smith, P.B. Denyer. ISBN 0-89838-253-X. Phonologic Parsing in Speech Recognition. K.W. Church. ISBN 0-89838-250-5. Simulated Annealing for VLSI Design. D.F. Wong, H. W. Leong, c.L. Liu. ISBN 0-89838-256-4. Polycrystalline Silicon for Integrated Circuit Applications. T. Kamins. ISBN 0-89838-259-9. FET Modeling for Circuit Simulation. D. Divekar. ISBN 0-89838-264-5. VLSI Placement and Global Routing Using Simulated Annealing. C. Sechen. ISBN 0-89838-281-5. Adaptive Filters and Equaliz;ers. B. Mulgrew, C.F.N. Cowan. ISBN 0-89838-285-8. Computer-Aided Design and VLSI Device Development, Second Edition. K.M. Cham, S-Y. Oh, J.L. Moll, K. Lee, P. Vande Voorde, D. Chin. ISBN: 0-89838-277-7. Automatic Speech Recognition. K-F. Lee. ISBN 0-89838-296-3. Speech Time-Frequency Representations. M.D. Riley. ISBN 0-89838-298-X. A Systolic Array Optimizing Compiler. M.S. Lam. ISBN: 0-89838-300-5. Algorithms and Techniques for VLSI Layout Synthesis. D. Hill, D. Shugard, J. Fishburn, K. Keutzer. ISBN: 0-89838-301-3. Switch-Level Timing Simulation of MOS VLSI Circuits. V.B. Rao, D.V. Overhauser, T.N. Trick, LN. Hajj. ISBN 0-89838-302-\. VLSI for Artificial Intelligence. J.G. Delgado-Frias, W.R. Moore (Editors). ISBN 0-7923-9000-8. Wafer Level Integrated Systems: Implementation Issues. S.K. Tewksbury. ISBN 0-7923-9006-7. The Annealing Algorithm. R.H.J.M. Otten & L.P.P.P. van Ginneken. ISBN 0-7923-9022-9. VHDL: Hardware Description and Design. R. Lipsett, C. Schaefer and C. Ussery. ISBN 0-7923-9030-X. The VHDL Handbook. D. Coelho. ISBN 0-7923-9031-8. Unified Methods for VLSI Simulation and Test Generation. K.T. Cheng and V.D. Agrawal. ISBN 0-7923-9025-3. ASIC System Design with VHDL: A Paradigm. S.S. Leung and M.A. Shanblatt. ISBN 0-7923-9032-6. BiCMOS Technology and Applications. A.R. Alvarez (Editor). ISBN 0-7923-9033-4. Analog VLSI Implementation of Neural Systems. C. Mead and M. Ismail (Editors). ISBN 0-7923-9040-7. The MIPS-X RISC Microprocessor. P. Chow. ISBN 0-7923-9045-8. Nonlinear Digital Filters: Principles and Applications. I. Pitas and A.N. Venetsanopoulos. ISBN 0-7923-9049-0. Algorithmic and Register-Transfer Level Synthesis: The System Architect's Workbench. D.E. Thomas, E.D. Lagnese, R.A. Walker, J.A. Nestor, J.V. Rajan, R.L. Blackburn. ISBN 0-7923-9053-9. VLSI Design for Manufacturing: Yield Enhancement. S. W. Director, W. Maly, A.J. Strojwas. ISBN 0-7923-9053-7. Testing and Reliable Design of CMOS Circuits. N .K. Jha, S. Kundu. ISBN 0-7923-9056-3. Hierarchical Modeling for VLSI Circuit Testing. D. Bhattacharya, J.P. Hayes. ISBN 0-7923-9058-X. STEADY-STATE METHODS FOR SIMULATING ANALOG AND MICROWAVE CIRCUITS by Kenneth S. Kundert Cadence Design Systems Jacob K. White Massachusetts Institute of Technology and Alberto Sangiovanni-Vincentelli University of California, Berkeley l1li... " Springer-Science+Business Media, B.V. Distributors for North America: Kluwer Academic Publishers 10 I Philip Drive Assinippi Park Norwell, Massachusetts 02061 USA Distributors for all other countries: Kluwer Academic Publishers Group Distribution Centre Post Office Box 322 3300 AH Dordrecht, THE NETHERLANDS Library of Congress Cataloging.in·Publication Data Kundert, Kenneth S. Steady-state methods for simulating analog and microwave circuits / by Kenneth S. Kundert, Jacob K. White, Alberto Sangiovanni -Vincentelli. p. cm. - (The Kluwer international series in engineering and computer science) I. Microwave circuits-Mathematical models. 2. Linear integrated circuits-Mathematical models. I. White, Jacob K. II. Sangiovanni -Vincentelli, Alberto. III. Title. IV. Series. TK7876.K845 1990 89-78195 621.39 '5-dc20 CIP ISBN 978-1-4419-5121-2 ISBN 978-1-4757-2081-5 (eBook) DOI 10.1007/978-1-4757-2081-5 Copyright © 1990 by Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1990. Softcover reprint of the hardcover I st edition 1990 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photocopying, recording, or other wise, without the prior written permission of the publisher, Springer-Science+Business Media, B.Y. Table of Contents Preface .................................................................................... xi Acknowledgements ..................................................................... xv Chapter 1. Introduction ................ ................ .... .... ............ ................ ..... 1 1. The Standard Circuit Simulation Method .... .......................... 2 2. Steady State ........ .................... ............ ........................ ........... 4 3. Distributed Devices ................ ............ ........................ ........... 7 4. Computing the Steady-State ........................ ................ .......... 11 4.1. Time-Domain Methods ................................................ 12 4.2. Frequency Domain Methods ........................................ 14 Chapter 2. Motivation .................... ................ .................... ............ ......... 17 1. Self-Biasing Amplifiers ......................................................... 17 2. Mixers ................................................................................... 19 3. Narrow-Band Amplifiers and Filters ..................................... 20 4. Low-Distortion Amplifiers .................................................... 21 5. Switched-Capacitor Filters .................................................... 22 6. Traveling-Wave Amplifiers .................... ................ ............... 23 7. Measured Devices ................................................................. 24 8. Crystal and Cavity Oscillators ............................................... 25 Chapter 3. Background ............ ............ ........ ............ ............ ........ .......... 27 1. Fourier Representation of Signals .................... ..................... 27 v vi 1.1. Truncation and Discretization 29 2. Almost-Periodic Fourier Transform .................................... .. 31 3. Systems ................................................................................ . 33 3.1. State ............................................................................ . 34 4. Problem Formulation ............................................................ . 35 4.1. Lumped Test Problem ................................................ .. 36 4.2. Distributed Test Problem ............................................ . 36 5. Differential Equations .......................................................... .. 37 5.1. Initial-Value Problems ................................................ . 38 5.2. Boundary-Value Problems .......................................... . 39 5.2.1. Existence and Uniqueness of Solutions ............ .. 39 5.3. Applications in Circuit Simulation .............................. . 41 5.3.1. Periodic Boundary Constraint ............................ . 42 5.3.2. Oscillators .......................................................... . 43 5.4. Numerical Solution of Initial-Value Problems ............ . 44 5.4.1. Discretization .................................................... .. 44 6. Numerical Solution of Nonlinear Equations ........................ .. 45 6.1. Convergence Criteria .................................................. .. 48 6.2. Simplified Newton-Raphson Methods ........................ .. 48 6.3. Continuation Methods ................................................ .. 50 Chapter 4. Time-Domain Methods 55 1. Finite-Difference Methods .................................................... . 55 2. Shooting Methods ................................................................ . 60 2.1. Shooting by Extrapolation ........................................... . 61 2.2. Shooting with Newton-Raphson ................................ .. 65 2.3. Oscillators .................................................................. .. 70 2.4. Distributed Devices .................................................... .. 76 2.5. Parallel Shooting ......................................................... . 77 vii Chapter 5. Harmonic Balance Theory 81 1. Introduction ........................................................................... 81 2. Historical Development ................. ....... .............. .......... .... ..... 83 2.1. Harmonic Balance for Quasiperiodic Signals .... .... ...... 86 2.2. An Example .... ..... ....... .... .... ..... ... .... .... .... ............ .... ..... 88 3. Error Mechanisms ................................................................. 90 4. Derivation .............................................................................. 91 5. Harmonic Programming .... ............ .... .... .... .... .... ................ .... 94 5.1. Root Finding with Nonlinear Least Squares ........ ........ 96 5.2. Performance Optimization ............................................ 99 6. Harmonic Relaxation ............................................................. 101 6.1. Splitting ........................................................................ 101 6.2. Gauss-Jacobi-Newton Harmonic Relaxation ................ 104 7. Harmonic Newton ................................................................. 110 8. Error Estimation .................................................................... 112 9. Oscillators.............................................................................. 115 Chapter 6. Implementing Harmonic Balance .... ............ .... ......... 117 1. Accelerating Harmonic Balance ............................................ 118 2. Quasiperiodic Harmonic Balance Transforms ............. ....... ... 119 2.1. Harmonic Balance and the DFT .................................. 120 2.1.1. Choosing the Artificial Frequencies .................... 121 3. Harmonic Newton .... .... ........ ............ .... .................... .... ......... 124 3.1. Harmonic Relaxation-Newton .... .... .... ........ .... .... .......... 133 3.1.1. Adaptively Pruning the Jacobian .... .... ........ .... .... 134 3.1.2. Harmonic Jacobian Data Structure ..................... 138 4. Spectre ................................................................................... 138 4.1. Comparisons to Transient Analysis ................ .... .......... 138 viii 4.2. Profiles ......................................................................... 145 4.3. Harmonic Relaxation vs. Harmonic Newton ............... 150 4.4. APFT versus FFT .......................................................... 155 Chapter 7. Mixed Frequency-Time Method ................................ 157 1. Previous Quasiperiodic Boundary Constraints ...................... 158 1.1. The Periodic Boundary Constraint ........ ........ .... ........... 158 1.2. The N-Point Boundary Constraint ............................... 159 2. The Mixed Frequency-Time Method ..................................... 161 2.1. The Delay Operator ........ .... ........ ............................. .... 165 2.2. The Differential Equation Relation .............................. 168 2.3. An Example ........ ................ .... ........ ........ ........ .... .... ..... 170 2.4. MFT as a Two-Point Boundary Constraint .................. 172 3. Practical Issues ...................................................................... 173 3.1. The Quasiperiodic Sampled Waveform ....................... 173 3.2. Selecting the Clock ...................................................... 174 4. Nitswit ................................................................................... 177 4.1. Equation Formulation .... ................. ....... .... ......... ....... ... 177 4.2. Implementation ........................ ........ .... .... ........ ........ ..... 178 4.2.1. Application Examples ......................................... 178 4.2.2. Comparison to Direct Methods ........................... 184 Chapter 8. Comparisons ........................................................................ 187 1. Finite-Difference Methods .................... ................................. 187 2. Shooting Methods ........... ..... .... ..... ... .... ........ .... ............ .... ..... 189 3. Harmonic Balance ................................................................. 190 4. Examples .... .... .... ........ ............... ..... ........ ........ ........ ....... ........ 192 4.1. Self-Biasing Amplifier ........ ............ ................ ........ ..... 193 ix 4.2. Mixers .......................................................................... 193 4.3. Narrow-Band Amplifiers and Filters ............................ 193 4.4. Low-Distortion Amplifiers ........................................... 194 4.5. Switched-Capacitor Filters ........................................... 194 4.6. Traveling-Wave Amplifiers .......................................... 195 4.7. Measured Devices ........................................................ 195 4.8. Crystal and Cavity Oscillators ..................................... 195 Chapter 9. Summary ............................................................................... 197 Appendix A. Nomenclature ...................................................................... 201 Appendix B. APFT Time-Point Selection ......................................... 205 1. Matrix Formulation ............................................................... 205 1.1. Previous Work ............................................................. 207 1.2. Condition Number and Orthonormality ............ ........... 208 1.3. Condition Number and Time-Point Selection .............. 209 1.4. Condition Number and Aliasing .................................. 210 2. Near-Orthogonal Selection Algorithm .... ........ ........ ............... 213 2.1. Time-Point Selection .................................................... 213 2.2. Constructing the Transform Matrix .............................. 216 2.3. APFT Algorithm Results ............................................. 217 Appendix C. Arc-Length Continuation 221 Bibliography.... ................ ............ ........ .... ............ ................ 227 x Index ........................................................................................ 241
Description: