State Space representation of non-stationary Gaussian Processes AlessioBenavoli MarcoZaffalon [email protected] [email protected] Dallemolleinstituteforartificialintelligence(IDSIA), Manno,Switzerland 6 1 0 Abstract that the direct computation of the posterior of f is com- 2 putationally demanding. The computational cost is cubic, n The state space (SS) representation of O(n3),inthenumberofobservations.ThismakesGPsun- a Gaussian processes (GP) has recently suitable for Big Data. Several general sparse approxima- J gainedalotofinterest.Themainreasonis tionschemeshavebeenproposedforthisproblem,(seefor 7 thatitallowstocomputeGPsbasedinfer- instance Quin˜onero-Candela and Rasmussen [2005] and ] ences in O(n), where n is the number of [RasmussenandWilliams,2006,Ch. 8]). G observations. Thisimplementationmakes Inthecasethefunctionf isdefinedonR,i.e.,x∈R,com- L GPs suitable for Big Data. For this rea- putational savings can be made by converting the GP into s. son, it is important to provide a SS rep- State Space (SS) form and make inference using Kalman c resentation of the most important kernels filtering. Notethatthecasex∈Risparticularlyimportant [ usedinmachinelearning. Theaimofthis because it includes time-series analysis (x is time). The 1 paper is to show how to exploit the tran- connectionbetweenGPsandSSmodelsiswellknownfor v sientbehaviourofSSmodelstomapnon- somebasickernelsandrecentlyithasgainedalotofinter- 4 stationarykernelstoSSmodels. 4 est. CertainclassesofstationaryCFscanbedirectlycon- 5 verted into state space models by representing their spec- 1 traldensitiesasrationalfunctions[Sa¨rkka¨andHartikainen, 0 1. Introduction 2012,Sarkkaetal.,2013,SolinandSarkka,2014]. More- . 1 over,anexplicitlinkbetweenperiodic(non-stationary)CFs 0 In machine learning, Gaussian Processes (GP) are com- andSSmodelshasalsobeenderivedin[SolinandSa¨rkka¨, 6 monly used modelling tools for Bayesian non-parametric 2014]. 1 inference [O’Hagan and Kingman, 1978, Neal, 1998, : TheconnectionbetweentheSSrepresentationofGPsand v MacKay, 1998, Rasmussen and Williams, 2006, Ras- i GPsmodelsusedinmachinelearningisimportantformany X mussen, 2011, Gelman et al., 2013]. For instance in GP reasons. First,inmachinelearning,ithasbeenshownthat regression,y =f(x),theaimistoestimatef from(noisy) r GPs, with a suitable choice of the kernel, are universal a observation y. A natural Bayesian way to approach this function approximators [Rasmussen and Williams, 2006, problem is to place a prior on f and use the observa- Williams,1997]. Moreover,GPscanalsobeusedforclas- tions to compute the posterior of f. Since f is a func- sification, with only a slight modification. Second, infer- tion, theGPisanaturalpriordistributionforf [MacKay, ences in SS models can be computed efficiently by pro- 1998, Rasmussen and Williams, 2006]. A GP, denoted as cessingtheobservationssequentially. Thismeansthatthe GP(0,k (x,x(cid:48))),iscompletelydefinedbyitsmeanfunc- θ computationalcostofinferenceintheSSrepresentationof tion (usually assumed to be zero) and covariance function GPsisO(n). Third,SSmodelsrepresentGPsthroughSto- (CF) (also called kernel) k (x,x(cid:48)), which depends on a θ chasticDifferentialEquations(SDE).Theyreturnamodel vectorofhyperparametersθ. Bysuitablychoosingtheker- that directly explains the time-series and not only fits or nel function, we can make GPs very flexible and conve- predictsit. ItiswellknownthatSDEsarebasicmodelling nient modelling tools. However, a drawback with GPs is toolsineconometrics,physicsetc..Hence,ifweareableto map the most important kernels used in machine learning to the SS representation we can “kill three birds with one stone”,i.e.,wecanhaveanexplanatorymodelwithauni- versal function approximation property at a cost of O(n). Thisistheaimofthispaper. Inparticular,thegoalistoex- with ψ(t ,t ) = exp((cid:82)tkF(t)dt) is the state transition k 0 t0 tendthework[Sa¨rkka¨andHartikainen,2012,Sarkkaetal., matrix,whichisobtainedasamatrixexponential.1 2013]byprovidingaSSrepresentationofthemostimpor- Proposition 1. Assume that E[f(t )] = 0, then the vec- tantkernelsusedinmachinelearning. 0 tor of observations [y(t ),y(t ),...,y(t )]T is Gaussian 1 2 n Inparticular,wewillshowthatnon-stationarykernelscan distributed with zero mean and covariance matrix whose bemappedintoSSmodelsbyconsideringthetransientbe- elementsaregivenby: haviour. It is well known that the time response of lin- E[y(t )y(t )]= ear SS models is always the superposition of an initial- i j conditionpartandadrivenpart.Theresponseduetoinitial- =C(ti)ψ(ti,t0)E[f(t0)fT(t0)](C(tj)ψ(tj,t0))T+ conditionsisoftenignored, becauseitvanishesinthesta- min(cid:82)(ti,tj) tionary case (it is transient). However, for non-stationary h(ti,u)h(tj,u)q(u)du systems, the transient never vanishes and, thus, it deter- t0 (3) mines the behaviour of the system. Even with a zero ini- where we have exploited the fact that E[dw(u)dw(v)] = tialcondition,wecanhaveatransientbehaviourduetothe q(u)δ(u − v)dudv and defined h(t ,t ) = 1 2 driven part. We will show that by taking into account the C(t )ψ(t ,t )L(t )(h(...)iscalledimpulseresponse). 1 1 2 2 transient, we can map the linear regression, periodic and spline kernel to SS models. Moreover, we will also study The proof of this proposition is well known (see for in- thetransientbehaviourforstationarysystemstoshowthat stanceJazwinski[2007]),butwehavereportedthederiva- in this case it vanishes. To reconcile these two cases, we tions of this proposition (and next propositions/theorems) will make use of the Laplace transform that is able to ac- in appendix for the convenience of the reader. From countforthetransientbehaviour. Thisisadifferencew.r.t. (3), it is evident that, given the time-varying matrices the work by Sa¨rkka¨ and Hartikainen [2012], Sarkka et al. A(t),L(t),C(t), the CF of a LTV system is completely [2013] where they employed the Fourier transform. Then defined by: (i) the covariance of the initial condition we will show how to map the neural networks kernels to E[f(t )fT(t )];(ii)theCFofthenoiseE[dw(u)dw(u)]. SSmodels.Forthispurposewewilluselineartime-variant 0 0 SS,thatareintrinsicallynon-stationary. Finally,bymeans In case the SS model is Linear Time-Invariant (LTI), i.e., of simulations we will show the effectiveness of the pro- F(t) = F,L(t) = L,C(t) = C,q(t) = q,wecanusethe posed approach and the computational advantages by ap- Laplacetransformtoderive(2)and(3)usingonlyalgebraic plyingittolongtime-series.Inthiswork,forlackofspace, computations. The Laplace transform of a function x(t), wewillassumethatthereaderisfamiliarwiththemachine definedfort≥0,is: learningrepresentationofGPsandwewillonlydiscussthe ∞ (cid:90) SSrepresentation. x(s)= e−stx(t)dt, 0 2. StateSpacemodel where the parameter s is the complex number s = σ + ιω,withσ,ω ∈ Randιdenotingtheimaginaryunit. The Laplace transform exists provided that the above integral Letusconsiderthefollowingstochasticlineartime-variant is finite. The values of s for which the Laplace transform (LTV)statespacemodel[Jazwinski,2007] existsarecalledtheRegionOfConvergence(ROC)ofthe Laplacetransform.ByusingtheLaplacetransform,wecan (cid:26) df(t) = F(t)f(t)dt+L(t)dw(t), rewritethedifferentialequationin(1)inanalgebraicform: (1) y(t ) = C(t )f(t ), k k k sf(s)−f(t )=Ff(s)+Lw(s), (4) 0 where f(t) = [f (t),...,f (t)]T is the (stochastic) state wheref(s),w(s)aretheLaplacetransformsoff(t),w(t).2 1 m vector, y(t ) is the observation at time t , w(t) is a Sincey(s)=Cf(s),wehave k k one-dimensional Wiener process with intensity q(t) and y(s)=C(sI−F)−1f(t )+C(sI−F)−1Lw(s) 0 F(t),L(t),C(t)areknowntime-variantmatricesofappro- =C(sI−F)−1f(t )+H(s)w(s), (5) priatedimensions. Wefurtherassumethattheinitialstate 0 f(t0)andw(t)areindependentforeacht ≥ t0. Itiswell whereH(s) = C(sI−F)−1Liscalledthetransferfunc- know that the solution of the stochastic differential equa- tion of the linear time-invariant (LTI) SS model and I is tionin(1)is(seeforinstanceJazwinski[2007]): 1ThematrixexponentialiseA =I+A+A2/2!+A3/3!+.... (cid:90)tk side2rBinygdwefi(tn)inagstahedeLtearpmlaicneisttricanisnfpourtm. W(4e),uwseetahrieswnorotantgiolynoconnly- f(t )=ψ(t ,t )f(t )+ ψ(t ,τ)L(τ)dw(τ), (2) k k 0 0 k for convenience, but then we define the correct inverse Laplace t0 transformin(6). theidentitymatrix. SinceaproductintheLaplacedomain foreacht ,t ≥0,whichcorrespondstothelinearregres- i j correspondstoaconvolutionintime,itfollowsthat sionCF[RasmussenandWilliams,2006,Sec. 4.2.2]. y(t )=L−1(cid:0)C(sI−F)−1(cid:1)f(t )+(cid:90) tkh(t −u)dw(u), k 0 k ThisconnectionbetweenSSandlinearregressioniswell- t0 known,herewehaveshownhowtoderivetheCF.Higher (6) where L−1(·) denotes the inverse Laplace transform. By orderlinearregressionCFscanbeobtainedbyconsidering computingE[y(ti)y(tj)],weobtainagain(3). Theoutput E[f(t0)fT(t0)]=diag([σ12,...,σm2 ])and ofbothLTVandLTIsystemsisclearlycompletelydefined (cid:20) 0 I (cid:21) (cid:20) 0T (cid:21) F= m−1 m−1 , L= m−1 by the SS matrices, the initial condition and the stochas- 0 0T 1 m−1 tic forcing term dw(t). The aim of the next sections is to (cid:2) (cid:3) showthatbysuitablychoosingthesethreecomponentswe C= 0m−1 1 , (9) can obtain SS models whose CF coincides with the main where0 isthe(m−1)zerovector. m−1 kernelsusedinGPs. 3.2. PeriodicKernel 3. Non-stationaryCFsdefinedbyLTISS withoutforcingterm ConsiderthefollowingLTISS: (cid:20) (cid:21) F= 0 ωk ,C=(cid:2) 1 0 (cid:3), (10) Inthissection, wewillshowthattwoimportantCFsused −ω 0 k inGPscanbeobtainedbytwoLTISSmodelswithoutsto- chastic forcing term. Their output is therefore completely with q(t) = 0 for all t ≥ 0. By computing ψ(t,t0) = determinedbytheinitialconditionsand,thus,theCFthey exp((t−t0)F),wehavethat defineisnon-stationary(itdependsonti,tj ≥t0). (cid:20) cos(ω (t−t )) sin(ω (t−t )) (cid:21) ψ(t,t )= k 0 k 0 , 0 −sin(ω (t−t )) cos(ω (t−t )) k 0 k 0 3.1. Linearregressionkernel and,so Assumewithoutlossofgeneralitythatt =0, 0 y(t )=Cψ(t ,t )f(t ) i i 0 0 (cid:20) (cid:21) (cid:20) (cid:21) 0 1 0 F= , L= , =cos(ωk(t−t0))f1(t0)+sin(ωk(t−t0))f2(t0) 0 0 1 =a cos(ω (t−t ))+b sin(ω (t−t )), (11) (cid:2) (cid:3) k k 0 k k 0 C= 1 0 , (7) wherewehavewrittenf (t )=a andf (t )=b . q(t)=0∀t≥03andsothereisnotforcingterm(dw(t)= 1 0 k 2 0 k 0). ThiscorrespondstothefollowingLTISSmodel: Proposition3. ConsidertheSSmodelin(10)andassume df1(t) = f (t), that[ak,bk]areGaussiandistributedwithzeromean,vari- dt 2 ances E[a2], E[b2] and uncorrelated E[a b ] = 0. From df2(t) = 0, (8) k k k k ydt(tk) = f1(tk). (w2i)t,hwzeerhoamveeathnaatn[yd(Ct1F),...,y(tn)]isGaussiandistributed FromtheequationsofthisSSmodel,sincey(t)=f1(t)we E[y(t )y(t )]=E[a2]cos(ω (t −t ))cos(ω (t −t )) 1 2 k k 1 0 k 2 0 derivethatf (t) = f(t)(itisthefunctionofinterest)and f (t) = df(1t) is its derivative. By computing ψ(t,t ) = +E[b2k]sin(ωk(t1−t0))sin(ωk(t2−t0)). 2 dt 0 exp((cid:82)tt0Fdt)=exp((t−t0)F),wehavethat =E[a2k]cos(ωk(t2−t1)) (cid:20) 1 t−t (cid:21) for each t ,t ≥ t , where last equality holds if E[a2] = ψ(t,t )= 0 , i j 0 k 0 0 1 E[b2]. k and, therefore, y(t ) = Cψ(t ,t )f(t ) = f (t )+(t− i i 0 0 1 0 t )f (t ). ThisSSmodeldefinesaperiodicCF.However,itisevident 0 2 0 (seeinparticular(11))thatitcanonlyrepresentsinusoidal Proposition 2. Consider the SS model in (8) and assume type periodic functions. However, we know that any pe- that f(t0) is Gaussian distributed with zero mean and co- riodicfunctionf(t)in[−pe,pe], thatisintegrable, canbe variance E[f(t )fT(t )] = diag([σ2,σ2]) and t = 0. 0 0 1 2 0 approximatedbyFourierseries: From(2), wehavethat[y(t ),...,y(t )]isGaussiandis- 1 k J (cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) tributedwithzeromeanandCF (cid:88) 2πkt 2πkt f(t)≈ a cos +b sin , (12) E[y(ti)y(tj)]=σ12+σ22titj, k=1 k pe k pe 3Sinceq(t) = 0,thematrixLiscompletelysuperfluous. We where ak,bk ∈ R are the coefficients of the Fourier se- haveintroduceditonlybecausewewillusethismodellater. ries, whichdependonf(t), andJ ∈ Nistheorderofthe approximation.4 Therefore, we can approximate any peri- 4. Non-stationaryCFsdefinedbyLTISS odic function by a sum of J SS models of type (10) with withzeroinitialconditions ω = 2πk. Forinstance,forJ =2,wecanconsidertheSS k pe model In this section, we will show that an important CF used in GPs can obtained by a LTI SS model with stochastic 0 ω 0 0 1 forcingtermandzeroinitialconditions. F= −ω1 0 0 0 ,C=(cid:2) 1 0 1 0 (cid:3). 0 0 0 ω2 0 0 −ω 0 4.1. Splinekernel 2 (13) WederivetheCFforthecubicsmoothingsplines.Consider Its transfer function φ(t ,t ) is a diagonal block matrix theLTISSmodelin(7), butthistimeassumethatq(t) = i 0 withblocks 1∀t≥t0,E[f(t0)fT(r0)]=0andt0 =0,then (cid:20) cos(ωk(t−t0)) sin(ωk(t−t0)) (cid:21), (cid:90)ti (cid:90)ti −sin(ωk(t−t0)) cos(ωk(t−t0)) y(ti)= Cψ(ti,τ)L(τ)dw(τ)= (ti−τ)dw(τ) 0 0 fork =1,2. Hence,from(3),wehavethat (16) E[y(ti)y(tj)]= (cid:80)2 E[a2k]cos(ωk(ti−t0))cos(ωk(tj −t0))andso,from(2),E[y(ti)y(tj)] = (cid:82)0min(ti,tj)(ti−τ)(tj − k=1 τ)dτ. +E[b2]sin(ω (t −t ))sin(ω (t −t )), k k i 0 k j 0 (14) Proposition4. ConsidertheLTISSmodelin(7), butthis wherewehaveassumedthatE[f(t )fT(t )]isablockdi- timeassumethatq(t)=1∀t≥0andE[f(0)fT(0)]=0. 0 0 agonalmatrixwithblocks Then,from(2),wederivethat[y(t ),...,y(t )]isGauss- 1 n iandistributedwithzeromeanandCF (cid:20) E[a2] 0 (cid:21) 0k E[b2k] , (15) E[y(ti)y(tj)]=|ti−tj|min(t2i,tj)2 + min(t3i,tj)3, (17) fork = 1,2. InFourierseries,thefunctionf(t)isknown and so the coefficients ak,bk can be computed based on foreachti,tj ≥0,whichisthekernelforthecubicsmooth- f(t). InGPregression,wedonotknowf(t)andsowedo ingsplines[RasmussenandWilliams,2006,Sec. 6.3.1]. notknowa ,b . Wemustestimatethesecoefficientsfrom k k data.5 Thisisthereasonwehaveassumedapriordistribu- HigherordersplinescanbeobtainedconsideringSSmod- tiononthesecoefficients. Thisprioriscompletelydefined els as in (9). The connection between SS and smoothing by the variances E[a2],E[b2] for k = 1,2,...,J. If we k k splines has been first derived in Kohn and Ansley [1987]. furtherassumethatE[a2]=E[b2]=q2thenwehaveonly k k k Here, we have highlighted the connection with GPs and J parameters to specify, the q . We can further assume k computedtheCF(17). that all the parameters are functions of a single parameter (cid:96)≥0;andpenalizehighorderfrequencies. Forinstance,if wechooseq2 =2exp(−(cid:96)−2)(cid:80)(cid:98)J−2k(cid:99) (2(cid:96)2)−k−i,itcanbe 5. StationaryCFsdefinedbyLTISSmodels k i=0 (k+i)!i! shownthat A stationary CF is a CF that only depends on t −t . In j i (cid:88)J (cid:18)2πk (cid:19) this section we will present SS models whose CF corre- E[y(t )y(t )]= q2cos (t −t ) i j k p j i spondstostationarykernelsusedinGPs. Sincestationary e k=0 CFs satisfy k(τ) = k(−τ) for τ = t −t , i.e., they are j i (cid:32) (cid:18)π(t −t )(cid:19)2(cid:33) even functions defined on R, it is convenient to introduce −J−→−−∞→exp −2 sin j i , (cid:96)2 p thebilateralLaplacetransform: e ∞ (cid:90) which is the periodic CF used in GPs [Rasmussen and B(f(τ))= e−sτf(τ)dτ, Williams, 2006, Sec. 4.2.3]. This result has been derived −∞ bySolinandSa¨rkka¨[2014],herewehavehighlightedmore extensively the transient analysis and the connection with thatisdefinedforfunctionsthattakevaluesinR.Whenthe theFourierseries. ROCincludestheimaginaryaxis,thenfors = ιω,thebi- lateralLaplacetransformreducestotheFouriertransform. 4Wecanalsoincludetheconstantterm(k=0)intheseries. Assume that the CF is stationary. The Wiener-Khintchine 5Whentheperiodpeisunknown,wecanestimateitfromdata. theorem[Chatfield,2013]statesthattheCFiscompletely definedbyitsFouriertransform(itsbilateralLaplacetrans- 5.1. Mate´rnkernelforν =3/2 formcomputedfors=ιω)(whenitexists)andviceversa: (cid:90) (cid:90) LetusconsideragainthestationaryMate´rnkernelforν = k(τ)= Sy(ιω)e2πιωτdω, Sy(ιω)= k(τ)e−2πιωτdτ, 3/2,i.e.,E[y(ti)y(tj)]=k(τ)= 4λ13e−λ|τ|(1+λ|τ|)for R R τ = t −t [RasmussenandWilliams,2006,Sec. 4.2.1]. 2 1 where Sy(ιω) is the Fourier transform of k(τ) also called ThebilateralLaplacetransformofk(τ)is thespectraldensity. 1 B(R(τ))= , Theorem 1 (Representation theorem). Define Sy(ιω) = (λ−s)2(λ+s)2 S (s) and assume that S (s) that is a (proper) rational y y which is a rational function. We can then apply Theorem functionofs. ThenthereexistsastableLTIsystemwiththe 1 and, in this case, H(s) = 1/(λ+s)2 and S (s) = 1. impulseresponsehsuchthat w Using(20)wecanderivetheSSmodel: (cid:90) t (cid:20) (cid:21) (cid:20) (cid:21) y(t)= h(t−u)dw(u) (18) 0 1 0 F= , L= −∞ −λ2 −2λ 1 where w is a stationary process with uncorrelated incre- (cid:2) (cid:3) C= 1 0 , (21) mentsandspectraldensityS (s)=q >0. IntheLaplace w domainthiscanbewrittenas q(t) = 1 ∀ t ≥ t . Its impulse response is h(t) = 0 texp(−λt)fort≥t . S (s)=H(s)H(−s)q, (19) 0 y whereH(s) = b(s)/a(s)isarationalfunctionwhosede- Proposition 5. Consider (21) and assume that nominatora(s)hasallrootswithnegativerealparts,b(s) E[f(t0)fT(t0)] = 0. Then, from (2), we obtain that hasnorootswithpositiverealpartandqisapositivereal [y(t1),...,y(tn)] is Gaussian distributed with zero mean constant.6 andCF E[y(t )y(t )]= e−λ|tj−ti|(1+λ|tj−ti|) This is standard result for LTI systems. By interpreting i j 4λ3 q as the Bilateral Laplace transform of the noise dw(t) − e−λ(−2t0+ti+tj)(1+λ(−2t0+ti+tj)+λ2(t0−ti)(t0−tj)) 4λ3 (S (s) = q),thenEquation(19)relatesthespectralfunc- w foreacht ,t ≥t . tions of the output of a SS model described by the trans- i j 0 fer function H(s) with that of the input (the noise w(t)) through the transfer function of the SS model H(s). We Itcanbeobservedthatfort0 →−∞,thesecondtermgoes canuse(19)toderivetheSSmodelthatisrelatedtoS (s). to zero and and we obtain the Mate´rn CFs for ν = 3/2 y (cid:112) Thesearethesteps: (i)findthezeroesandpolesofS (s); andλ= (3)/(cid:96). OtherMate´rnCFsforν =3/2,5/2,... y (ii)takeallthepolesp withrealnegativepartandzeroes canbeobtainedviaLTISSmodelsinasimilarway. This i withnon-positiverealpart;(iii)decomposeH(s)as connectionbetweenLTISSmodelsandMate´rnkernelhas (cid:81) been firstly discussed in Sarkka et al. [2013]. Here, we H(s)= (cid:81)ii((ss−−pzii)) = bs0ns+n+a1bs1nsn−−1+1+·····+·+abnn−−11ss++abnn, hshaovwenretphoarttethdethCeFCbFecfoomrte0sfisntaittieo(nnaorny-fsotarttio0n→ary−c∞ase.)and andderivethe(observablecanonical)LTISSmodel: 0 1 0 ··· 0 5.2. SquareExponentialkernel r 1 F= 00... 00... ·01·· ·.·.....· 001 ,L=rnr...−21 [LnReelatsEums[uyns(ostwei)nyc(oatnnjsd)i]dWe=riltlkhiae(mτs)tsa,=ti2o0ne0ax6rpy,(√−Ssqe2ucτ(cid:96)a.22r)e4fe.o2xr.p1oτ]n.e=nIttsitajlb−ikleatrti-- −an −an−1 −an−2 ··· −a1 rn eralLaplacetransformisSy(s)= 2π(cid:96)exp((cid:96)22s2),whose C=(cid:2)1 0 0 ··· 0(cid:3), (20) ROC is Re(s) = 0 and, hence, s = iω. Sy(s) is not a rational function, so we cannot directly apply Theorem 1. where However,itisareal-valuedpositivefunction(itispositive r 1 −1b and non-zero) and it is analytic, so we can approximate 0 0 r1 a1 1 b1 1/Sy(s)withitsTaylorexpansioninzeroandobtain: ... =··· ... ... S (s)≈=√2π(cid:96)d!2d 1 . y d!2d+d!2d−1(cid:96)2s2+···+(cid:96)2ds2d r a ··· a 1 b n n 1 n (22) TheaboveLTIsystemhasCFk(τ). WecanfindH(s)bydeterminingtherootsofthepolyno- 6SinceSy(s)isarealevenfunctions,thezeroesandpolesare mial at the denominator that have negative real part. This symmetricw.r.t.therealaxisandmirroredintheimaginaryaxis. canbedonenumerically,butthenextresultisuseful. Theorem 2. The roots of the denominator in (22) can be 6.1. Non-stationarySEkernel obtainedbycomputingtherootsfor(cid:96) = 1andthendivid- √ ingthemfor(cid:96). ThisgivesH(s),whileS (s)= 2π(cid:96)d!2d. LetusconsiderthisCF: w (cid:96)2d E[y(t1)y(t2)]=e−2σ1m2 t2ie−2σ1s2(ti−tj)2e−2σ1m2 t2j (24) This result is useful because it allows us to compute off- line the solutions of (22) even when the hyperparameter (cid:96) where σm2 ,σs2 are hyper-parameters. This CF is clearly isunknown. Letusconsiderforinstancethecased=2 non-stationary. However,itscentraltermisthesquareex- √ 1 ponential CF and, therefore, it can be approximated by a Sy(s)≈8 2π(cid:96)ω4(cid:96)4+4ω2(cid:96)2+8. LTVSSthatisasimplevariantoftheLTISSthatdefines √ thesquareexponentialCF.Forinstance,forσs = σm = 1 Therootsofthedenominatorfor(cid:96)=1ares=± 2±i2.7 thisLTVSSmodelis: Hence, the roots corresponding to the stable part are (cid:20) (cid:21) (cid:20) (cid:21) √ 0 1 0 − 2±i2≈−1.5538±i0.6436andso F= −(a2+b2) −2a , L= 1 1 (cid:104) (cid:105) H(s)= , C= e−t2/2 0 , (25) (s+a)2+(b)2 witha=1.5538andb=0.6436,whichcanberepresented The impulse response is h(t,u) = bythefollowingLTISSmodel: e−t2/2exp(−a(t−u))sin(b(t−u)) foru<tandtheCF b (cid:20) (cid:21) (cid:20) (cid:21) √ F= 0 1 , L= 0 E[y(ti)y(tj)]=8 2πe−t21/2e−t22/2 −(a2+b2) −2a 1 C=(cid:2) 1 0 (cid:3), (23) min(cid:90)(ti,tj)exp(−a(ti−u))sin(b(ti−u)) √ b with q(t) = 8 2π/(cid:96)3. The inverse Laplace transform of t0 H(s)ish(t)= exp(−at)sin(bt). exp(−a(t −u))sin(b(t −u)) b · j j du b Proposition 6. Consider (23) and assume that E[f(t0)fT(t0)] = 0. Then, from (2), we obtain that This is the d = 2 approximation. For t0 → −∞, the in- [y(t1),...,y(tn)] is Gaussian distributed with zero mean tegral term depends only on |t2 −t1|. This CF is used in andCF neuralnetworksresearchandtheconnectionwithGPshas √ beendiscussedbyWilliams[1997]. E[y(t )y(t )]=8 2π i j min(cid:90)(ti,tj)exp(−a(t −u))sin(b(t −u)) 6.2. LTVsystemdefiningtheneuralnetworkkernel i i b LetusconsiderthefollowingLTVSSmodel t0 exp(−a(t −u))sin(b(t −u)) (cid:20) 0 e−tTΣ1/2r (cid:21) (cid:2) (cid:3) · j j du F= ,C= 1 0 , (26) b 0 0 for each ti,tj ≥ t0. For t0 → −∞, it only depends on with q(t) = 0∀t > 0, t = [1,t]T, r = [r0,r1]T and |t2−t1|. Σ = diag(σ2,σ2)isadefinitepositivedefinitematrix. Its 0 1 transferfunctionis ThisconnectionbetweenLTISSmodelsandsquaredexpo- (cid:34) √ (cid:35) nentialkernelshasbeenderivedin[Sarkkaetal.,2013]and φ(ti,t0)= 1 π(erf(tiTΣ1/22rr1)σ−1erf(tT0Σ1/2r)) . in[SarkkaandPiche´,2014]theyhavestudiedtheconver- 0 1 gencepropertyoftheTaylorseries. Here,wehavederived Hence,wehavethat thenewresultinTheorem2, computedtheCFforafinite y(t )=Cψ(t ,t )f(t ) ts0tat(inoonna-rsytaftoiornt0ar→y c−as∞e)(asnedeasphpowennditxhafotrththeeCpFroboef)c.omes =fi1(t0)+ √πi(er0f(tiTΣ01/22rr1)σ−1erf(tT0Σ1/2r))f2(t0) (27) and 6. LTVsystems E[y(t )y(t )]= i j =C(t )ψ(t ,t )E[f(t )fT(t )](C(t )ψ(t ,t ))T i i 0 0 0 j j 0 Up to now, we have only worked with LTI SS models. =erf(tTΣ1/2r)erf(tTΣ1/2r), Hereafter, we will show that moving from LTI to LTV i j (28) allows us to map two fundamental non-stationary kernels where we have assumed that f(t ) is Gaussian distributed [Williams,1997]toSSmodels. 0 with zero mean and covariance matrix E[f(t )fT(t )] = 0 0 7Bydividingthemfor(cid:96)weobtaintherootsfor(cid:96)(cid:54)=1. [erf(tT0Σ1/2r),2√r12σπ1]T[erf(tT0Σ1/2r),2√r12σπ1]. Therefore, from(27),itisevidentthat(26)modelserflikefunctions. 4 4 Wecanaddexpressivitytothemodelasfollows 2 2 0 e−tTΣ1/2r1 0 0 0 0 0 0 0 0 (cid:45)2 (cid:45)2 F= , 0 0 0 e−tTΣ1/2r2 (cid:45)4 (cid:45)4 (cid:45)4 (cid:45)2 0 2 4 (cid:45)4 (cid:45)2 0 2 4 0 0 0 0 4 4 √ (cid:2) (cid:3) C= 1 0 1 0 / 2. 2 2 Its transfer function φ(t ,t ) is a diagonal block matrix 0 0 i 0 withelements (cid:45)2 (cid:45)2 (cid:34) √ (cid:35) 1 π(erf(tiTΣ1/2rk)−erf(tT0Σ1/2rk)) (cid:45)4(cid:45)4 (cid:45)2 0 2 4 (cid:45)4(cid:45)4 (cid:45)2 0 2 4 2r1kσ1 , 0 1 FIGURE 1. Contour plot of the NN CF fork =1,2. Hence,wehavethat for J = 15,30,50,∞ (from left to right). y(t )= i √12k(cid:80)=21f1k(t0)+ √π(erf(tiTΣ1/22rr1kk)σ−1erf(tT0Σ1/2rk))f2k(t0), 24 24 (29) wheref(t )=[f (t ),f (t ),f (t ),f (t )]T andso 0 0 0 11 0 21 0 12 0 22 0 (cid:45)2 (cid:45)2 E[y(t )y(t )]= i j =C(t )ψ(t ,t )E[f(t )fT(t )](C(t )ψ(t ,t ))T (cid:45)4(cid:45)4 (cid:45)2 0 2 4 (cid:45)4(cid:45)4 (cid:45)2 0 2 4 i i 0 0 0 j j 0 2 = 1 (cid:80) erf(tTΣ1/2r )erf(tTΣ1/2r ) FIGURE 2. Contour plot of the NN CF 2 i k j k k=1 using deterministic sampling for J = (30) 10,20(fromlefttoright). where we have assumed that E[f(t )fT(t )] 0 0 is a block diagonal matrix with elements 7. Scalingandmeasurementnoise [erf(tT0Σ1/2rk),2r√12kπσ1]T[erf(tT0Σ1/2rk),2r√12kπσ1]. If we increase the number of elements k and keep this In the previous derivations, we have assumed that there is block-diagonalstructure,wehavethat notmeasurementnoise. Wecanaddameasurementnoise E[y(t )y(t )]= 1 (cid:80)J erf(tTΣ1/2r )erf(tTΣ1/2r ). tothemeasurementequationasfollows i j J i k j k k=1 y(ti)=C(ti)x(ti)+v(ti), (33) (31) where v(t ) = N(0,σ2) is assumed to be independent to i v Theorem3. Assumethatthevectorsrk aresampledfrom the process noise and initial condition. Under these as- astandardGaussiandistribution,then sumptions, for each CF = (...) computed in the above J sections,wehavenowthat E[y(t )y(t )]= 1 (cid:80) erf(tTΣ1/2r )erf(tTΣ1/2r ) i j J i k j k E[y(t )y(t )]=(...)+σ2. k=1 i j v −J−→−−∞→(cid:82) erf(tTΣ1/2r)erf(tTΣ1/2r)N(r;0,I)dr Moreover,sometimesitisdesirabletohaveapositivescal- i j (cid:18) (cid:19) ingparameterthatmultipliestheCF.Thiscanbeincluded ∝ 2 sin−1 √ 2tTiΣtj byrescalingeitherthestochasticforcingtermortheinitial π (1+2tTiΣti)(1+2tTjΣtj) condition(forSSwithoutforcingterm). Finally, notethat (32) different kernels can be combined in an additive way, by whichistheneuralnetworkCF[Williams,1997]. simply stacking SS models in block-diagonal matrices as shownfortheperiodicorNNSSmodel. Figure 1 shows the contourplot of the CF for different J. It is evident that at the increase of J converges to the NN CF.Toincreasetheconvergencespeed,wecanchoosethe 8. Estimates vectorsr inadeterministicway(smartsampling).Wefol- k lowtheapproachproposedbyHuberandHanebeck[2008]. OncewehavedefinedtheSSmodelforagivenCF,weaim Figure2showsthecontourplotoftheCFforthedetermin- toestimatethestateofthemodelgiventhemeasurements. isticsampling. itisevidentthatforJ =20theapproxima- Given the hyperparameters of the CF, this can be carried tion is already very good (compare it with the last plot in outinthreesteps: Figure1relativetoJ =∞). (a) Discretize the continuous-time SDE to obtain a cedi(pnbofi(fisg)xvcca((rir2Cteeik)tanoe.)ntm-|lcytyipe(mbtum1eyte)a,uSt.srDt.iihnxE.eg,.oyKfTp(tahtrhkolimsi)bs)aas,GbtnteihalpfiiautltysbtesiasirsaidiGnncegaanP.luslDisytsFyicaocnfna.unsnTiscbhtteseiocomnonemaa(pnPpupDatlneFydd-) (cid:45)(cid:45)1001....0550....................0...2.................0....4.................0...6..................0...8..................1..0 (cid:45).2............................(cid:45).1...................(cid:45).00000......11234.........................1........................2 msT(pcm(h)axeot(roitlxtkahs)Ciot|nyofgs(mtttteh1phpi)ues,tre.ePes.Dtt.ui,mFrynat(chtttaeenhnse)o)b.beestGatciiamnoTuemahsdtsepeibusayntmeotdefhaevtnhKeperoaayslnsmttedeafratfiienoccrofiigevlintavetrelriny.PanDbacFlyel (cid:45)(cid:45)1001....0550....................0...2.................0....4.................0...6..................0...8..................1..0 (cid:45).2............................(cid:45).1...................(cid:45).000000.......112345.........................1........................2 observations. The last two steps have both complexity O(n). To estimate the hyperparameters of the CF, we FIGURE 3. Sawtooth inference with SS adoptaBayesianapproach. Weplaceaprioronthehyper- periodicmodeloforderJ =2,6.Gauss- parametersandthenweestimatethemusingaMonteCarlo ianinferencewithSSNNmodelforJ = approach. In practice, we employ a Rao-Blackwellised 10,20. particle filtering [Smith et al., 2013, Ch. 24]. We have ra9Cep.oppnoeEsrnitxddedeiaxrm.tthhpeelfeosltsleoapwswintoogfotwtthhoefwuwnahcvotieloenasnindferGenacuesssicahneme in -1123......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................0...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................2..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................0............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................4................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................0............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................6......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................0...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................8.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................1.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................0 ya(t)=S(10π(t+0.1))+va(t), yb(t)=N(4t,0,1)+vb(t) 4 3 with S(t) = t − (cid:98)t(cid:99), v (t) ∼ N(0,0.1) and v (t) ∼ a b 2 N(0,0.05). The first is a sawtooth wave with period 0.2. 1 ThesecondisaGaussiandensity. Wehavegenerated100 0.2 0.4 0.6 0.8 1.0 observation from the above regression model considering -1 t ∈ [0 : 0.01 : 1]inthefirstcaseandrandomlygenerated -2 t∼4Unif[0,1]−2inthesecondcase. Ourgoalistoem- ploytheperiodicSSmodeland,respectively,NNSSmodel FIGURE4. Sunspotsnumber to estimate the two functions. The result is shown in Fig- ure3.Inparticular,thetwopairedplotsreporttheposterior themissingdata,thenumberofobservationsis58(cid:48)306.For mean and relative credible region for two different orders inferenceswehaveappliedtheperiodicSSmodelswiththe of the periodic and NN SS model. Consider the sawtooth goalofestimatingtheperiodofsunspotactivitycycle,that case. The first plot shows the estimate based on the peri- is about eleven years. Figure 4 reports the observations odicSSmodeloforderone(onlyonecosinecomponent). (the time has been normalized in [0,1] and the number of This SS model can estimate exactly only periodic cosine- sunspots have been standardized) and the posterior mean typefunction,buttheunknownfunctionisaperiodicsaw- computedusingtheperiodicSSmodelwithJ =8compo- tooth wave. To improve the estimate, we can increase the nents.Theestimatedperiodforthesunspotcyclewas10.36 number of cosine terms. For J = 6, it is evident that we years. ThetimetoruntheSSmodelonthistimeserieswas already obtain an accurate estimate of the sawtooth wave. 1.5hoursonstandardlaptopwithamodelimplementedin AsimilarcommentholdsalsofortheNNSSmodel. Atthe Matlab. increasingoftheapproximationorder,theSSposteriores- timategetsclosertothetruefunction(itbettermodelsthe tailsoftheGaussianPDFthathasgeneratedthedata). 10. Conclusions 9.1. BigData: sunspotsnumber In this paper we have shown that, by exploiting the tran- sient behaviour of SS models, it is possible to map non- Finally, to show the computational efficiently of the pro- stationary Gaussian Processes (GP) kernels to state space posed approach, we have applied the SS model for infer- models (SS). In particular, we have shown how to map encesinalongtime-series. Inparticular, wehaveconsid- to SS models the neural network Kernels. This is impor- eredthesunspottimeseries–adailytimeseriesthatreports tantbecauseSSmodelsallowstoreducethecomputational the number of sunspots from 1820 to 2015. After treated complexityofinferenceswithGPsfromcubictolinearin the number of observations. As future work, we plan to Simo Sarkka, Arno Solin, and Jouni Hartikainen. Spa- continue to study the relationship between the SS model tiotemporal learning via infinite-dimensional bayesian representation and GPs as well as we plan to extend this filtering and smoothing: A look at gaussian process re- worktomultivariateregressionproblems. gression through kalman filtering. Signal Processing Magazine,IEEE,30(4):51–61,2013. References AdrianSmith,ArnaudDoucet,NandodeFreitas,andNeil Gordon. Sequential Monte Carlo methods in practice. Chris Chatfield. The analysis of time series: an introduc- SpringerScience&BusinessMedia,2013. tion. CRCpress,2013. Arno Solin and Simo Sa¨rkka¨. Explicit link between pe- AndrewGelman,JohnBCarlin,HalSStern,DavidBDun- riodic covariance functions and state space models. In son, Aki Vehtari, and Donald B Rubin. Bayesian data Proceedings of the Seventeenth International Confer- analysis. CRCpress,2013. enceonArtificialIntelligenceandStatistics,volume33, Marco F Huber and Uwe D Hanebeck. Gaussian filter pages904–912,2014. basedondeterministicsamplingforhighqualitynonlin- Arno Solin and Simo Sarkka. Gaussian quadratures for ear estimation. In Proceedings of the 17th IFAC World state space approximation of scale mixtures of squared Congress(IFAC2008),volume17,2008. exponentialcovariancefunctions. InMachineLearning Andrew H Jazwinski. Stochastic processes and filtering forSignalProcessing(MLSP),2014IEEEInternational theory. CourierCorporation,2007. Workshopon,pages1–6.IEEE,2014. Robert Kohn and Craig F Ansley. A new algorithm for Christopher KI Williams. Computing with infinite net- spline smoothing based on smoothing a stochastic pro- works. Advancesin neuralinformation processingsys- cess. SIAM Journal on Scientific and Statistical Com- tems,pages295–301,1997. puting,8(1):33–48,1987. David JC MacKay. Introduction to Gaussian processes. InBishop,C.M.,editor,NeuralNetworksandMachine Learning,pages133–166,1998. R. M. Neal. Regression and classification using gaussian processpriors. IninBernardo, JMandBerger, JOand Dawid,APandSmith,AFMeditors,BayesianStatistics 6: ProceedingsofthesixthValenciainternationalmeet- ing,volume6,page475,1998. A.O’HaganandJ.F.C.Kingman. Curvefittingandopti- maldesignforprediction. JournaloftheRoyalStatisti- cal Society. Series B (Methodological), 40(1):pp. 1–42, 1978. JoaquinQuin˜onero-CandelaandCarlEdwardRasmussen. Aunifyingviewofsparseapproximategaussianprocess regression. TheJournalofMachineLearningResearch, 6:1939–1959,2005. Carl Edward Rasmussen. The gaussian processes web site, February 2011. URL http://www. gaussianprocess.org/. CarlEdwardRasmussenandCKIWilliams. Gaussianpro- cessesformachinelearning.2006.TheMITPress,Cam- bridge,MA,USA,38:715–719,2006. Simo Sa¨rkka¨ and Jouni Hartikainen. Infinite-dimensional kalman filtering approach to spatio-temporal gaussian processregression. InInternationalConferenceonArti- ficialIntelligenceandStatistics,pages993–1001,2012. SimoSarkkaandRobertPiche´. Onconvergenceandaccu- racyofstate-spaceapproximationsofsquaredexponen- tialcovariancefunctions. InMachineLearningforSig- nalProcessing(MLSP),2014IEEEInternationalWork- shopon,pages1–6.IEEE,2014. AppendixA. Proofs A.4. Proposition4 Inthiscase,wehavethath(t,u)=h(t−u)=(t−u)and A.1. Proposition1 sofrom(2), min(cid:90)(ti,tj) Bydefinitionofcovariance,wehavethat E[y(t )y(t )]= h(t ,u)h(t ,u)q(u)du i j i j t0 min(cid:90)(ti,tj) E[y(ti)y(tj)]= (ti−u)(tj −u)du, C(t )ψ(t ,t )E[f(t )fT(t )](C(t )ψ(t ,t ))T+ i i 0 0 0 j j 0 0 (cid:82)ti(cid:82)tjC(t )ψ(t ,u)L(u)E[dw(u)dw(v)] =|t −t |min(ti,tj)2 + min(ti,tj)3, i i i j 2 3 t0t0 ·LT(v)ψT(t ,v)CT(t ) j j wherewehaveexploitedthefactthatq(u)=1. =C(t )ψ(t ,t )E[f(t )fT(t )](C(t )ψ(t ,t ))T+ i i 0 0 0 j j 0 min(cid:82)(ti,tj)C(t )ψ(t ,u)L(u)LT(u)ψT(t ,u)CT(t )q(u)du A.5. Proposition5 i i j j t0 =C(t )ψ(t ,t )E[f(t )fT(t )](C(t )ψ(t ,t ))T+ i i 0 0 0 j j 0 E[y(t )y(t )]= i j min(cid:82)(ti,tj) h(ti,u)h(tj,u)q(u)du min(cid:90)(ti,tj) t0 (t −u)e−λ(ti−u)(t −u)e−λ(tj−u)du i j (34) where we have exploited that E[dw(u)dw(v)] = t0 q(u)δ(u−v)dudvanddefinedh(t,u)=C(t)ψ(t,u)L(u). e−λ|tj−ti|(1+λ|tj−ti|) 4λ3 − e−λ(−2t0+ti+tj)(1+λ(−2t0+ti+tj)+λ2(t0−ti)(t0−tj)) 4λ3 A.2. Proposition2 foreacht ,t ≥ t . Itcanbeobservedthatfort → −∞, i j 0 0 thesecondtermgoestozero. Sincey(t ) = Cψ(t ,t )f(t ) = f (t )+(t−t )f (t ). i i 0 0 1 0 0 2 0 and f(t0) is Gaussian distributed with zero mean and co- A.6. Proposition6 variance E[f(t )fT(t )] = diag([σ2,σ2]), from (2), we 0 0 1 2 havethatfort =0: Theresultoftheintegralis 0 (cid:16) (cid:16) e−a(−2min(ti,tj)+ti+tj) a(bsin(b(−2min(t ,t )+t +t )) i j i j E[y(t )y(t )]=E[(f (0)+t f (0))(f (0)+t f (0))] −acos(b(−2min(t ,t )+t +t )))+(cid:0)a2+b2(cid:1)cos(b(t −t ))(cid:17) i j 1 i 2 1 j 2 i j i j i j =σ02+titjσ12 (35) −e−a(−2t0+ti+tj)(cid:16)(cid:0)a2+b2(cid:1)cos(b(ti−tj)) foreacht ,t ≥0. (cid:17)(cid:17) i j +a(bsin(b(−2t +t +t ))−acos(b(−2t +t +t ))) 0 i j 0 i j (cid:0)4ab2(cid:0)a2+b2(cid:1)(cid:1)−1 A.3. Proposition3 The second term that multiplies e−a(−2t0+ti+tj) vanishes fort →−∞andsowehave 0 TheproofissimilartothatofProposition2butconsidering that e−a|tj−ti|(cid:16)a(bsin(b|t −t |) j i −acos(b|t −t |)+(cid:0)a2+b2(cid:1)cos(b|t −t |)(cid:17) j i j i y(t )=Cψ(t ,t )f(t ) (cid:0)4ab2(cid:0)a2+b2(cid:1)(cid:1)−1 i i 0 0 =cos(ω (t−t ))f (t )+sin(ω (t−t ))f (t ) k 0 1 0 k 0 2 0 wherewehaveexploitedthefactthat−2min(t ,t )+t + i j i (36) t =|t −t |andcosineisanevenfunction. j j i