ebook img

Standardization of technology for extraction of wild apricot PDF

14 Pages·2010·0.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Standardization of technology for extraction of wild apricot

J.Aust. Math. Soc. 80(2006),383–396 ELEMENTS OF RINGS AND BANACH ALGEBRAS WITH RELATED SPECTRAL IDEMPOTENTS N.CASTRO-GONZA´LEZ andJ.Y.VE´LEZ-CERRADA (Received3May2004;revised4February2005) CommunicatedbyJ.Du Abstract Let a(cid:25) denote the spectral idempotent of a generalized Drazin invertible element a of a ring. We characterizeelementsbsuchthat1−.b(cid:25) −a(cid:25)/2 isinvertible. Wealsoapplythisresultinringswith involutiontoobtainacharacterizationoftheperturbationofEPelements. InBanachalgebrasweobtain acharacterizationintermsofmatrixrepresentationsandderiveerrorboundsfortheperturbationofthe Drazininverse. Thisworkextendsrecentresultsformatricesgivenbythesameauthorstothesettingof ringsandBanachalgebras.Finally,wecharacterizegeneralizedDrazininvertibleoperatorsA;B2 .X/ suchthatpr.B(cid:25)/Dpr.A(cid:25)CS/,wherepristhenaturalhomomorphismof .X/ontotheCalkinaBlgebra andS2 .X/isgiven. B B 2000Mathematicssubjectclassification:primary16A32,16A28,15A09. Keywordsandphrases: GeneralizedDrazininverse, spectralidempotent, EPelements, perturbation, Fredholmoperators. 1. Introduction The perturbations of the conventional and generalized Drazin inverse with equal eigenprojections at zero have been studied by Castro, Koliha and Wei in [4, 5] for matricesandclosedoperators,respectively,byRakocˇevic´ [7]forelementsinBanach algebrasandbyKolihaandPatr´icio[15]forelementsofrings. Recently, the authors [6] studied perturbations of the Drazin inverse of a square complexmatrix Aforthecasewhentheperturbedmatrix Bhastheeigenprojectionat zerosatisfying B(cid:25) D A(cid:25) CS,where Sisagivenmatrix. Theresultsobtainedtherein canbeappliedtothecase S D 0inordertoobtainacharacterization ofmatrices for which B(cid:25) D A(cid:25) and,so,recoverresultsof[4]. (cid:13)c 2006AustralianMathematicalSociety1446-8107/06$A2:00C0:00 383 384 N.Castro-Gonza´lezandJ.Y.Ve´lez-Cerrada [2] Themainpurposeofthispaperistoinvestigatetheperturbationofthegeneralized Drazin inverse for elements of rings and Banach algebras. In Section 3 we give a characterization of elements a;b with spectral idempotents related by the condition that1−.b(cid:25)−a(cid:25)/2isinvertible. Inparticular,ifb(cid:25) D a(cid:25)werecover[15,Theorem6.1]. InSection 4 weapplythis resultinringswithinvolution toobtainacharacterization ofthe perturbation of EP elements, that is, elements whichhave Drazin andMoore- Penroseinverseandbothcoincide. In several recent articles perturbations of the Drazin inverse were studied with a purpose to obtain explicit error bounds [3, 14, 16, 8, 17, 18]. We work in Banach algebras in Section 5 and derive an upper bound of kbD − aDk=kaDk in terms of kaD.b−a/kandkb(cid:25)−a(cid:25)k. Thisestimationissharperthantheerrorboundgivenin[14, Theorem2.1],and[3,Theorem6.1]formatricesandclosedoperators,respectively. Finally in Section 6, we give a characterization for bounded linear operators in Banachspaces,basedonthemainresultofSection3,ofgeneralizedDrazininvertible operators A;B 2 .X/ such that their eigenprojections at zero satisfy pr.B(cid:25)/ D pr.A(cid:25)CS/,whereBpristhenaturalhomomorphismof .X/ontotheCalkinalgebra. Inparticular,when S D0werecover[7,Corollary2.3B]. 2. Preliminaries Let be a ring with unit 1. The commutant and the double commutant of an elemenRta 2 aredefinedby R comm.a/Dfx 2 Vax D xag; R comm2.a/Dfx 2 V xy D yx forall y 2comm.a/g: R We denote by −1 the group of invertible elements of . An element a 2 is quasinilpotent Rif 1 C xa 2 −1 for every x 2 comm.Ra/ [10]. The set of aRll R quasinilpotentelementsof willbedenotedby qnil. Anelementa 2 issaidRtohaveageneralizedRDrazininverseifthereexistsx 2 R R suchthat (2.1) x 2comm2.a/; x Dax2; a−a2x 2 qnil: R If a has a generalized Drazin inverse, then the generalized Drazin inverse of a is uniqueandisdenotedbyaD. Ifinthepreviousdefinitiona−a2x isinfactnilpotent (whichisequivalenttoakC1x Dak wherek istheindexofnilpotency),thenaD isthe conventional Drazin inverse of a and ind.a/ D k where ind.a/ is the Drazin index of a [9]. Moreover, in this case the condition x 2 comm2.a/ can be replaced with x 2 comm.a/. Whenind.a/ D 1theDrazininverse ofa iscalledthegroupinverse, [3] ElementsofringsandBanachalgebras 385 andisdenotedbyaD D a#. By gD, # wedenotethesetofallgeneralized Drazin R R invertibleandgroupinvertibleelementsof ,respectively. R TheDrazininverseinringswasoriginallydefinedbyDrazin[9]forpolarelements andgeneralizedbyHarte[10]toquasipolarelements. ThegeneralizedDrazininverse was studied by Koliha [12] in Banach algebras and by Koliha and Patr´icio [15] in rings. THEOREM2.1. Anelementa 2 hasageneralizedDrazininverseaD ifandonly ifthereexistsanidempotent p 2 Rsuchthat R (2.2) p 2comm2.a/; ap 2 qnil; aC p 2 −1: R R There is at most one idempotent p such that conditions (2.2) hold. The unique idempotent piscalledaspectralidempotentofa anditisdenotedbya(cid:25). Itisknown that (2.3) aD D.aCa(cid:25)/−1.1−a(cid:25)/D.1−a(cid:25)/.aCa(cid:25)/−1 and a(cid:25) D1−aaD: Now, we state two lemmas which will be needed in the next section. We recall that two idempotents elements p and p are called complementary provided that 1 2 p C p D1. 1 2 LEMMA 2.2. Let p1, p2 be nonzero complementary idempotents in a ring . If z 2 commuteswith p and1C p z 2 −1,then R 2 2 R R zC p 2 −1 ifandonlyif p zC p 2 −1: 2 1 2 R R PROOF. Sincez 2 commuteswithp2,itfollowsthat.p1zCp2/.1Cp2z/D zCp2. Hence,theequivalencReisverifiedbecause1C p z 2 −1. 2 R Let D.p ; p /beasystemofnonzerocomplementaryidempotentselementsin 1 2 P aring . Wedefinetheset R (cid:26)(cid:18) (cid:19) (cid:27) x x . ; /D 11 12 V x 2 p p ; forall i; j 2f1;2g : M2 R P x21 x22 ij iR j (cid:0) (cid:1) Theset . ; /isaringwiththeusualmatrixoperations,withtheunit p1 0 andthemaMpp2inRg(cid:30)PV ! . ; /definedby 0 p2 2 R M R P (cid:18) (cid:19) p ap p ap (cid:30).a/D 1 1 1 2 p ap p ap 2 1 2 2 isaringisomorphism. 386 N.Castro-Gonza´lezandJ.Y.Ve´lez-Cerrada [4] LEMMA 2.3. Let p1, p2 be nonzero complementary idempotents in a ring , and letz 2 . If p zp D0and p zp 2.p p/−1,i D1;2,thenz 2 −1. R 2 1 i i i i R R R PROOF. Since p2zp1 D0,usingtheisomorphism(cid:30) V ! 2. ; /weobtain R M R P (cid:18) (cid:19) p zp p zp (cid:30).z/D 1 1 1 2 : 0 p zp 2 2 Since p zp 2 .p p/−1, i D 1;2, it follows that the matrix (cid:30).z/ is invertible in i i i i . ; /and,coRnsequently,z isinvertiblein . 2 M R P R Thefollowingsetswillappearinthemaintheoremofthenextsection. Ifa 2 , R wedefine a Dfax V x 2 g; a D fxa V x 2 g; R R R R a0 Dfy 2 Vay D0g; 0a D fy 2 V ya D0g: R R IfM (cid:26) ,wedefineM Dfmx Vm 2 M; x 2 gandM0 Dfx 2 V Mx Df0gg. R R R R Thesets M and0M canbedefinedsimilarly. R These sets have the following properties [11, Proposition 6]. We recall that an elementa 2 isregularifthereexists x 2 suchthataxa D a,thatis,ifithasan R R innerinverse x. PROPOSITION2.4. Leta;b 2 beregularelementsand A;B (cid:26) . Then R R (i) a0 D. a/0. (ii) a DR0.. a/0/D0.a0/. (iii) RA (cid:26) B imRplies0A (cid:27)0B. 3. Characterizationofelementsofringswithrelatedspectralidempotents In this section we give a characterization of elements a;b 2 with spectral idempotents satisfying b(cid:25) D a(cid:25) C s, where s is a given elementRof such that 1−s2 2 −1. Weremarkthat,foranys 2 qnilwehave1−s2 2 −1. TRhisresearch R R R extendsarecentworkoftheauthorsformatrices[6]tothesettingofrings. First we note the following properties involving the spectral idempotent a(cid:25) and idempotentelementsoftheforma(cid:25) Cs. PROPOSITION 3.1. Let a 2 gD and s 2 such that 1−s2 2 −1. If a(cid:25) Cs is R R R idempotent,then (i) a(cid:25) Cs D.1−s/−1a(cid:25).1Cs/ D.1Cs/a(cid:25).1−s/−1; [5] ElementsofringsandBanachalgebras 387 (ii) 1−a(cid:25) −s D.1−s/.1−a(cid:25)/.1Cs/−1 D.1Cs/−1.1−a(cid:25)/.1−s/; (iii) if r D .1 C s/a(cid:25) C .1 − s/.1 − a(cid:25)/, then r 2 −1, r−1 D a(cid:25).1 − s/−1 C.1−a(cid:25)/.1Cs/−1 anda(cid:25) Cs Dra(cid:25)r−1. R PROOF. Since.a(cid:25) Cs/2 Da(cid:25) Cs,wehavea(cid:25) Ca(cid:25)sCsa(cid:25) Cs2 Da(cid:25) Cs. Hence a(cid:25).1Cs/ D a(cid:25) Cs −sa(cid:25) −s2 D .1−s/.a(cid:25) Cs/ and thus the first equality of (i) holds. Thesecondequalityof(i)andbothequalitiesof(ii)canbededucedinasimilar way. Now,writer D.1Cs/a(cid:25)C.1−s/.1−a(cid:25)/andt Da(cid:25).1−s/−1C.1−a(cid:25)/.1Cs/−1. Applyingproperties(i)and(ii)wecheckthat rt D.1Cs/a(cid:25).1−s/−1C.1−s/.1−a(cid:25)/.1Cs/−1 D.a(cid:25) Cs/C.1−a(cid:25) −s/ D1: Analogously we can check that tr D 1. Consequently, t D r−1. Onthe other hand, ra(cid:25)r−1 D .1 C s/a(cid:25).1− s/−1 D a(cid:25) C s, where we apply property (i) in the last equality. REMARK. Condition .a(cid:25) Cs/2 D a(cid:25) Cs yields that s2.1−a(cid:25)/ D .1−a(cid:25)/s2 D .1−a(cid:25)/s.1−a(cid:25)/ands2a(cid:25) D a(cid:25)s2 D−a(cid:25)sa(cid:25). Wearenowinapositiontostatethemainresultofthispaper. THEOREM3.2. Leta 2 gD andlets 2 besuchthat1−s2 2 −1. Ifa(cid:25) Cs is idempotent,thenthefollowRingconditionsoRnb 2 areequivalent:R R (i) b 2 gD,andb(cid:25) Da(cid:25) Cs. (ii) a(cid:25) CRs 2comm2.b/,.a(cid:25) Cs/b 2 qnil,andbCa(cid:25) Cs 2 −1. (iii) a(cid:25) Cs 2comm2.b/,.a(cid:25) Cs/b 2Rqnil,and1Cs CaD.b−Ra/2 −1. (iv) b 2 gD,1CsCaD.b−a/2 −1R,andbD D.1CsCaD.b−a//−1RaD.1−s/. (v) b 2RgD,and.1Cs/bD−aD.R1−s/ DaD.a−b/bD. (vi) b 2RgD,a(cid:25) Cs 2comm.b/,and1−.b(cid:25) −a(cid:25) −s/2 2 −1. (vii) bD.1RCs/ (cid:26) .1−s/aD ,and.bD.1Cs//0 (cid:26)..1−sR/aD/0. R R PROOF. (i)ifandonlyif(ii): ThisequivalencefollowsbyTheorem2.1. (ii)ifandonlyif(iii): Letr D.1Cs/a(cid:25) C.1−s/.1−a(cid:25)/. ByProposition3.1(iii), we have that r 2 −1 and a(cid:25) Cs D ra(cid:25)r−1. Then the conditions (ii) and (iii) are R equivalentto (ii)0 a(cid:25) 2comm2.r−1br/,a(cid:25)r−1br 2 qnil,andr−1br Ca(cid:25) 2 −1. (iii)0 a(cid:25) 2comm2.r−1br/,a(cid:25)r−1br 2Rqnil,andra(cid:25) CaDbr 2R−1. R R 388 N.Castro-Gonza´lezandJ.Y.Ve´lez-Cerrada [6] Wewillshowthatundertheassumptionsa(cid:25) 2comm2.r−1br/anda(cid:25)r−1br 2 qnil, R (3.1) r−1br Ca(cid:25) 2 −1 ifandonlyif ra(cid:25) CaDbr 2 −1: R R Assumefirstthatr−1br Ca(cid:25) 2 −1. Letz Dra(cid:25) CaDbr. Thenwecanwrite R z Da(cid:25)ra(cid:25) CaDr.r−1br Ca(cid:25)/.1−a(cid:25)/C.1−a(cid:25)/.r CaDbr/a(cid:25): We prove that z is invertible. For this, first we observe that p D 1 − a(cid:25) and 1 p D a(cid:25) are commuting complementary idempotents; we may assume that they are 2 nonzero. Recall that p , p commute with a,r−1br,and1−s2. Wecanverify bya 1 2 directcalculationthat p zp D0; p zp D p .aC p /−1p r.r−1br C p /p ; and p zp D p rp : 2 1 1 1 1 2 1 2 1 2 2 2 2 Inthering p p withunit p ,wecheckthat 1 1 1 R (cid:0) (cid:1) p .aC p /−1p r.r−1br C p /p −1 D p .r−1br C p /−1.1−s2/−1.aC p /−1p ; 1 2 1 2 1 1 2 2 1 and in the ring p p with unit p , we check that .p rp /−1 D p .1 − s2/−1p . 2 2 2 2 2 2 2 R AccordingtoLemma2.3,z isinvertible. Conversely,assumethatrp CaDbr 2 −1. First,wewillprovethat 2 R u D.aDC p /.1−s2/.p r−1br C p / 2 1 2 isinvertible, whichwillimply that p r−1br C p 2 −1. Since1C p r−1br 2 −1 1 2 2 because p r−1br 2 qnil,Lemma2.2ensuresthatr−R1br C p 2 −1. R 2 2 Weverifythat pRup D0andbyadirectcalculation,whichtaRkesintoaccountthe 2 1 commutative relations mentioned above, weobtain that p up D p .rp CaDbr/p 1 1 1 2 1 and p up D p .1−s2/p . Further, 2 2 2 2 .p .rp CaDbr/p /−1 D p .rp CaDbr/−1p ; 1 2 1 1 2 1 .p .1−s2/p /−1 D p .1−s2/−1p ; 2 2 2 2 in the rings p p , p p , respectively. By Lemma 2.3, u is invertible in , and 1 1 2 2 consequentlyrR−1br C pR2 −1. R 2 R (iii)implies(iv): Sincecondition(i)istrueifandonlyif(ii)istrue,andcondition(ii) istrueifandonlyif(iii)istrue,wehaveb(cid:25) Da(cid:25) Cs and1CsCaD.b−a/ 2 −1. R Byequation(2.3), .1Cs CaD.b−a//bD D .a(cid:25) Cs CaDb/.1−.a(cid:25) Cs//.bCa(cid:25) Cs/−1 D aDb.1−a(cid:25) −s/.bCa(cid:25) Cs/−1 D aD.1−s/: [7] ElementsofringsandBanachalgebras 389 Therefore(iv)holds. (iv) implies (v): From bD D .1 C s C aD.b − a//−1aD.1 − s/ it follows that .1Cs/bDCaD.b−a/bD DaD.1−s/andthus(v)holds. (v)implies(i): Firstmultiplytheequalitygivenin(v)bya(cid:25) fromtheleftandthen multiplythesameequalitybyb(cid:25) fromtherighttoget a(cid:25).1Cs/bD D0 and aD.1−s/b(cid:25) D0: Thenwecanwritea(cid:25).1Cs/bDb D aaD.1−s/b(cid:25). Hence, a(cid:25).1Cs/ D.a(cid:25).1Cs/C.1−a(cid:25)/.1−s//b(cid:25) D.a(cid:25).1−s/−1C.1−a(cid:25)/.1Cs/−1/.1−s2/b(cid:25): AccordingtoProposition3.1(iii)and(i), b(cid:25) D.1−s2/−1..1Cs/a(cid:25) C.1−s/.1−a(cid:25)//a(cid:25).1Cs/ D.1−s/−1a(cid:25).1Cs/Da(cid:25) Cs: (i) if and only if (vi): The right implication is obvious. We will check the left implication. From1−.b(cid:25) −a(cid:25) −s/2 2 −1 itfollowsthat1−b(cid:25) Ca(cid:25) Cs 2 −1 and 1Cb(cid:25) −a(cid:25) −s 2 −1. Since a(cid:25) RCs 2 comm.b/ and bb(cid:25) D b(cid:25)b, we hRave .a(cid:25) C s/b(cid:25) D b(cid:25).a(cid:25) CRs/. Then .1 − a(cid:25) − s C b(cid:25)/.a(cid:25) C s/.1 − b(cid:25)/ D 0 and consequently.a(cid:25) Cs/.1−b(cid:25)/D0:Hence,a(cid:25) Cs D.a(cid:25) Cs/b(cid:25). Ontheotherhand, wehave.1−b(cid:25)Ca(cid:25)Cs/b(cid:25).1−a(cid:25)−s/ D0andsob(cid:25).1−a(cid:25)−s/D0. Therefore, b(cid:25) Db(cid:25).a(cid:25) Cs/ Da(cid:25) Cs. (i)implies(vii): AsbDb D1−b(cid:25) D1−a(cid:25)−s,wehavebbD D .1−s/aaD.1Cs/−1 byProposition3.1(ii). Then bD.1Cs/ D bbD.1Cs/ D.1−s/aaD D.1−s/aD : R R R R Similarly, bD.1Cs/D .1−s/aD. SincebDR.1Cs/and.1R−s/aD areregularelements,byProposition2.4, (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) bD.1Cs/ 0 D bD.1Cs/ 0 D .1−s/aD 0 D .1−s/aD 0: R R (cid:0) (cid:1) (cid:0) (cid:1) (vii)implies(i): As bD.1Cs/ 0 (cid:26) .1−s/aD 0,byProposition2.4, bD.1Cs/ D0..bD.1Cs//0/(cid:27)0...1−s/aD/0/D .1−s/aD: R R TheaboveinclusionimpliestheconsistencyoftheequationxbbD.1Cs/ D.1−s/aDa. ThenxbbD D.1−s/aDa.1Cs/−1 DaaD−sbyProposition3.1(ii). Thislastequation isequivalentto.aaD−s/.1−bbD/D0. Thus (3.2) aaD−s D.aaD−s/bbD: 390 N.Castro-Gonza´lezandJ.Y.Ve´lez-Cerrada [8] FrombD.1Cs/ (cid:26).1−s/aD theconsistencyoftheequation R R bbD.1Cs/ D.1−s/aaDy follows, which in turn is equivalent to .1 − aaD/.1 − s/−1bbD D 0. Hence, by Proposition 3.1 (i), .1Cs/−1.1−aaD −s/bDb D 0. Then, bbD D .aaD −s/bDb. ThusbbD DaaD−s inviewof(3.2),and(i)holds. Specializing the equivalence of conditions (i)–(vi) to matrices we get the equiva- lenceofconditions(a)–(b)and(d)–(f)givenin[6,Theorem2.3]. Whenweconsiderthecases D0intheprecedingtheoremwegetacharacterization ofelementsof withequalspectralidempotents. So,werecover[15,Theorem6.1]. R REMARK. Ifwedonotassumecondition1−s2 2 −1,thenwecanfindelements a;b 2 suchthatb(cid:25) D a(cid:25) Cs,but1Cs CaD.b−Ra/isnotaninvertible element. WeconRsidertherealmatrices4(cid:2)4, 0 1 0 1 0 1 −1=2 1=2 0 0 1 1 0 0 2 0 0 0 s DBB@ 1=2 −1=2 0 0CCA; a DBB@1 1 0 0CCA; b DBB@0 2 0 0CCA: 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Then 0 1 0 1 1=2 −1=2 0 0 0 0 0 0 a(cid:25) DBB@−1=2 1=2 0 0CCA; b(cid:25) DBB@0 0 0 0CCA 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 and 0 1 1=2 1=2 0 0 1Cs CaD.b−a/DBB@1=2 1=2 0 0CCA: 0 0 1 0 0 0 0 1 So,b(cid:25) Da(cid:25) Cs and1Cs CaD.b−a/isnotinvertible. 4. PerturbationofEPelementsinringswithinvolution Let bearingwithinvolution. Recallthatanelementx 2 istheMoore-Penrose inverseRofa 2 providedthat R R (4.1) xax D x; axa Da; .ax/(cid:3) Dax; .xa/(cid:3) D xa: [9] ElementsofringsandBanachalgebras 391 Thereisatmostonex suchthatconditions(4.1)hold. Theuniquex isdenotedbya†. ThesetofallMoore-Penroseinvertibleelementsof willbedenotedby †. An element a is said to be EP if a 2 gD \ †Rand aD D a†. It is wRell-known that a 2 is EP if and only if aa† D a†Ra. NecRessary and sufficient conditions for anelemenRtofa (cid:3)-algebrastocommutewithitsMoore-Penroseinversearegivenin C [13]. In [15, Theorem 7.2 (i)–(ii)] it was established that a 2 is EP if and only if a 2 # and a(cid:25) D .a(cid:3)(cid:25)/. We will use this characterization anRd our main theorem to giveRequivalentconditionsensuringthatifa isEPthenanelementb DaCeisagain EPwithspectralidempotentb(cid:25) Da(cid:25) Cs wheres isgiven. THEOREM 4.1. Let be a ring with involution and let s 2 be such that 1−s2 2 −1. If a is REP and a(cid:25) Cs is idempotent, then the folloRwing conditions onb DaRCe 2 areequivalent: R (i) bisEPandb(cid:25) Da(cid:25) Cs. (ii) s(cid:3) Ds,e.a#a−s/−as De D.a#a−s/e−sa,and1CsCaCe−a#a 2 −1. (iii) s(cid:3) Ds,e.a#a−s/−as De D .a#a−s/e−sa,and1Cs Ca#e 2 −R1. (iv) b 2 gD\ †,andb† DbD D.1Cs Ca†e/−1a†.1−s/. R (v) b 2RgD\R†,b† DbD,and.1Cs/b†−a†.1−s/ D−a†eb†. R R PROOF. Since a is EP, we have a 2 # and .a(cid:3)/(cid:25) D .a(cid:25)/(cid:3) D a(cid:25). Now, if b(cid:25) D a(cid:25) Cs then .b(cid:3)/(cid:25) D .b(cid:25)/(cid:3) D .a(cid:25)/(cid:3)RCs(cid:3) D a(cid:25) Cs(cid:3). Hence, condition (i) is equivalentto (i)0 b 2 #,s isselfadjoint,andb(cid:25) Da(cid:25) Cs. R Using a(cid:25) D 1−aa# and aa(cid:25) D 0, conditions (ii) and (iii) can be written in the followingequivalentform (ii)0 s(cid:3) Ds,.aCe/.a(cid:25) Cs/D 0D.a(cid:25) Cs/.aCe/,anda(cid:25) Cs CaCe 2 −1. (iii)0 s(cid:3) Ds,.aCe/.a(cid:25) Cs/D 0D.a(cid:25) Cs/.aCe/,and1Cs Ca#e 2 −R1. R Applying Theorem 3.2 we conclude the equivalence of conditions (i)–(v) of the theorem. Given s 2 , we obtain the following characterization of elements a 2 such thatthespectraRlidempotentsofa anda(cid:3) satisfy.a(cid:3)/(cid:25) Da(cid:25) Cs. R THEOREM 4.2. Let be a ring with involution and let s 2 be such that 1−s2 2 −1. ThentheRfollowingconditionsona 2 areequivalenRt: R R (i) a(cid:3) 2 #,and.a(cid:3)/(cid:25) Da(cid:25) Cs. (ii) a(cid:3) 2RgD,.a(cid:3)/#a(cid:3) DaaD−s,and.1Cs/a(cid:3) DaDaa(cid:3). (iii) a(cid:3).aDRa −s/ D a(cid:3) D .aDa −s/a(cid:3), 1Cs Ca(cid:3) −aDa 2 −1, and s2 Cs D saaDCaaDs. R 392 N.Castro-Gonza´lezandJ.Y.Ve´lez-Cerrada [10] (iv) s2Cs DsaaDCaaDs,1CsCaD.a(cid:3)−a/ 2 −1,anda(cid:3).aDa−s/ Da(cid:3) D .aDa−s/a(cid:3). R PROOF. From a(cid:25) D 1 − aDa we easily see that the conditions (ii)–(iv) can be formulatedinthefollowingequivalentform (ii)0 .a(cid:3)/(cid:25) D a(cid:25) Cs,anda(cid:3).a(cid:25) Cs/ D0. (iii)0 .a(cid:25) Cs/2 Da(cid:25) Cs,a(cid:3).a(cid:25) Cs/ D.a(cid:25) Cs/a(cid:3) D0,anda(cid:3)Ca(cid:25) Cs 2 −1. (iv)0 .a(cid:25)Cs/2 Da(cid:25)Cs,a(cid:3).a(cid:25)Cs/D .a(cid:25)Cs/a(cid:3) D0,and1CsCaD.a(cid:3)−a/2R −1. R Now,weapplyTheorem3.2(i)–(iii)toa(cid:3) inplaceofb. Ifwechooses D0intheprecedingtheorem,thencondition(i)isequivalenttothe factthata isEP.So,inthiscase,weobtainacharacterizationofEPelementsinrings withinvolution. Inparticular,formatriceswerecover[4,Theorem5.2]. 5. PerturbationofDrazininvertibleelementsinBanachalgebras Let be a complex Banach algebra with unit 1. The generalized Drazin inverse B forelements ofBanachalgebras is definedasin(2.1)wherethecondition ofdouble commutativity x 2 comm2.a/canbereplacedby x 2 comm.a/. Let gD denotethe B setofallelementsin whichhaveageneralizedDrazininverse. B The equivalence of conditions (i)–(vii) in Theorem 3.2 is also valid in Banach algebras. Moreover,in(ii)and(iii),thecondition a(cid:25) Cs 2comm2.b/canberelaxed toa(cid:25) Cs 2comm.b/. In this section, first we will give a new characterization of elements a;b 2 gD such that 1−.b(cid:25) −a(cid:25)/2 is invertible in terms of its matrix representation. SecBond, wewillapplyTheorem3.2togetanormestimationoftheperturbationoftheDrazin inverse. Leta 2 gD. Weconsiderasystemofcomplementaryidempotents D.p ; p /, 1 2 where p1 DB1− a(cid:25) and p2 D a(cid:25). The set of matrices 2. ; /,Pdefine(cid:0)d as i(cid:1)n M B P Section2,isaBanachalgebrawiththeusualmatrixoperations,withtheunit p1 0 . 0 p2 Themapping(cid:30) V ! . ; /definedby 2 B M B P (cid:18) (cid:19) p ap p ap (cid:30).a/D 1 1 1 2 p ap p ap 2 1 2 2 is an isometric Banach algebra isomorphism [2]. This fact will allow us to work with matrix representations of elements in by identifying a 2 with its image (cid:30).a/ 2 . ; /. For brevity, we denoteB D p p which iBs an algebra with 2 i i i unit p,iMD1B;2.P B B i

Description:
Standardization of technology for extraction of wild apricot kernel oil at semi-pilot scale Anil Gupta and P.C. Sharma Department of Post Harvest Technology
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.