ebook img

Spline Collocation Methods for Partial Differential Equations. With Applications in R PDF

550 Pages·2017·2.951 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spline Collocation Methods for Partial Differential Equations. With Applications in R

Spline Collocation Methods for Partial Differential Equations WithApplicationsinR WilliamE.Schiesser LehighUniversity Bethlehem,PA,USA (cid:2) (cid:2) Thiseditionfirstpublished2017 ©2017JohnWiley&SonsInc. LibraryofCongressCataloging-in-PublicationData Names:Schiesser,W.E.,author. Title:Splinecollocationmethodsforpartialdifferentialequations:with applicationsinR/WilliamE.Schiesser. Description:Hoboken,NJ:JohnWiley&Sons,2017.|Includes bibliographicalreferencesandindex. Identifiers:LCCN2017000481(print)|LCCN2017007223(ebook)|ISBN 9781119301035(cloth)|ISBN9781119301059(pdf)|ISBN9781119301042 (epub) Subjects:LCSH:Differentialequations,Partial–Mathematicalmodels.| Splinetheory.Classification:LCCQA377.S3552017(print)|LCCQA377(ebook)|DDC 515/.353–dc23LCrecordavailableathttps://lccn.loc.gov/2017000481 Setin10/12ptWarnockProbySPiGlobal,Chennai,India PrintedintheUnitedStatesofAmerica (cid:2) Contents Preface xiii AbouttheCompanionWebsite xv 1 Introduction 1 1.1 UniformGrids 2 1.2 VariableGrids 18 1.3 StagewiseDifferentiation 24 AppendixA1–OnlineDocumentationforsplinefun 27 Reference 30 2 One-DimensionalPDEs 31 2.1 ConstantCoefficient 31 2.1.1 DirichletBCs 32 2.1.1.1 MainProgram 33 2.1.1.2 ODERoutine 40 2.1.2 NeumannBCs 43 2.1.2.1 MainProgram 44 2.1.2.2 ODERoutine 46 2.1.3 RobinBCs 49 2.1.3.1 MainProgram 50 2.1.3.2 ODERoutine 55 2.1.4 NonlinearBCs 60 2.1.4.1 MainProgram 61 2.1.4.2 ODERoutine 63 2.2 VariableCoefficient 64 2.2.1 MainProgram 67 2.2.2 ODERoutine 71 2.3 Inhomogeneous,Simultaneous,Nonlinear 76 2.3.1 MainProgram 78 (cid:2) 2.3.2 ODEroutine 85 2.3.3 SubordinateRoutines 88 2.4 FirstOrderinSpaceandTime 94 2.4.1 MainProgram 96 2.4.2 ODERoutine 101 2.4.3 SubordinateRoutines 105 2.5 SecondOrderinTime 107 2.5.1 MainProgram 109 2.5.2 ODERoutine 114 2.5.3 SubordinateRoutine 117 2.6 FourthOrderinSpace 120 2.6.1 FirstOrderinTime 120 2.6.1.1 MainProgram 121 2.6.1.2 ODERoutine 125 2.6.2 SecondOrderinTime 138 2.6.2.1 MainProgram 140 2.6.2.2 ODERoutine 143 References 155 3 MultidimensionalPDEs 157 3.1 2DinSpace 157 (cid:2) 3.1.1 MainProgram 158 (cid:2) 3.1.2 ODERoutine 163 3.2 3DinSpace 170 3.2.1 MainProgram,Case1 170 3.2.2 ODERoutine 174 3.2.3 MainProgram,Case2 183 3.2.4 ODERoutine 187 3.3 SummaryandConclusions 193 4 Navier–Stokes,Burgers’Equations 197 4.1 PDEModel 197 4.2 MainProgram 198 4.3 ODERoutine 203 4.4 SubordinateRoutine 205 4.5 ModelOutput 206 4.6 SummaryandConclusions 208 Reference 209 5 Korteweg–deVriesEquation 211 5.1 PDEModel 211 5.2 MainProgram 212 5.3 ODERoutine 225 (cid:2) 5.4 SubordinateRoutines 228 5.5 ModelOutput 234 5.6 SummaryandConclusions 238 References 239 6 MaxwellEquations 241 6.1 PDEModel 241 6.2 MainProgram 243 6.3 ODERoutine 248 6.4 ModelOutput 252 6.5 SummaryandConclusions 252 AppendixA6.1.DerivationoftheAnalyticalSolution 257 Reference 259 7 Poisson–Nernst–PlanckEquations 261 7.1 PDEModel 261 7.2 MainProgram 265 7.3 ODERoutine 271 7.4 ModelOutput 276 7.5 SummaryandConclusions 284 References 286 (cid:2) (cid:2) 8 Fokker–PlanckEquation 287 8.1 PDEModel 287 8.2 MainProgram 288 8.3 ODERoutine 293 8.4 ModelOutput 295 8.5 SummaryandConclusions 301 References 303 9 Fisher–KolmogorovEquation 305 9.1 PDEModel 305 9.2 MainProgram 306 9.3 ODERoutine 311 9.4 SubordinateRoutine 313 9.5 ModelOutput 314 9.6 SummaryandConclusions 316 Reference 316 10 Klein–GordonEquation 317 10.1 PDEModel,LinearCase 317 10.2 MainProgram 318 10.3 ODERoutine 323 (cid:2) 10.4 ModelOutput 326 10.5 PDEModel,NonlinearCase 328 10.6 MainProgram 330 10.7 ODERoutine 335 10.8 SubordinateRoutines 338 10.9 ModelOutput 339 10.10 SummaryandConclusions 342 Reference 342 11 BoussinesqEquation 343 11.1 PDEModel 343 11.2 MainProgram 344 11.3 ODERoutine 350 11.4 SubordinateRoutines 354 11.5 ModelOutput 355 11.6 SummaryandConclusions 358 References 358 12 Cahn–HilliardEquation 359 12.1 PDEModel 359 12.2 MainProgram 360 (cid:2) 12.3 ODERoutine 366 (cid:2) 12.4 ModelOutput 369 12.5 SummaryandConclusions 379 References 379 13 Camassa–HolmEquation 381 13.1 PDEModel 381 13.2 MainProgram 382 13.3 ODERoutine 388 13.4 ModelOutput 391 13.5 SummaryandConclusions 394 13.6 AppendixA13.1:SecondExampleofaPDEwithaMixedPartial Derivative 395 13.7 MainProgram 395 13.8 ODERoutine 398 13.9 ModelOutput 400 Reference 403 14 Burgers–HuxleyEquation 405 14.1 PDEModel 405 14.2 MainProgram 406 14.3 ODERoutine 411 (cid:2) 14.4 SubordinateRoutine 416 14.5 ModelOutput 417 14.6 SummaryandConclusions 422 References 422 15 Gierer–MeinhardtEquations 423 15.1 PDEModel 423 15.2 MainProgram 424 15.3 ODERoutine 429 15.4 ModelOutput 432 15.5 SummaryandConclusions 437 Reference 440 16 Keller–SegelEquations 441 16.1 PDEModel 441 16.2 MainProgram 443 16.3 ODERoutine 449 16.4 SubordinateRoutines 453 16.5 ModelOutput 453 16.6 SummaryandConclusions 458 AppendixA16.1.DiffusionModels 458 (cid:2) References 459 (cid:2) 17 Fitzhugh–NagumoEquations 461 17.1 PDEModel 461 17.2 MainProgram 462 17.3 ODERoutine 467 17.4 ModelOutput 470 17.5 SummaryandConclusions 475 Reference 475 18 Euler–Poisson–DarbouxEquation 477 18.1 PDEModel 477 18.2 MainProgram 478 18.3 ODERoutine 483 18.4 ModelOutput 488 18.5 SummaryandConclusions 493 References 493 19 Kuramoto–SivashinskyEquation 495 19.1 PDEModel 495 19.2 MainProgram 496 19.3 ODERoutine 503 (cid:2) 19.4 SubordinateRoutines 506 19.5 ModelOutput 508 19.6 SummaryandConclusions 513 References 514 20 Einstein–MaxwellEquations 515 20.1 PDEModel 515 20.2 MainProgram 516 20.3 ODERoutine 521 20.4 ModelOutput 526 20.5 SummaryandConclusions 533 Reference 536 A DifferentialOperatorsinThreeOrthogonalCoordinate Systems 537 References 539 Index 541 (cid:2) (cid:2) (cid:2) Preface Thisbookisanintroductiontotheuseofsplinecollocation(SC)forthenumer- icalanalysisofpartialdifferentialequations(PDEs).SCisanalternativetofinite differences(FDs),finiteVolumes(FVs),finiteelements(FEs),spectralmethods, weightedresiduals,andleastsquares. ThefeaturesandadvantagesofSCaredemonstratedthroughaseriesofPDE examples,includingtheuseofSClibraryroutinesthatarepartoftheRpro- grammingsystem[1,2].ApplicationsofthePDEsarementionedonlybriefly. Rather,theemphasisisontheSCmethodology,particularlyintermsofPDE examplesdevelopedanddiscussedindetail. (cid:2) ThepaperscitedasasourceofthePDEmodelsgenerallyconsistof(i)astate- (cid:2) mentoftheequationsfollowedby(ii)areportednumericalsolution.Generally, littleornoinformationisgivenabouthowthesolutionswerecomputed(the algorithms),andinallcases,thecomputercodethatwasusedtocalculatethe solutionsisnotprovided. Inotherwords,whatismissingis(i)adetaileddiscussionofthenumerical methods used to produce the reported solutions and (ii) the computer rou- tinesusedtocalculatethereportedsolutions.Forthereadertocompletethese twostepstoverifythereportedsolutionswithreasonableeffortisessentially impossible. Aprincipalobjectiveofthisbookisthereforetoprovidethereaderwithaset ofdocumentedRroutinesthatarediscussedindetail,andtheycanbedown- loadedandexecutedwithouthavingtofirstmasterthedetailsoftherelevant numericalanalysisandthencodeasetofroutines. Theexampleapplicationsareintendedasintroductoryandopenended.They are based mainly on legacy PDEs. Since each of the legacy equations is well known,asearchontheequationnamewillgiveanextensivesetofreferences, generallyincludingmanyapplicationstudies.Ratherthanfocusontheapplica- tions,whichwouldrequireextendeddiscussion,theemphasisineachchapter isonthefollowing: 1. AstatementofthePDEsystem,includinginitialConditions(ICs),boundary conditions(BCs),andparameters (cid:2) 2. The algorithms for the calculation of numerical solutions, with particular emphasisonSC 3. A set of R routines for the calculationof numericalsolutions, including a detailedexplanationofeachsectionofthecode 4. Discussionofthenumericalsolution 5. Summary and conclusions about extensions of the computer-based analysis In summary, the presentation is not as formal mathematics, for example, theorems and proofs. Rather, the presentation is by examples of SC analysis oflegacyPDEs,includingthedetailsforcomputingnumericalsolutions,par- ticularlywithdocumentedsourcecode.Theauthorwouldwelcomecomments, especiallypertainingtothisformatandexperienceswiththeuseoftheRrou- tines.Commentsandquestionscanbedirectedto([email protected]). References 1 Hiebeler, D.E. (2015), R and Matlab, CRC/Taylor and Francis, Boca Raton, FL. 2 Soetaert, K., J. Cash, and F. Mazzia (2012), Solving Differential Equations in R, Springer-Verlag, Heidelberg, Germany. (cid:2) (cid:2) WilliamE.Schiesser Bethlehem,PA,USA March1,2017 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.