ebook img

Spherical Matrix Ensembles PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spherical Matrix Ensembles

SPHERICAL MATRIX ENSEMBLES GENES.KOPPANDSTEVENJ.MILLER ABSTRACT. Thesphericalorthogonal,unitary,andsymplecticensembles(SOE/SUE/SSE)Sβ(N,r) consist of N N real symmetric, complex hermitian, and quaternionic self-adjoint matrices of 5 × Frobeniusnormr,madeintoaprobabilityspacewiththeuniformmeasureonthesphere. Foreach 1 of these ensembles, we determine the joint eigenvalue distribution for each N, and we prove the 0 2 empirical spectral measures rapidly convergeto the semicircular distribution as N . In the → ∞ unitarycase(β =2),wealsofindanexplicitformulafortheempiricalspectraldensityforeachN. b e F 2 CONTENTS ] R 1. Introduction 1 P . 1.1. Definitions 3 h 1.2. Results 4 t a 2. PreliminaryLemmas 5 m 3. ProofofTheorem 1.3 6 [ 4. ProofofTheorem 1.4 8 2 5. ProofofTheorem 1.5 9 v 8 6. Spacing Statistics 12 4 References 13 8 1 0 . 1 0 1. INTRODUCTION 5 1 After writing this paper, it was brought to our attention that the v: our spherical ensembles have been studied previously by physicists i Caër and Delannay, under the name of fixed trace ensembles [CD, DC]. X Delannay and Caër prove results equivalent to our Theorem 1.4 (on r a moments of spherical ensembles) for β = 1,2 in Appendix B of [DC], and our Theorem 1.5 (on empirical spectral density) in Section 3.1 of [DC]. Our methods differ from those of Delannay and Caër: We use the method of moments, and they use the Laplace transform method. Date:February3,2015. 2010MathematicsSubjectClassification. 15B52(primary),60F05(secondary). Keywordsandphrases. Randommatrixensembles,Wigner’ssemicirclelaw,empiricalspectralmeasure,spherical ensembles,Besselfunctions. Portions of this work were completed at the 2010 SMALL REU at Williams College; we thank our colleagues there,especiallyMuratKolog˘lu,andparticipantsattheICMSatelliteMeetinginProbability&StochasticProcesses inBangalore,India,especiallyArupBose,forhelpfulconversations. Thefirstnamedauthorwaspartiallysupported byNSFGrantDMS0850577,andthesecondnamedauthorwaspartiallysupportedbyNSFgrantsDMS0970067and DMS1265673. Random matrix theory has grown enormously in results and scope from Wishart’s [Wis] 1928 paper. Through the work of Wigner [Wig1, Wig2, Wig3, Wig4, Wig5], Dyson [Dy1, Dy2], and others,itnowsuccessfullymodelsavarietyofsystemsfrom theenergy levelsofheavy nucleiand zeros of L-functions [Con, Por] to bus routes [BBDS, KrSe]; see for example [AGZ, For, Meh, MT-B] for detailed expositions of the general theory, and [FM, Hay] for a review of some of the historicaldevelopmentand applications. Much of the subject revolves around determining properties of the spectra of self-adjoint ma- trices. In this paper we concentrate on the density of states, though there has been significant progressinrecentyearsonthespacingsbetweennormalizedeigenvalues(seeforexample[ERSY, ESY, TV1, TV2]). The limiting spectral measure has been computed for many ensembles of pat- terned or structured matrices, including band, circulant, Hankel and Toeplitz matrices, as well as adjacency matrices of d-regular graphs [BBDS, BasBo1, BasBo2, BanBo, BCG, BHS1, BHS2, BM, BDJ, GKMN, HM, JMP, Kar, KKMSX, LW, McK, Me, Sch]. Many of these papers show thatwhen aclassicalensembleismodifiedby enforcingparticular, usuallylinear, relationsamong the entries, new limiting behavior emerges. We study spherical ensembles introduced in [MT-B] (seeResearch Project 16.4.7). Whileingeneral itisdifficulttoobtainclosed-formexpressionsfor spectralstatisticsofstructuredensembles,weareabletoexploitthesymmetryofthesphericalen- sembles to give explicit formulas for the joint spectral distribution and empirical spectral density. Weproveasemicircularlaw and givenumericalevidenceofGUEspacing statistics. As a set, the N N spherical unitary ensemble of radius r consists of N N Hermitian × × matrices a a +b √ 1 a +b √ 1 11 12 12 1N 1N − ··· − a b √ 1 a a +b √ 1 A =  12 − ...12 − 2...2 ·.·..· 2N ...2N −  (1.1)    a b √ 1 a b √ 1 a  1N 1N 2N 2N NN  − − − − ···    satisfyingtherelation a2 +2 a2 +b2 = r2, (1.2) ii ij ij i i<j X X(cid:0) (cid:1) ormoresuccinctly,Tr(A2) = r2. Thissetofmatricesbecomesaprobabilityspacewiththeuniform measureonthe(compact)ellipsoiddefinedbyTr(A2) = r2. Oneinterpretationofthenameisthat Tr(A2) = r2 isaspherein theFrobenius norm(seebelow). The spherical ensemble may be understood to arise naturally from the problem of normaliza- tion. ConsideraHermitianmatrixAchosenfromaGaussianunitaryensemble,withvolumeform e Tr(A2)/2dA(uptoaconstant). TostudythelimitingbehaviorasthedimensionN ,it’sstan- − → ∞ dard to normalize the eigenvalues by a factor of 1/√N. With this normalization, the eigenvalue densityconvergesto Wigner’ssemicircle, 1 √4 x2, if x 1, f (x) := 2π − | | ≤ (1.3) Wig 0, otherwise. ( 2 One could instead normalize the matrices themselves before looking at the eigenvalues. We can normalizeaHermitianmatrixAbysendingitto √NA,where A istheFrobeniusnorm(see(1.5)). A | | | | This“pre-normalized GUE”isjustthesphericalunitaryensembleofradius √N. We also consider spherical orthogonal and symplectic ensembles. In all cases, we prove that the eigenvalue density converges to Wigner’s semicircle as the dimension N . In the fixed- → ∞ dimensionalcase,however,theempiricalandjointspectraldistributionsexhibitnewbehavior. We provideexplicitformulasand investigatetheiranalyticproperties. 1.1. Definitions. Let V be a finite-dimensionalreal, complex, or quaternionic1vector space with a Hermitian inner product , . For any A End(V), let A End(V) be the adjoint, so ∗ h− −i ∈ ∈ Av,w = v,A w . TheFrobenius inner product onEnd(V) is defined by ∗ h i h i A,B := Tr(AB ), (1.4) ∗ h i and inducestheFrobenius norm A := A,A = Tr(AA ). (1.5) ∗ | | h i When Aiswrittenas amatrix(withresppect to anorthopnormalbasisonV), theFrobenius normof A equals the square root of the sum of the norm squares of the entries of A. If A is self-adjoint, then A = Tr(A2)alsoequalsthesquarerootofthesumofthesquaresoftheeigenvaluesofA. Fo|ro|urpurposes,anN N matrixensembleissimplyasubsetofM (K),whereK = R,Cor N H, alongwipthprobability×measure. Foramatrixensemble ,theunderlyingsetisalsodenotedby E , and the associated volume form is denoted by d A. The ensembles we examineare all ensem- E E bles of self-adjoint matrices and thus have real eigenvalues, so we assume that in the discussion thatfollows. Ifitexists,theempiricalspectraldensityoftheensemble istheunique(uptoameasurezero E set ofvalues)real-valuedfunctionf(x, )such that E 1 E g(λ (A)) = ∞ g(x)f(x, )dx (1.6) A i ∈E N ! E Xi Z−∞ for all g L1(R), where λ (A) 6 λ (A) 6 6 λ (A) are the eigenvalues of A. The kth 1 2 N ∈ ··· momentoff(x, )is E 1 1 m ( ) := E λ (A)k = Tr(Ak)d A, (1.7) k A i E ∈E N N E (cid:18) (cid:19) Z E and itscorrespondingcharacteristic function is ∞ m ( ) φ(t, ) = k E (it)k (1.8) E k! k=0 X and isrelated to thedensityby 1 f(x, ) = ∞ e itxφ(t, )dt. (1.9) − E 2π E Z −∞ Let S be the symmetricgroup on 1,2,...,N . The joint spectral distribution is the measure N on theset RN/S ofN unordered p{ointsinduce}d by pushingforward themeasure on alongthe N E 1A quaternionic vector space is a free (H,H)-bimodule, where H denotes the Hamilton quaternions. A finite- dimensionalquaternionicvectorspaceisnecessarilyisomorphictosomeHn. 3 mapA (λ (A),λ (A),...,λ (A)). WeconsideritasameasureonRN bysymmetrizingitand 1 2 N 7→ normalizingit tobeaprobabilitymeasure. Wecan nowcarefully statetheensemblesofinterestin thispaper. Definition 1.1(Gaussian ensembles). The Gaussianorthogonal/ unitary/symplecticensembles (GOE/GUE/GSE)aredenotedG (N,q)andconsistofN N realsymmetric,complexHermitian, β × andquaternionicself-adjointmatrices,madeintoaprobabilityspacewiththedensity d A := C (N,q)e βqA2/4dA. (1.10) Gβ(N,q) β − | | Here β = 1,2,4 for the GOE, GUE, and GSE, respectively, q is a positive real number, and C (N,q)is chosentogivea probabilitydensity. β Definition 1.2(Spherical ensembles). The sphericalorthogonal/ unitary/symplecticensembles (SOE/SUE/SSE)S (N,r)consistofN N realsymmetric,complexhermitian,andquaternionic β × self-adjointmatricesofFrobeniusnormr,madeintoaprobabilityspacewiththeuniformmeasure on thesphere. 1.2. Results. Forallspherical ensembles,wedescribethejointeigenvaluedistribution. Theorem 1.3. Let β 1,2,4 . The joint eigenvalue distribution for S (N,r) (on vectors of β eigenvaluesλ RN)i∈s g{ivenby} ∈ ρ(λ,S (N,r))dλ = C (N,r) ∆(λ) βδ(r2 λ 2)dλ. (1.11) β β′′ | | −| | Here, C (N,r)isa computableconstant,δ istheDiracdelta,and β′′ ∆(λ) = (λ λ ). (1.12) j i − 16i<j6N Y The formula in (1.11) can be used—at least theoretically—to describe any statistic for these ensembles,such as spacingdensity,largest spacing,n-levelcorrelation, n-leveldensity,et. cetera. However,thisis easiersaidthan done. Theanalysiseventocomputethemarginals ρ(m)((λ ,...,λ ),S (N,r)) := ∞ ∞ ρ(λ,S (N,r)) dλ dλ (1.13) 1 m β β m+1 N ··· ··· Z Z −∞ −∞ was toocumbersome. Theremainderofourresultsconcern theempiricalspectral density f (x,S (N,r)) = ρ(1)((x),S (N,r)) (1.14) β β and itsmoments. For all spherical ensembles, we are able to express the moments in terms of the moments of the corresponding Gaussian ensembles, which allows us to prove a semicircular law in the limit. Explicitly, Theorem 1.4. Let β 1,2,4 , and let q,r > 0. The kth moment of a spherical ensemble is ∈ { } relatedto thekth moment ofa Gaussianensembleby β k2 Γ n m (S (N,r)) = qr2 2 m (G (N,q)), (1.15) k β 4 Γ k+n k β (cid:18) (cid:19) (cid:0)2(cid:1) where n = dimRGβ(N,q) = β N2 + N. Specializ(cid:0)ing to(cid:1) r = √N, the eigenvalue density of S (N,√N)hasmeanzeroandvarianceone. Thedensityfunctionsf(x,S (N,√N))convergein β (cid:0) (cid:1) β measuretof (x). Wig 4 In the Hermitian case, we are able to give explicit formulas for the characteristic function and densityfunction. Theorem 1.5. Let J bea Bessel functionof thefirstkind (seechapter9 of [AS]). Thecharacter- α isticfunctionequals 2 Γ(N2) 2 N2 −1N−1 1 N φ(t,S (N,r)) = 2 J (rt)( rt)j, (1.16) 2 N rt j! j +1 N2+j 1 − (cid:18) (cid:19) j=0 (cid:18) (cid:19) 2 − X andthespectraldensityis f (x,S (N,r)) = 1 N−1 N Γ N22 d 2j r2 x2 N22−3+j 2 rN2 2N j +1 2j√πΓ (cid:16)N2 1(cid:17)+j j! dx − − j=0 (cid:18) (cid:19) 2− (cid:18) (cid:19) X (cid:0) (cid:1) 1 x x 2 12(N2−2(cid:0)N−1) (cid:1) = p 1 (1.17) N r r − r (cid:18) (cid:19) (cid:16) (cid:17) (cid:16) (cid:17) fora particularpolynomialp . N Thepaperisorganizedasfollows. Wederivesomenecessarylemmasin§2. WeproveTheorem 1.3in§3,Theorem1.4in§4,andTheorem1.5in§5. Weconcludebydiscussingspacingstatistics in§6. 2. PRELIMINARY LEMMAS We calculate the joint and empirical spectral distributions of the spherical ensembles by relating themto theGaussianensembles,whosespectraldistributionsareknownexplicitly. Lemma 2.1. The map2 of measure spaces A r A defines a measure-preserving map from 7→ A G (N,q) toS (N,r). In otherwords, iff L1(S (|N|,r)),then β β β ∈ r f(A)d A = f A d A. (2.1) Sβ(N,r) A Gβ(N,q) ZSβ(N,r) ZGβ(N,q) (cid:18)| | (cid:19) Proof. BecausethedensityfunctionofaGaussianensembledependsonlyontheFrobeniusnorm, the mass of each ray from the origin is the same. Collapsing each such ray to the point on the Frobeniussphereit intersectsgivestheuniformdistributionon thesphere. (cid:3) Thenextlemmawillbeneeded in theproofofTheorem 1.4. Lemma 2.2. Let G be a degree k homogeneous polynomial in n variables with complex coeffi- cients, B a positive definite symmetric matrix, the standard 2-norm on Rn, √~x B~x the norm ⊤ |·| inducedbyB, and α > 0. Then G(~x) α k Γ n e α(~x⊤B~x)/4d~x = 2 2 G(~x)e α~x⊤B~x/4d~x. (2.2) − − (~x B~x)k/2 4 Γ k+n ZRn ⊤ (cid:16) (cid:17) (cid:0)2(cid:1) ZRn (cid:0) (cid:1) 2While this map is not defined at the zero matrix, this is immaterial for our investigationsbelow since the zero matrixisasinglepointofmass0. 5 Proof. We first do the special case when B = I. Denote by d~θ the volume element on Sn 1. For − anyfunctionf : R R so thatG(~x)f( ~x ) isintegrable, → | | G(~x)f( ~x )d~x = ∞G(r~θ)f(r)rn 1drd~θ − | | ZRn ZSn−1Z0 = ∞G(~θ)f(r)rk+n 1drd~θ − ZSn−1Z0 = ∞f(r)rk+n 1dr G(~θ)d~θ. (2.3) − (cid:18)Z0 (cid:19)ZSn−1 Iff(r) = e αr2/4rγ forα > 0, wehavether-integralis − ∞f(r)rk+n 1dr = ∞e αr2/4rγ+k+n 1dr − − − Z0 Z0 γ+k+n 1 4u − 1 = ∞e u du − α αu Z0 r r γ+k+n 1 4 2 γ +k +n = Γ . (2.4) 2 α 2 (cid:18) (cid:19) (cid:18) (cid:19) Thecases γ = k andγ = 0give − n G(~x) 1 4 2 n e α~x2/4d~x = Γ G(~θ)d~θ, − | | ~x k 2 α 2 ZRn | | (cid:18) (cid:19) (cid:16) (cid:17)ZSn−1 k+n 1 4 2 k +n G(~x)e α~x2/4d~x = Γ G(~θ)d~θ. (2.5) − | | 2 α 2 ZRn (cid:18) (cid:19) (cid:18) (cid:19)ZSn−1 Dividingthesetwo equationsgivesthedesired formulafortheB = I case. Thegeneral case followsimmediatelyfrom (2.5). As B is positivedefinite, wehave B = A A ⊤ forsomefull rank matrixA. Thelinearsubstitution~y = A~x yieldsthemoregeneral formula,as G(~x) e α(~x⊤B~x)/4d~x = G(~x)e αA~x2/4d~x − − | | ZRn (~x⊤B~x)k/2 ZRn |A~x|k G(A 1~y) = − e α~y2/4 detA 1d~y − | | − ~y k | | Rn Z | | α k Γ n = 2 2 G A 1~y e α~y2/4 detA 1d~y − − | | − 4 Γ k+n | | (cid:0)2(cid:1) ZRn (cid:16) (cid:17) (cid:0) (cid:1) = α k2 Γ(cid:0) n2 (cid:1) G(~x)e α(~x⊤B~x)/4d~x. (2.6) − (cid:16)4(cid:17) Γ (cid:0)k+2n(cid:1) ZRn (cid:3) (cid:0) (cid:1) 3. PROOF OF THEOREM 1.3 The (order-symmetric) joint eigenvalue density for the N N GOE / GUE / GSE ensembles are × givenby theformula ρ(λ,G (N,q)) = C (N,q)e βqλ2/4 ∆(λ) β (3.1) β β′ − | | | | 6 (see Theorem 3.1 of [Rez]). Here λ = (λ ,...,λ ) is the vector of eigenvalues, C (N,q) is a 1 N β′ computableconstant,and ∆(λ) = (λ λ ). (3.2) j i − i<j Y In otherwords,forasymmetricintegrablefunctionf ofN real variables, f(λ(A))d A = f(λ)ρ (λ,G (N,q))dλ, (3.3) Gβ(N,q) N β ZGβ(N,q) ZRN with ρ(λ,G (N,q)) as above. As by Lemma 2.1 the spherical ensemble measure is the pushfor- β ward oftheGaussianensemblemeasureunderthemap A √rA, wehave → A | | r f(λ(A))d A = f λ A d A Sβ(N,r) A Gβ(N,q) ZSβ(N,r) ZGβ(N,q) (cid:18) (cid:18)| | (cid:19)(cid:19) r = f λ(A) d A A Gβ(N,q) ZGβ(N,q) (cid:18)| | (cid:19) r = f λ(A) d A λ(A) Gβ(N,q) ZGβ(N,q) (cid:18)| | (cid:19) r = f λ ρ(λ,G (N,q))dλ. (3.4) β λ ZRN (cid:18)| | (cid:19) Changingto sphericalcoordinates,weobtain f(λ(A))d A = ∞f (θ)ρ(tθ,G (N,q))rtN 1dtdθ, (3.5) Sβ(N,r) β − ZSβ(N,r) ZrSN−1Z0 where dθ denotes the volume form of rSN 1 (called d~θ earlier, in the r = 1 case). As ∆ − is a homogeneous polynomial in the eigenvalues of degree N , we have ρ(tθ,G (N,q)) = 2 β Cβ′(N,q)e−βq|tθ|2/4|∆(tθ)|β = Cβ′(N,q)e−βqr2t2/4tβ(N2)|∆(θ)|β.(cid:0)S(cid:1)ubstitutinginto(3.5), f(λ(A))dSβ(N,r)A = ∞f (θ) Cβ′(N,q)e−βqr2t2/4tβ(N2)|∆(θ)|β rtN−1dtdθ ZSβ(N,r) ZrSN−1Z0 (cid:16) (cid:17) = C (N,q)r ∞tn 1e βqr2t2/4dt f (θ) ∆(θ) βdθ , β′ − − | | (cid:18)Z0 (cid:19)(cid:18)ZrSN−1 (cid:19) (3.6) where (as usual) n = β N + N. The substitution u = βqr2t2/4 immediately gives the value 2 2n−1 Γ n forthefirst integral. Thus, (βqr2)n/2 2 (cid:0) (cid:1) (cid:0) (cid:1) f(λ(A))d A = C (N,r) f (θ) ∆(θ) βdθ, (3.7) Sβ(N,r) β′′ | | ZSβ(N,r) ZrSN−1 wherethenormalizingconstant 2n 1 n − C (N,r) = C (N,q)r Γ (3.8) β′′ β′ (βqr2)n/2 2 (cid:16) (cid:17) is independent of q. This equality (3.7) is equivalentto Theorem 1.3: The Dirac delta in Theorem 1.3specifies that themass isconcentrated onrSN 1. ✷ − 7 4. PROOF OF THEOREM 1.4 Proofof Theorem 1.4. Westartbyprovingthemomentexpansion,equation(1.15). Appliedtothe momentsoftheempiricalspectral density,Lemma2.1 implies 1 m (S (N,r)) = Tr(Ak)d A k β N Sβ(N,r) ZSβ(N,r) k 1 r = Tr A d A N A Gβ(N,q) ZGβ(N,q) (cid:18)| | (cid:19) ! 1 Tr Ak = C (N,q)rk e βqA2/4dA. (4.1) N β A k − | | ZGβ(N,q) |(cid:0)| (cid:1) By Lemma2.2, wemayrewritetheaboveas βq k2 Γ n 1 m (S (N,r)) = 2 C (N,q)rk Tr Ak e βqA2/4dA, (4.2) k β 4 Γ k+n N β − | | (cid:18) (cid:19) (cid:0)2(cid:1) ZGβ(N,q) (cid:0) (cid:1) where n = dimRGβ(N) = β N2 +(cid:0)N ((cid:1)and we are using the fact that the norm of the Frobenius innerproductisareal innerproduct). Thus, (cid:0) (cid:1) β k2 Γ n m (S (N,r)) = qr2 2 m (G (N,q)), (4.3) k β 4 Γ k+n k β (cid:18) (cid:19) (cid:0)2(cid:1) as desired. (cid:0) (cid:1) We now turn to the second part of the theorem, the convergence to the semi-circle. The eigen- value density of G (N,N) has mean zero and variance 1+ 2 1 1 = 1 +o(1). The correct β β − N scalingforthesphericalensembleistotaker = √N,asthisw(cid:16)illlead(cid:17)toeigenvaluesofsizeonthe orderof1. By (1.15)wefind β 2 k2 Γ n m (S (N,√N)) = N√N 2 m (G (N,N)) k β 4 Γ k+n k β (cid:18) (cid:19) (cid:0)2(cid:1) β k2 Γ n (cid:0) (cid:1) = N2 2 m (G (N,N)), (4.4) 4 Γ k+n k β (cid:18) (cid:19) (cid:0)2(cid:1) wheren = β N2 +N = N(βN+2(2−β)). In particular, S(cid:0)β(N,(cid:1)√N) has mean zero and variance (cid:0) (cid:1) β Γ n 2 1 m (S (N,√N)) = N2 2 1+ 1 2 β 4 Γ 1+ n β − N (cid:18) (cid:19) (cid:0) (cid:1)2 (cid:18) (cid:18) (cid:19) (cid:19) β 1 βN +(2 β) = N2 (cid:0) (cid:1) − 4 n/2 βN (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) βN2 4 βN +(2 β) = − 4 N(βN +(2 β)) βN (cid:18) (cid:19)(cid:18) − (cid:19)(cid:18) (cid:19) = 1. (4.5) 8 As N , the asymptotic relation Γ(z + c)/Γ(z) zc for z implies the asymptotic → ∞ ∼ | | → ∞ equality k β 2 n k m (S (N,√N)) N2 −2 m (G (N,N)) k β k β ∼ 4 2 (cid:18) (cid:19) (cid:16) (cid:17) k k β 2 βN2 −2 N2 m (G (N,N)) k β ∼ 4 4 (cid:18) (cid:19) (cid:18) (cid:19) m (G (N,N)). (4.6) k β ∼ In otherwords,ifC denotes theℓth Catalan number,then ℓ C ifk iseven, lim m (S (N,√N)) = lim m (G (N,N)) = k/2 (4.7) k β k β N N (0 ifk isodd, →∞ →∞ which by the Method of Moments (see [Bi, Ta]) implies that, in the large N limit, the empirical spectral distribution for a spherical ensemble converges in measure to the semicircle. (See [Rez], Remark 2.2 for the fact that the limiting moments of Gaussian ensembles—and, more generally, Wignerensembles—areCatalan numbers.) (cid:3) 5. PROOF OF THEOREM 1.5 WefirstprovetheexpansionforthecharacteristicfunctioninTheorem1.5,andthenwederivethe claimedformulafortheempirical spectraldensity. ThemomentsoftheGUEarewell-known. Themomentm (S (N,r))vanishesifk isodd. For 2 β k = 2ℓ wehavethefollowingexpressionfromHarer and Zagier[HZ]: 1 m (G (N,q)) = q ℓ(2ℓ 1)!!c(ℓ,N), (5.1) 2ℓ 2 − N − wherec(ℓ,N) are powerseries coefficients foraparticularrational function, N ∞ 1 1+z c(ℓ,N)zℓ = 1 , (5.2) 2z 1 z − ! ℓ=0 (cid:18) − (cid:19) X and(2ℓ 1)!! = (2ℓ 1)(2ℓ 3) 3 1isthe2ℓth momentofthestandardnormal. Substituting − − − ··· · (5.1)into(1.15)yields 1 r2 ℓ Γ n m (S (N,r)) = 2 (2ℓ 1)!!c(ℓ,N), (5.3) 2ℓ 2 N 2 Γ n +ℓ − (cid:18) (cid:19) 2(cid:0) (cid:1) and wemaytherefore writethecharacteristicfunctio(cid:0)nas (cid:1) ∞ 1 r2 ℓ Γ n (it)2ℓ φ(t,S (N,r)) = 2 (2ℓ 1)!!c(ℓ,N) 2 N 2 Γ n +ℓ − (2ℓ)! ℓ=0 (cid:18) (cid:19) 2(cid:0) (cid:1) ! X 1 ∞ Γ n (cid:0) (cid:1) 1 ℓ = 2 c(ℓ,N) (rt)2 . (5.4) N Γ n +ℓ ℓ! −4 ℓ=0 2 (cid:0) (cid:1) (cid:18) (cid:19) X (cid:0) (cid:1)9 Forconvenience,fix N andr, and set 1 ∞ Γ n ψ (u) := 2 c(ℓ,N)uℓ, (5.5) N N Γ n +ℓ ℓ! ℓ=0 2 (cid:0) (cid:1) X (cid:0) (cid:1) sothatψ 1(rt)2 = φ(t,S (N,r)). Thecoefficientsofthispowerseriesareaproductofmore N −4 2 familiarpowerseriescoefficients: (cid:0) (cid:1) ∞ Γ n n 2 zℓ = F ,z , (5.6) Γ n +ℓ ℓ! 0 1 2 Xℓ=0 2 (cid:0) (cid:1) (cid:16) (cid:17) where F is aconfluenthypergeomet(cid:0)riclim(cid:1)itfunction,and by definition 0 1 ∞ c(ℓ,N)zℓ = B(z) (5.7) ℓ=0 X where B(z) is the rational function on the right hand side of (5.2). From contour integration, we find 1 n dz ψ (u) = F ,uz B(z 1) . (5.8) N 0 1 − 2πiN 2 z I|z|=2 (cid:16) (cid:17) Weevaluatethecontourintegralbyexpandingbothfunctionsatz = 1,whichisthelocationofthe poleofB(z 1). TheexpansionofB is easy: − N N ℓ dz 1 2 1 N 2 B(z 1) = 1+ 1 dz = dz. (5.9) − z 2 z 1 − 2 ℓ z 1 ! (cid:18) − (cid:19) ℓ=1 (cid:18) (cid:19)(cid:18) − (cid:19) X Theexpansionof F ismoreinvolvedbutelementary: 0 1 n ∞ Γ n F ,uz = 2 (uz)ℓ 0 1 2 Γ n +ℓ ℓ! (cid:16) (cid:17) Xℓ=0 2 (cid:0) (cid:1) ∞ (cid:0)Γ n (cid:1) = 2 uℓ((z 1)+1)ℓ Γ n +ℓ ℓ! − ℓ=0 2 (cid:0) (cid:1) X ∞ (cid:0)Γ n (cid:1) ∞ ℓ = 2 uℓ (z 1)j Γ n +ℓ ℓ! j − ℓ=0 2 (cid:0) (cid:1) j=0 (cid:18) (cid:19) X X ∞ Γ(cid:0)n (cid:1)∞ 1 = 2 uℓ (z 1)j j! Γ n +ℓ (ℓ j)! − j=0 (cid:0) (cid:1) ℓ=j 2 − ! X X = ∞ Γ n2 (cid:0)∞ (cid:1)Γ n2 +j uℓ′+j (z 1)j Γ n +j j! Γ n +j +ℓ ℓ! − j=0 2 (cid:0) (cid:1) ℓ′=0 2 (cid:0) (cid:1)′ ′ ! X X ∞ (cid:0)Γ n (cid:1) n (cid:0) (cid:1) = 2 F +j,u uj(z 1)j. (5.10) Γ n +j j!0 1 2 − Xj=0 2 (cid:0) (cid:1) (cid:16) (cid:17) (cid:0) (cid:1) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.