ebook img

Spectroscopy and Optical Diagnostics for Gases PDF

290 Pages·2016·8.188 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spectroscopy and Optical Diagnostics for Gases

Ronald K. Hanson R. Mitchell Spearrin Christopher S. Goldenstein Spectroscopy and Optical Diagnostics for Gases Spectroscopy and Optical Diagnostics for Gases Ronald K. Hanson • R. Mitchell Spearrin Christopher S. Goldenstein Spectroscopy and Optical Diagnostics for Gases 123 RonaldK.Hanson DepartmentofMechanicalEngineering StanfordUniversity Stanford,CA,USA R.MitchellSpearrin MechanicalandAerospaceEngineeringDepartment UniversityofCalifornia,LosAngeles(UCLA) LosAngeles,CA,USA ChristopherS.Goldenstein SchoolofMechanicalEngineering PurdueUniversity WestLafayette,IN,USA ISBN978-3-319-23251-5 ISBN978-3-319-23252-2 (eBook) DOI10.1007/978-3-319-23252-2 LibraryofCongressControlNumber:2015949092 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Coverillustration:Tolueneplanarlaser-inducedfluorescenceofnitrogenshockbifurcation(courtesyJ. Yoo,D.F.Davidson,2010,HighTemperatureGasdynamicsLaboratory,StanfordUniversity) Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia(www. springer.com) Preface This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit light-matter interactions to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The text is organized to cover three sub-topics of gas-phase spec- troscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapesbywayofabsorption,emission,andscatteringinteractions.Greaterfocus is dedicated to absorption and emission interactions. The latter part of the book describesopticalmeasurementtechniquesandequipmentforpracticalapplications. The text is written for graduate students, advanced undergraduate students, and practitioners across a range of applied sciences including mechanical, aerospace, andchemicalengineering. The text grew out of a course, Introduction to Spectroscopy and Laser Diag- nostics for Gases (ME364), first offered in 1977, in response to the growing use of spectroscopic diagnostics in the research conducted by graduate students in the High Temperature Gasdynamics Laboratory (HTGL) at Stanford. At the time, the field of spectroscopy was undergoing a revolution owing to the development and application of lasers, and many of the standard texts on laser physics and spectroscopy dealt primarily with theory, e.g., quantum mechanics and optics, ratherthanengineeringapplications.Therewasthusnosingletextbookthatseemed suitableforstudents(orfortheprofessor!)withtraditionalmechanicalengineering backgrounds, nor was there a suitable text that focused on applied measurements in high temperature gases. As a result, I initially used various introductory texts, writtenforundergraduatesandmaster’slevelstudentsinphysicsandchemistry,and Isupplementedthesematerialswithmyownnotesfortopicsnottreatedinexisting booksbutcriticaltothediagnosticsemployedintheHTGL. Over time, my own notes became more complete, until finally in 2001 an energeticstudent,MichaelWebber,helpedputthenotesintoelectronicformforuse as a course reader at Stanford. The material continued undergoing expansion and refinement until two recent doctoral students, Mitchell Spearrin and Christopher Goldenstein, agreed to help convert my reader into a textbook. They are now my co-authors,havingmadenewcontributionstothelatterhalfofthebook. v vi Preface I am deeply indebted to the many graduate students who have passed through theirdoctoralstudiesinmygroupatStanfordandcontributedinmanywaystothe evolutionofthistext.Thoughtoomanytomentionallbyname,Imustacknowledge onestudent,XingChao,whoheroicallyconvertedmynotesintopowerpointlectures andcreatedmanyimprovedfiguresforthelectureslidesandthetext. Finally,IwanttoacknowledgethepleasureIhaveenjoyedinworkingtodevelop and apply laser-based spectroscopic diagnostics to engineering problems. It has been a very rewarding experience, particularly in watching Stanford’s mechanical engineeringgraduatesbecomeleadersinthefieldofappliedspectroscopy. Stanford,CA,USA RonaldK.Hanson June2015 Contents Preface............................................................................. v 1 Introduction................................................................. 1 1.1 RoleofQuantumMechanics ........................................ 1 1.2 EmissionandAbsorptionSpectra ................................... 1 1.3 Planck’sLaw ......................................................... 3 1.4 Wavelength,Frequency,andOtherUnitsandConversions ........ 4 1.5 SpectralRegions...................................................... 5 1.6 BasicElementsofSpectroscopy..................................... 6 1.6.1 Positions,Strengths,andShapesofLines................. 6 1.7 TypicalAbsorptionSpectroscopySetup ............................ 6 1.8 Beer’sLawofAbsorption............................................ 7 1.9 SpectralAbsorptionCoefficient ..................................... 8 1.10 BoltzmannDistribution.............................................. 8 Reference..................................................................... 8 2 DiatomicMolecularSpectra............................................... 9 2.1 InteractionMechanismforEMRadiationwithMolecules......... 9 2.1.1 MicrowaveRegion:Rotation............................... 10 2.1.2 InfraredRegion:Vibration................................. 11 2.1.3 UltravioletandVisibleRegions:Electronic............... 11 2.1.4 SummaryofBackground................................... 11 2.2 RotationalSpectra:SimpleModel................................... 12 2.2.1 RigidRotor(RR) ........................................... 12 2.2.2 ClassicalMechanics........................................ 13 2.2.3 QuantumMechanics........................................ 13 2.2.4 RotationalEnergy .......................................... 14 2.2.5 AbsorptionSpectrum....................................... 15 2.2.6 UsefulnessofRotationalLineSpacing.................... 16 2.2.7 RotationalPartitionFunction .............................. 17 2.2.8 RotationalTemperature .................................... 17 2.2.9 IntensitiesofSpectralLines................................ 19 2.3 VibrationalSpectra:SimpleModel.................................. 19 2.3.1 SimpleHarmonicOscillator ............................... 19 2.3.2 ClassicalMechanics........................................ 19 vii viii Contents 2.3.3 QuantumMechanics........................................ 21 2.3.4 VibrationalPartitionFunction ............................. 21 2.3.5 VibrationalTemperature.................................... 22 2.4 ImprovedModelsofRotationandVibration........................ 23 2.4.1 Non-rigidRotation ......................................... 23 2.4.2 AnharmonicOscillator ..................................... 24 2.4.3 TypicalCorrectionMagnitudes............................ 25 2.5 RovibrationalSpectra:SimpleModel............................... 27 2.5.1 Born–OppenheimerApproximation....................... 27 2.5.2 SpectralBranches........................................... 28 2.6 RovibrationalSpectra:ImprovedModel............................ 30 2.6.1 BreakdownofBorn–OppenheimerApproximation....... 30 2.6.2 SpectralBranches........................................... 31 2.6.3 RotationalConstant......................................... 32 2.6.4 Bandhead.................................................... 32 2.6.5 FindingKeyParameters:B ,˛ ,! ,x .................... 33 e e e e 2.6.6 EffectsofIsotopicSubstitution ............................ 35 2.6.7 HotBands................................................... 36 2.7 ElectronicSpectraofDiatomicMolecules.......................... 37 2.7.1 PotentialEnergyWells ..................................... 37 2.7.2 TypesofSpectra............................................ 39 2.7.3 RotationalAnalysis......................................... 40 2.7.4 VibrationalAnalysis........................................ 44 2.8 Summary.............................................................. 46 2.9 Exercises.............................................................. 48 References.................................................................... 49 3 BondDissociationEnergies................................................ 51 3.1 Birge–SponerMethod................................................ 51 3.2 ThermochemicalApproach.......................................... 53 3.3 Predissociation ....................................................... 53 3.3.1 HNO......................................................... 54 3.3.2 N2O.......................................................... 55 3.4 Exercises.............................................................. 56 Reference..................................................................... 57 4 PolyatomicMolecularSpectra ............................................ 59 4.1 RotationalSpectraofPolyatomicMolecules ....................... 59 4.1.1 LinearMolecules ........................................... 60 4.1.2 SymmetricTop.............................................. 61 4.1.3 SphericalTop ............................................... 64 4.1.4 AsymmetricRotor.......................................... 64 4.1.5 RotationalPartitionFunction .............................. 64 4.2 VibrationalBandsofPolyatomicMolecules........................ 66 4.2.1 NumberofVibrationalModes ............................. 66 4.2.2 ParallelandPerpendicularModes ......................... 66 Contents ix 4.2.3 TypesofBands ............................................. 69 4.2.4 RelativeStrengths .......................................... 70 4.2.5 VibrationalPartitionFunction ............................. 71 4.3 RovibrationalSpectraofPolyatomicMolecules.................... 71 4.3.1 LinearPolyatomicMolecules.............................. 71 4.3.2 SymmetricTopMolecules ................................. 73 4.4 Exercises.............................................................. 76 References.................................................................... 78 5 EffectsofNuclearSpin:RotationalPartitionFunction andDegeneracies ........................................................... 79 5.1 Introduction........................................................... 79 5.2 NuclearSpinandSymmetry......................................... 80 5.3 CaseI:LinearMolecules ............................................ 82 5.3.1 Asymmetric(e.g.,COandN O)........................... 82 2 5.3.2 Symmetric(e.g.,O ,CO ,andC H )..................... 83 2 2 2 2 5.4 CaseII:NonlinearMolecules........................................ 87 5.4.1 AsymmetricRotor(e.g.,CHFClBrandN H )............ 87 2 4 5.4.2 SymmetricTop.............................................. 87 5.4.3 Others(e.g.,C H ;CH ;andP )........................... 90 6 6 4 4 5.5 Exercises.............................................................. 90 References.................................................................... 90 6 RayleighandRamanSpectra ............................................. 91 6.1 LightScattering ...................................................... 91 6.1.1 Cross-Sections.............................................. 92 6.2 QuantumModel...................................................... 95 6.3 ClassicalTheory...................................................... 95 6.4 RotationalRamanSpectra ........................................... 96 6.4.1 LinearMolecules ........................................... 96 6.4.2 SymmetricTopMolecules ................................. 98 6.5 VibrationalRamanSpectra .......................................... 99 6.5.1 Polarization ................................................. 100 6.5.2 SelectionRules ............................................. 101 6.5.3 Diatomics ................................................... 101 6.5.4 Temperature................................................. 102 6.5.5 TypicalRamanShift........................................ 103 6.6 SummaryofRayleighandRamanScattering....................... 103 6.7 Exercises.............................................................. 103 References.................................................................... 105 7 QuantitativeEmissionandAbsorption .................................. 107 7.1 SpectralAbsorptionCoefficient ..................................... 107 7.2 EquationofRadiativeTransfer:ClassicalApproach............... 109 7.2.1 Case1:EmissionExperiments.I0 D0/................... 110 (cid:2) 7.2.2 Case2:AbsorptionExperiments.I0 (cid:2)Ibb/.............. 111 (cid:2) (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.