ebook img

Spectral Spaces PDF

651 Pages·2019·5.795 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Spectral Spaces

SpectralSpaces Spectral spaces are a class of topological spaces. They are a tool linking algebraic structures,inaverywidesense,withgeometry.Theywereinventedtogiveafunctional representation of Boolean algebras and distributive lattices and subsequently gained greatprominenceasaconsequenceofGrothendieck’sinventionofschemes. There are more than 1000 research articles about spectral spaces, but this is the first monograph. It provides an introduction to the subject and is a unified treatment of results scattered across the literature, filling in gaps and showing the connections between differentresults.Thebookincludes newresearchgoingbeyond theexisting literature,answeringquestionsthatnaturallyarisefromthecomprehensiveapproach. Theauthorsservegraduatesbystartinggentlywiththebasics.Forexperts,theylead themtothefrontiersofcurrentresearch,makingthisbookavaluablereferencesource. Max Dickmann hasbeenaresearcherattheCNRS,France,since1974;Directeur de Recherche since 1988; emeritus since 2007. His research interests include the applicationsofspectralspacestorealalgebraicgeometry,quadraticforms,andrelated topics. Niels Schwartz is Professor of Mathematics at the Universita¨t Passau, retired since 2016. Many of his publications are concerned with, or use, spectral spaces in essentialways.Inparticular,hehasusedspectralspacestointroducethenotionofreal closedrings,animportanttopicinrealalgebraandgeometry. Marcus Tressl is a mathematician working in the School of Mathematics at the University of Manchester. His research interests include model theory, ordered algebraicstructures,ringtheory,differentialalgebra,andnon-Hausdorfftopology. Downloaded from https://www.cambridge.org/core. University of Exeter, on 17 Mar 2019 at 01:35:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316543870 NEW MATHEMATICAL MONOGRAPHS EditorialBoard Be´laBolloba´s,WilliamFulton,FrancesKirwan, PeterSarnak,BarrySimon,BurtTotaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversity Press.Foracompleteserieslistingvisitwww.cambridge.org/mathematics. 1. M.CabanesandM.EnguehardRepresentationTheoryofFiniteReductiveGroups 2. J.B.GarnettandD.E.MarshallHarmonicMeasure 3. P.CohnFreeIdealRingsandLocalizationinGeneralRings 4. E.BombieriandW.GublerHeightsinDiophantineGeometry 5. Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6. S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutiveStructures 7. A.ShlapentokhHilbert’sTenthProblem 8. G.MichlerTheoryofFiniteSimpleGroupsI 9. A.BakerandG.Wu¨stholzLogarithmicFormsandDiophantineGeometry 10. P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11. B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) 12. J.NeisendorferAlgebraicMethodsinUnstableHomotopyTheory 13. M.GrandisDirectedAlgebraicTopology 14. G.MichlerTheoryofFiniteSimpleGroupsII 15. R.SchertzComplexMultiplication 16. S.BlochLecturesonAlgebraicCycles(2ndEdition) 17. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups 18. T.DownarowiczEntropyinDynamicalSystems 19. C.SimpsonHomotopyTheoryofHigherCategories 20. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesI 21. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesII 22. J.Goubault-LarrecqNon-HausdorffTopologyandDomainTheory 23. J.S´niatyckiDifferentialGeometryofSingularSpacesandReductionofSymmetry 24. E.RiehlCategoricalHomotopyTheory 25. B.A.MunsonandI.Volic´CubicalHomotopyTheory 26. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups(2ndEdition) 27. J.Heinonen,P.Koskela,N.ShanmugalingamandJ.T.TysonSobolevSpacesonMetric MeasureSpaces 28. Y.-G.OhSymplecticTopologyandFloerHomologyI 29. Y.-G.OhSymplecticTopologyandFloerHomologyII 30. A.BobrowskiConvergenceofOne-ParameterOperatorSemigroups 31. K.CostelloandO.GwilliamFactorizationAlgebrasinQuantumFieldTheoryI 32. J.-H.EvertseandK.Gyo˝ryDiscriminantEquationsinDiophantineNumberTheory 33. G.FriedmanSingularIntersectionHomology 34. S.SchwedeGlobalHomotopyTheory 35. M.Dickmann,N.SchwartzandM.TresslSpectralSpaces Downloaded from https://www.cambridge.org/core. University of Exeter, on 17 Mar 2019 at 01:35:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316543870 Spectral Spaces MAX DICKMANN CentreNationaldelaRechercheScientifique(CNRS),Paris,France NIELS SCHWARTZ Universita¨tPassau,Germany MARCUS TRESSL UniversityofManchester,UK Downloaded from https://www.cambridge.org/core. University of Exeter, on 17 Mar 2019 at 01:35:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316543870 UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107146723 DOI:10.1017/9781316543870 ©MaxDickmann,NielsSchwartz,andMarcusTressl2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedandboundinGreatBritainbyClaysLtd,ElcografS.p.A. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Dickmann,M.A.,1940–author.|Schwartz,Niels,1950–author.| Tressl,Marcus,1964–author. Title:Spectralspaces/MaxDickmann,CentreNationaldelaRechercheScientifique(CNRS), NielsSchwartz,Universita¨tPassau,Germany,MarcusTressl,UniversityofManchester. Description:Firstedition.|NewYork:CambridgeUniversityPress,[2019]| Series:Newmathematicalmonographs;35|Includesbibliographicalreferencesandindex. Identifiers:LCCN2018045567|ISBN9781107146723(hardback:alk.paper) Subjects:LCSH:Topologicalspaces.|Geometry,Algebraic.|Commutativerings. Classification:LCCQA611.25.D532019|DDC514/.32–dc23 LCrecordavailableathttps://lccn.loc.gov/2018045567 ISBN978-1-107-14672-3Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Downloaded from https://www.cambridge.org/core. University of Exeter, on 17 Mar 2019 at 01:35:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316543870 Contents Preface pageix AnOutlineoftheHistoryofSpectralSpaces xiii 1 SpectralSpacesandSpectralMaps 1 1.1 TheDefinitionofSpectralSpaces 2 1.2 SpectralMapsandtheCategoryofSpectralSpaces 10 1.3 BooleanSpacesandtheConstructibleTopology 13 1.4 TheInverseTopology 23 1.5 SpecializationandPriestleySpaces 27 1.6 Examples 36 1.7 FurtherReading 46 2 BasicConstructions 48 2.1 SpectralSubspaces 49 2.2 ProductsofSpectralSpaces 52 2.3 SpectralSubspacesofProducts 57 2.4 FiniteCoproducts 64 2.5 Zariski,Real,andOtherSpectra 66 3 StoneDuality 78 3.1 TheSpectrumofaBoundedDistributiveLattice 79 3.2 StoneDuality 82 3.3 SpectralSpacesviaPrimeIdealsandPrimeFilters 88 3.4 TheBooleanEnvelopeofaBoundedDistributiveLattice 92 3.5 InverseSpacesandInverseLattices 94 3.6 TheSpectrumofaTotallyOrderedSet 96 3.7 FurtherReading 98 v Downloaded from https://www.cambridge.org/core. University of Exeter, on 17 Mar 2019 at 01:34:51, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316543870 vi Contents 4 SubsetsofSpectralSpaces 102 4.1 Quasi-CompactSubsets,Closure,andGeneralization 103 4.2 DirectedSubsetsandSpecializationChains 107 4.3 RankandDimension 113 4.4 MinimalPointsandMaximalPoints 118 4.5 ConvexityandLocallyClosedSetsandPoints 131 5 PropertiesofSpectralMaps 141 5.1 ImagesofProconstructibleSetsunderSpectralMaps 142 5.2 MonomorphismsandEpimorphisms 145 5.3 ClosedandOpenSpectralMaps 151 5.4 Embeddings 156 5.5 IrreducibleMapsandDominantMaps 163 5.6 ExtendingSpectralMaps 165 6 QuotientConstructions 168 6.1 SpectralQuotientsModuloRelations 169 6.2 SaturatedRelations 174 6.3 SpectralOrdersandSpectralRelations 179 6.4 QuotientsModuloEquivalenceRelationsandIdentify- ingMaps 186 6.5 SpectralQuotientsandLattices 197 6.6 TheSpaceofConnectedComponents 199 7 ScottTopologyandCoarseLowerTopology 205 7.1 WhenScottisSpectral 206 7.2 FineCoherentPosetsandCompleteLattices 221 7.3 TheCoarseLowerTopologyonRootSystemsandForests 230 7.4 FiniteandInfiniteWords 239 8 SpecialClassesofSpectralSpaces 246 8.1 NoetherianSpaces 247 8.2 SpectralSpaceswithScatteredPatchSpace 261 8.3 HeytingSpaces 267 8.4 NormalSpectralSpaces 279 8.5 SpectralRootSystemsandForests 290 9 LocalicSpaces 299 9.1 FramesandCompleteness 300 9.2 LocalicSpaces–SpectraofFrames 306 9.3 LocalicMaps 311 9.4 LocalicSubspaces 315 9.5 LocalicPoints 322 Downloaded from https://www.cambridge.org/core. University of Exeter, on 17 Mar 2019 at 01:34:51, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316543870 Contents vii 10 ColimitsinSpec 328 10.1 Coproducts 329 10.2 FiberSums 340 10.3 Colimits 354 10.4 ConstructionswithFiberSums 360 11 RelationsofSpecwithOtherCategories 369 11.1 TheSpectralReflectionofaTopologicalSpace 371 11.2 TheSobrification 384 11.3 SpectralReflectionsofContinuousMaps 390 11.4 Properties of Topological Spaces and their Spectral Reflections 393 11.5 How Localic Spaces are Located in the Category of SpectralSpaces 402 11.6 TheCategoriesSpecandPoSets 408 11.7 TheSubcategoryBoolSpofSpec 412 12 TheZariskiSpectrum 416 12.1 TheZariskiSpectrum–TopologyontheSetofPrime IdealsofaRing 419 12.2 Functoriality 434 12.3 LocallyClosedPointsandtheNullstellensatz 442 12.4 TheSpectrumofaNoetherianRing 450 12.5 ZariskiSpectraunderRing-TheoreticConstructions 458 12.6 Hochster’sResults 469 13 TheRealSpectrum 485 13.1 MotivationandElementaryExamples 487 13.2 SpecializationandMaximalPoints 501 13.3 SpectralMorphismsInducedbyRingHomomorphisms 504 13.4 RealSpectraunderRing-TheoreticConstructions 515 13.5 TheRealSpectruminRealAlgebraicGeometry 518 13.6 FurtherResultsandReading 531 14 SpectralSpacesviaModelTheory 540 14.1 TheModel-TheoreticSetup 541 14.2 SpectralSpacesofTypes 543 14.3 SpectraofStructuresandtheirElementaryDescription 560 Downloaded from https://www.cambridge.org/core. University of Exeter, on 17 Mar 2019 at 01:34:51, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316543870 viii Contents Appendix:ThePosetZoo 579 References 590 IndexofCategoriesandFunctors 607 IndexofExamples 608 SymbolIndex 613 SubjectIndex 618 Downloaded from https://www.cambridge.org/core. University of Exeter, on 17 Mar 2019 at 01:34:51, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316543870 Preface Spectralspacesconstituteaclassoftopologicalspacesusedinvariousbranches ofmathematics.Theywereintroducedinthe1930sbyM.H.Stoneandhave been used extensively ever since. There was a marked growth of interest fol- lowingA.Grothendieck’srevolutionofalgebraicgeometry.Itwasrealizedthat spectralspacescanbeassociatedwithmanymathematicalstructures.Numer- ous publications are devoted to various properties of spectral spaces and to a growing number of diverse applications. The area is extremely active and is growingatafastpace. Withthisbookweprovidethefirstcomprehensiveandcoherenttreatmentof thebasictopologicaltheoryofspectralspaces.Itispossibletostudyspectral spaceslargelywithalgebraictools,namelyusingboundeddistributivelattices, or,inmoreabstractform,usingcategorytheory,modeltheory,ortopostheory. However,ourfocusisclearlyonthetopology,whichprovidesgeometrictools and intuition for applications that, a priori, do not have geometric meaning. Also, in our experience, the topological techniques are very flexible towards possibleextensionsoftechniquesandresultstowiderclassesofspaces,where acorrespondingalgebraicframeworkdoesnotexist. Westartwithacarefulanalysisofthedefinitionofspectralspaces,describe fundamentalstructuralfeatures,anddiscusselementaryproperties.Numerous examples,counterexamples,andconstructions,listedinanindexofexamples, showhowonecanworkwithspectralspacesinconcretesituationsorillustrate results.Weexhibitmethodsillustratinghowspectralspacescanbeassociated with different classes of structures and describe some of the most important applications. ix Downloaded from https://www.cambridge.org/core. University of Exeter, on 17 Mar 2019 at 01:34:24, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316543870.001 x Preface Itwasouroriginalintentiontoassemblebasicmaterialaboutspectralspaces in one place to make it more easily accessible. Collecting the material and preparingacoherentpresentationprovedtobemorelaboriousthananticipated: theterminologyandnotationdifferfrompublicationtopublication.TheZariski spectrum of commutative unital rings is undoubtedly the most widely used construction of spectral spaces. Therefore, many results on spectral spaces are found in publications about rings and are expressed in the corresponding language. These needed to be translated into topological language to make them compatible with our intentions and presentation. There are numerous points,somesmall,somemoresubstantial,aboutbasictopologicalproperties ofspectralspacesthathadnotbeenconsideredbefore,buthavetobestudiedina comprehensivetreatment.So,toroundoffthepicture,wehadtofillvariousgaps intheexistingliterature.Theconstructionofnewspacesfromacollectionof givenspacesisanimportanttopictowhichweaddednewfacets.Thecategory of spectral spaces (i.e., spectral spaces with spectral maps as morphisms) is naturally related to several other categories – for example, the categories of topologicalspacesandofpartiallyorderedsets.Thepreciserelationshipwith theseothercategorieshadpreviouslybeenstudiedonlyinafragmentaryway.In ourbookwedothissystematically,whichrequiresthedevelopmentofsuitable tools. Takingallofthisintoaccount,afterstartingoffwritingabookinthestyleof agraduatetext,ourprojecthasturned,toaconsiderableextent,intoaresearch monograph.Wethinkthatourtextissuitableforgraduatestudentswhostudy spectral spaces and for researchers who find the subject relevant and need a solid basis for their own work. This may be in algebra, algebraic geometry, orderedalgebraicstructures,partiallyorderedsets,universalalgebra,logic,or theoretical computer science. We hope that we have succeeded in writing a bookthatcanservethesedifferentinterests. Writing a book requires decisions about what to include and what not to include. So far we have described what is included. Now a word about what is not included. There are various classes of topological spaces that are not spectral,butarerelatedtothemandservepurposesthataresimilartothoseof spectralspaces(e.g.,representationspacesinalgebraortheZieglerspectrum of module categories). We focus our attention (almost) entirely on spectral spaces.Butwepointoutthatourtopologicalapproachtospectralspacesmay sometimesprovidesubstantialcluesonhowtodealwithquestionsaboutrelated, orbroader,classesofspaces.Spectralspaceshavearichertheoryandoffera morecoherentpanoramathanrelatedlargerclassesofspaces,whichweaddress Downloaded from https://www.cambridge.org/core. University of Exeter, on 17 Mar 2019 at 01:34:24, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316543870.001

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.