ebook img

Some unified formulas and representations for the Apostol-type polynomials PDF

16 Pages·2015·1.4 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Some unified formulas and representations for the Apostol-type polynomials

LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 DOI10.1186/s13662-015-0480-0 RESEARCH OpenAccess Some unified formulas and representations for the Apostol-type polynomials Da-QianLu1andQiu-MingLuo2* *Correspondence: [email protected] Abstract 2DepartmentofMathematics, Recently,afamilyoftheApostol-typepolynomialswasintroducedbyLuoand ChongqingNormalUniversity, ChongqingHigherEducationMega Srivastava(Appl.Math.Comput.217:5702-5728(2011)).Inthispaper,wefurther Center,HuxiCampus,Chongqing, investigatetheApostol-typepolynomialsandobtaintheirunifiedmultiplication 401331,People’sRepublicofChina formulaandexplicitrepresentationsintermsoftheGaussianhypergeometric Fulllistofauthorinformationis availableattheendofthearticle functionandthegeneralizedHurwitzzetafunction.Wealsoshowsomespecialcases, whichincludethecorrespondingresultsofLuo,Garg,Srivastava,Ozden,andÖzarslan etc. MSC: Primary11B68;secondary11M35;11B73;33C05 Keywords: (generalized)Apostol-typepolynomials;Apostol-Eulerpolynomials; Apostol-Bernoullipolynomials;Genocchipolynomialsofhighorder;multiplication formula;Gaussianhypergeometricfunction;(generalized)Hurwitzzetafunction 1 Introduction,definitions,andmotivation Throughout this paper, we always make use of the following notations: N={,,,...} denotesthesetofnaturalnumbers,N ={,,,,...}denotesthesetofnonnegativein-  tegers,Z–={,–,–,–,...}denotesthesetofnonpositiveintegers,Zdenotesthesetof  integers,Rdenotesthesetofrealnumbers,andCdenotesthesetofcomplexnumbers. The symbol (a) denotes the shifted factorial (or the Pochhammer symbol), defined, k a∈C,by ⎧ ⎨ (cid:2)(a+k) , k=, (a) = = (.) k (cid:2)(a) ⎩a(a+)···(a+k–), k∈N. Thesymbol{n} denotesthefallingfactorial,defined,a∈C,by k ⎧ ⎨ , k=, {a} = (.) k ⎩ a(a–)···(a–k+)= (cid:2)(a+) , k∈N, (cid:2)(a–k+) where(cid:2)(x)istheusualgammafunction. TheclassicalBernoullipolynomialsB (x),EulerpolynomialsE (x),andGenocchipoly- n n nomialsG (x),togetherwiththeirfamiliargeneralizationsB(α)(x),E(α)(x),andG(α)(x)of n n n n ©2015LuandLuo;licenseeSpringer.ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.0Inter- nationalLicense(http://creativecommons.org/licenses/by/4.0/),whichpermitsunrestricteduse,distribution,andreproductionin anymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommons license,andindicateifchangesweremade. LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page2of16 orderα,areusuallydefinedbymeansofthefollowinggeneratingfunctions(see,forde- tails,[],pp.-and[]): (cid:5) (cid:6) z α (cid:7)∞ zn (cid:8) (cid:9) exz= B(α)(x) |z|<π , (.) ez– n n! n= (cid:5) (cid:6)  α (cid:7)∞ zn (cid:8) (cid:9) exz= E(α)(x) |z|<π (.) ez+ n n! n= and (cid:5) (cid:6) z α (cid:7)∞ zn (cid:8) (cid:9) exz= G(α)(x) |z|<π . (.) ez+ n n! n= Thus,theBernoullipolynomialsB (x),EulerpolynomialsE (x),andGenocchipolynomi- n n alsG (x)aregiven,respectively,by n B (x):=B()(x), E (x):=E()(x) and G (x):=G()(x) (n∈N ). (.) n n n n n n  TheBernoullinumbersB ,EulernumbersE ,andGenocchinumbersG are,respectively, n n n B :=B ()=B()(), E :=E ()=E()() and G :=G ()=G()(). (.) n n n n n n n n n SomeinterestinganalogsoftheclassicalBernoullipolynomialsandnumberswerefirst investigatedbyApostol(see[],p.,Eq.(.))and(morerecently)bySrivastava(see[], pp.-).WebeginbyrecallinghereApostol’sdefinitionsasfollows. Definition.(Apostol[];seealsoSrivastava[]) TheApostol-Bernoullipolynomials B (x;λ)(λ∈C)aredefinedbymeansofthefollowinggeneratingfunction: n zexz (cid:7)∞ zn (cid:8) (cid:9) = B (x;λ) |z|<π whenλ=;|z|<|logλ|whenλ(cid:4)= (.) λez– n n! n= with,ofcourse, B (x)=B (x;) and B (λ):=B (;λ), (.) n n n n whereB (λ)denotestheso-calledApostol-Bernoullinumbers. n Recently,LuoandSrivastava[]furtherextendedtheApostol-Bernoullipolynomialsas theso-calledApostol-Bernoullipolynomialsoforderα. Definition.(LuoandSrivastava[]) TheApostol-BernoullipolynomialsB(α)(x;λ)(λ∈ n C)oforderα(α∈N)aredefinedbymeansofthefollowinggeneratingfunction: (cid:5) (cid:6) z α (cid:7)∞ zn ·exz= B(α)(x;λ) λez– n n! n= (cid:8) (cid:9) |z|<π whenλ=;|z|<|logλ|whenλ(cid:4)= (.) LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page3of16 with,ofcourse, B(α)(x)=B(α)(x;) and B(α)(λ):=B(α)(;λ), (.) n n n n whereB(α)(λ)denotestheso-calledApostol-Bernoullinumbersoforderα. n Ontheotherhand,Luo[]gaveananalogousextensionofthegeneralizedEulerpoly- nomialsastheso-calledApostol-Eulerpolynomialsoforderα. Definition.(Luo[]) TheApostol-Eulerpolynomials E(α)(x;λ) oforder α (α,λ∈C) n aredefinedbymeansofthefollowinggeneratingfunction: (cid:5) (cid:6)  α·exz=(cid:7)∞ E(α)(x;λ)zn (cid:8)|z|<(cid:10)(cid:10)log(–λ)(cid:10)(cid:10)(cid:9) (.) λez+ n n! n= with,ofcourse, E(α)(x)=E(α)(x;) and E(α)(λ):=E(α)(;λ), (.) n n n n whereE(α)(λ)denotestheso-calledApostol-Eulernumbersoforderα. n OnthesubjectoftheGenocchipolynomialsG (x) andtheirvariousextensions,are- n markablylargenumberofinvestigationshaveappearedintheliterature(see,forexample, [–]).Moreover,Luo(see[])introducedandinvestigatedtheApostol-Genocchipoly- nomialsof(realorcomplex)orderα,whicharedefinedasfollows. Definition. TheApostol-GenocchipolynomialsG(α)(x;λ)(λ∈C)oforderα (α∈N) n aredefinedbymeansofthefollowinggeneratingfunction: (cid:5) (cid:6) z α·exz=(cid:7)∞ G(α)(x;λ)zn (cid:8)|z|<(cid:10)(cid:10)log(–λ)(cid:10)(cid:10)(cid:9) (.) λez+ n n! n= with,ofcourse, G(α)(x)=G(α)(x;), G(α)(λ):=G(α)(;λ), n n n n (.) G (x;λ):=G()(x;λ) and G (λ):=G()(λ), n n n n where G (λ), G(α)(λ), and G (x;λ) denote the so-called Apostol-Genocchi numbers, the n n n Apostol-Genocchinumbersoforderα,andtheApostol-Genocchipolynomials,respec- tively. Ozdenetal.[]investigatedthefollowingunification(andgeneralization)ofthegen- eratingfunctionsofthethreefamiliesofApostol-typepolynomials: (cid:7)∞ –κzκ zn exz= Y (x;κ,a,b) βbez–ab n,β n! n= (cid:8) (cid:10) (cid:10) (cid:9) |z|<π whenβ=a;|z|<(cid:10)blog(β/a)(cid:10)whenβ(cid:4)=a;κ,β∈C;a,b∈C\{} . (.) LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page4of16 In[]Özarslanfurthergaveanextensionoftheabovedefinition(.)asfollows: (cid:5) (cid:6) –κzκ α (cid:7)∞ zn exz= Y(α)(x;κ,a,b) βbez–ab n,β n! n= (cid:8) (cid:10) (cid:10) α∈N;|z|<π whenβ=a;|z|<(cid:10)blog(β/a)(cid:10) (cid:9) whenβ(cid:4)=a;κ,β∈C;a,b∈C\{} (.) andgavesomeidentitiesforY(α)(x;κ,a,b). n,β Recently,LuoandSrivastava[]furtherextendedtheApostol-typepolynomialsasfol- lows. Definition . (Luo and Srivastava []) The generalized Apostol-type polynomials F(α)(x;λ;μ;ν) of order α (α,λ,μ;ν ∈C) are defined by means of the following generat- n ingfunction: (cid:5) (cid:6) μzν αexz=(cid:7)∞ F(α)(x;λ;μ;ν)zn (cid:8)|z|<(cid:10)(cid:10)log(–λ)(cid:10)(cid:10)(cid:9). (.) λez+ n n! n= BycomparingDefinition.withDefinitions.,.and.,wereadilyfindthat B(α)(x;λ)=(–)αF(α)(x;–λ;;) (α∈N), (.) n n E(α)(x;λ)=F(α)(x;λ;;) (α∈C) (.) n n and G(α)(x;λ)=F(α)(x;λ;;) (α∈N). (.) n n Furthermore,ifwecomparethegeneratingfunctions(.),(.)and(.),wereadily seethat (cid:5) (cid:5) (cid:6) (cid:6)  β b Y (x;κ,a,b)=– F() x;– ;–κ;κ , (.) n,β ab n a (cid:5) (cid:5) (cid:6) (cid:6)  β b Y(α)(x;κ,a,b)=(–)α F(α) x;– ;–κ;κ . (.) n,β abα n a Moreinvestigationsofthissubjectcanbefoundin[,,–]. TheaimofthispaperistogivethemultiplicationformulafortheApostol-typepolyno- mialsF(α)(x;λ;μ;ν)andobtainanexplicitrepresentationofF(α)(x;λ;μ;ν)intermsofthe n n Gausshypergeometricfunction F (a,b;c;z).Westudysomerelationsbetweenthefam-   ilyofApostol-typepolynomialsF(α)(x;λ;μ;ν)andthefamilyofHurwitzzetafunctions n (cid:9) (z,s,a).Somespecialcasesalsoareshown. μ 2 MultiplicationformulafortheApostol-typepolynomials InthissectionwegiveaunifiedmultiplicationformulafortheApostol-typepolynomials F(α)(x;λ;μ;ν). We will see that some well-known results are the corresponding special n casesofourresult. Firstweneedthefollowinglemmas. LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page5of16 Lemma.(Multinomialidentity[],p.,TheoremB) Ifx ,x ,...,x arecommuting   m elementsofaring(⇐⇒ xx =xx,≤i<j≤m),thenwehaveforallintegersn≥: i j j i (cid:5) (cid:6) (cid:7) n (x +x +···+x )n= x ax a···x am, (.)   m   m a ,a ,...,a aa+,aa+,.·..·,·a+mam≥=n   m thelastsummationtakesplaceoverallpositiveorzerointegersa ≥suchthata +a + i   ···+a =n,where m (cid:5) (cid:6) n n! := , a ,a ,...,a a !a !···a !   m   m arecalledmultinomialcoefficientsdefinedby[],p.,DefinitionB. Lemma.(Generalizedmultinomialidentity[],p.,Eq.(m)) If x ,x ,...,x are   m commutingelementsofaring(⇐⇒ xx =xx,≤i<j≤m),thenwehaveforallrealor i j j i complexvariableα: (cid:5) (cid:6) (cid:7) α (+x +x +···+x )α= x vx v···x vm, (.)   m   m v ,v ,...,v v,v,...,vm≥   m thelastsummationtakesplaceoverallpositiveorzerointegersv ≥,where i (cid:5) (cid:6) α := {α}v+v+···+vm = α(α–)(α–)···(α–v–v–···–vm+) v ,v ,...,v v !v !···v ! v !v !···v !   m   m   m arecalledgeneralizedmultinomialcoefficientsdefinedby[],p.,Eq.(C(cid:9)(cid:9)). Theorem. (Multiplicationformula) For μ,ν,r∈N and ν ≤, n,l∈N , α,λ∈C,we  have (cid:5) (cid:6) (cid:7) α F(α)(rx;λ;μ;ν)=rn–να n v ,v ,...,v v,v,...,vr–≥   r– (cid:5) (cid:6) m ×(–λ)mF(α) x+ ;λr;μ;ν , rodd, (.) n r (cid:5) (cid:6) (cid:7) (–)lμlrn–νl l F(l)(rx;λ;μ;ν)= n (n+) v ,v ,...,v (–ν)l ≤v,v,...,vr–≤l   r– v+v+···+vr–=l (cid:5) (cid:6) m ×(–λ)mB(l) x+ ;λr , reven, (.) n+(–ν)l r wherem=v +v +···+(r–)v .   r– Proof Itisnotdifficulttoshowthat  –λez+λez+···+(–λ)r–e(r–)z =– . (.) λez+ (–λ)rerz– LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page6of16 Whenrisodd,by(.)and(.)weget (cid:7)∞ zn F(α)(rx;λ;μ;ν) n n! n= (cid:5) (cid:6) (cid:5) (cid:6)  μ(rz)ν α λrerz+ α = erxz rνα λrerz+ λez+ (cid:5) (cid:6) (cid:11) (cid:12)  μ(rz)ν α (cid:7)r–(cid:8) (cid:9) α = –λez k erxz rνα λrerz+ k= (cid:5) (cid:6) (cid:5) (cid:6) =  (cid:7) α (–λ)m μ(rz)ν αe(x+mr)rz rνα v ,v ,...,v λrerz+ v,v,...,vr–≥   r– (cid:13) (cid:5) (cid:6) (cid:5) (cid:6)(cid:14) (cid:7)∞ (cid:7) α m zn = rn–να (–λ)mF(α) x+ ;λr;μ;ν . (.) v ,v ,...,v n r n! n= v,v,...,vr–≥   r– Comparingthecoefficientsof zn onbothsidesof (.),weobtaintheassertion(.)of n! Theorem.. Whenriseven,wecansimilarlyprovetheassertion(.)ofTheorem..Theproofis complete. (cid:2) Itfollowsthatwecandeducethewell-knownformulasfromTheorem.. Letting λ(cid:10)−→–λ, taking μ= and ν = in (.) and (.) and noting (.), we can obtainthefollowingmainresultofLuo(see[],p.,Theorem.). Corollary . For r,α ∈N, n∈N , λ∈C, the following multiplication formula for the  Apostol-Bernoullipolynomialsofhigherorderholdstrue: (cid:5) (cid:6) (cid:5) (cid:6) (cid:7) α m B(α)(rx;λ)=rn–α λmB(α) x+ ;λr , (.) n v ,v ,...,v n r v,v,...,vr–≥   r– wherem=v +v +···+(r–)v .   r– Takingμ=andν=in(.)and(.),andnoting(.),wecanobtainthefollowing mainresultofLuo(see[],p.,Theorem.). Corollary. Forr∈N,n,l∈N ,α,λ∈C,thefollowingmultiplicationformulaforthe  Apostol-Eulerpolynomialsofhigherorderholdstrue: (cid:5) (cid:6) (cid:5) (cid:6) (cid:7) α m E(α)(rx;λ)=rn (–λ)mE(α) x+ ;λr , rodd, (.) n v ,v ,...,v n r v,v,...,vr–≥   r– (cid:5) (cid:6) (cid:7) (–)lrn l E(l)(rx;λ)= n (n+) v ,v ,...,v l ≤v,v,...,vr–≤l   r– v+v+···+vr–=l (cid:5) (cid:6) m ×(–λ)mB(l) x+ ;λr , reven, (.) n+l r wherem=v +v +···+(r–)v .   r– LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page7of16 Takingμ=ν=in(.)and(.),andnoting(.),wecanobtainthefollowingmain result(see[],p.,Corollary.). Corollary. Forα,r∈N,n,l∈N ,λ∈C,thefollowingmultiplicationformulaforthe  Apostol-Genocchipolynomialsofhigherorderholdstrue: (cid:5) (cid:6) (cid:5) (cid:6) (cid:7) α m G(α)(rx;λ)=rn–α (–λ)mG(α) x+ ;λr , rodd, (.) n v ,v ,...,v n r v,v,...,vr–≥   r– (cid:5) (cid:6) (cid:7) l G(l)(rx;λ)=(–)lrn–l n v ,v ,...,v ≤v,v,...,vr–≤l   r– v+v+···+vr–=l (cid:5) (cid:6) m ×(–λ)mB(l) x+ ;λr , reven, (.) n r wherem=v +v +···+(r–)v .   r– Takingλ=–(β)b,μ=–κ,ν=κin(.),andnoting(.),wecanobtainthefollowing a multiplication formulasfor the polynomials Y(α)(x;κ,a,b) and Y (x;κ,a,b) defined by n,β n,β (.)and(.),respectively. Corollary. Forκ,μ,ν,m,n,l,r∈N ,α,λ∈C,wehave  Y(α)(rx;κ,a,b) n,β (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6) (cid:7) α β bm m =rn–κα a(r–)bαY(α) x+ ;κ;a;br (.) v ,v ,...,v a n,β r v,v,...,vr–≥   r– (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6) (cid:7) α β bm m =rn–κα a(r–)bαY(α) x+ ;κ;ar;b , (.) v ,v ,...,v a n,βr r v,v,...,vr–≥   r– wherem=v +v +···+(r–)v .   r– Settingα=l=in(.)and(.),respectively,wehave(see[],p.,Theorem) thefollowing. Corollary. Forκ,μ,ν,n,r∈N ,λ∈C,wehave  (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)r– β bj j Y (rx;κ,a,b)=rn–κ a(r–)bY x+ ;κ;a;br (.) n,β n,β a r j= (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)r– β bj j =rn–κ a(r–)bYn,βr x+ ;κ;ar;b . (.) a r j= Remark. In[],p.,Theorem.,oneofthemainresultofÖzarslanisnotright, thecorrectformshouldbe(.)and(.)ofCorollary.. Remark . In fact, setting λ=–(β)b, μ=–κ, ν =κ in (.) and noting (.), we a deducethemultiplicationformulaswhicharerightonlywhenr isodd.Inthesameway LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page8of16 astheproofof[],p.,Theorem.,wecanobtainthemultiplicationformulas(.) and(.)ofCorollary.. 3 AunifiedrepresentationinconjunctionwiththeGausshypergeometric function In this section we obtain a unified representation of the Apostol-type polynomials F(l)(x;λ;μ;ν)withtheGaussianhypergeometricfunctions. n Theorem. Forμ,ν,n,l∈N ,λ∈C,wehave  F(l)(x;λ;μ;ν) n (cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) n (cid:7)n–νl l+k– n–νl (–λ)k =μl(νl)! νl k k (λ+)l+k k= (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)k k m × (–)m mk(x+m)n–νl–k F –n+νl+k,k;k+; , (.)   m m+x m= whereF(a,b;c;z)denotesGaussianhypergeometricfunctionsdefinedby(see[],p.,Eq. ()) (cid:7)∞ (a) (b) zn F(a,b;c;z):= n n , |z|<. (.) (c) n! n n= Proof Lettingα=l∈Nin(.),wehave (cid:5) (cid:6) (cid:7)∞ zn μzν l F(l)(x;λ;μ;ν) = exz. (.) n n! λez+ n= Differentiatingbothsidesof (.)withrespecttothevariablezyields (cid:13)(cid:5) (cid:6) (cid:14) μzν l F(l)(x;λ;μ;ν)=Dn exz n z λez+ z= (cid:5) (cid:6) (cid:7)n (cid:15) (cid:8) (cid:9) (cid:16) n =μl xn–sDs zνl λez+ –l s z z= s= (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:15)(cid:8) (cid:9) (cid:16) n s =μl xn–s(νl)! Ds–νl λez+ –l s νl z z= s=νl (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:15)(cid:8) (cid:8) (cid:9)(cid:9) (cid:16) n s =μl xn–s(νl)! Ds–νl λ++λ ez– –l , s νl z z= s=νl whereD = d isthedifferentialoperator. z dz Applyingthegeneralizedbinomialtheorem (cid:5) (cid:6) (cid:5) (cid:10) (cid:10) (cid:6) (cid:7)∞ (cid:10) (cid:10) (a+b)–α= α+l– a–α–l(–b)l α∈C,(cid:10)(cid:10)b(cid:10)(cid:10)< l a l= LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page9of16 and the generating function of the Stirling numbers of the second kind S(n,k) (see, for details,[],p.,TheoremA), (cid:7)∞ (ez–)k zn = S(n,k) , k! n! n= wefindthat F(l)(x;λ;μ;ν) n (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:7)∞ (cid:15)(cid:8) (cid:9) (cid:16) n s l+k– =μl xn–s(νl)! (λ+)–l–k(–λ)kDs–νl ez– k s νl k z z= s=νl k= (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:7)s–νl n s l+k– =μl xn–s(νl)! (–λ)k(λ+)–l–kk!S(s–νl,k). s νl k s=νl k= Noting(see[],p.,Eq.()) (cid:5) (cid:6) (cid:7)k  k S(n,k)= (–)k–j jn k! j j= andthewell-knowncombinatorialidentity (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) n k n n–s = , k s s n–k wereadilyobtain F(l)(x;λ;μ;ν) n (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:7)s–νl n s l+k– =μl xn–s(νl)! s νl k s=νl k= (cid:5) (cid:6) (cid:7)k k ×(–λ)k(λ+)–l–k (–)k–m ms–νl m m= (cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6) n (cid:7)n–νl (cid:7)n n–νl l+k– (–λ)kxn–s (cid:7)k k =μl(νl)! (–)k–m ms–νl νl n–s k (λ+)l+k m k=s=k+νl m= (cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) n (cid:7)n–νln(cid:7)–k–νl n–νl l+k– =μl(νl)! νl n–s–νl–k k k= s= (cid:5) (cid:6) (–λ)kxn–s–k–νl (cid:7)k k × (–)k–m ms+k (λ+)l+k m m= (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) n (cid:7)n–νl l+k– (–λ)kxn–k–νl (cid:7)k k =μl(νl)! (–)k–m mk νl k (λ+)l+k m k= m= (cid:5) (cid:6)(cid:5) (cid:6) n(cid:7)–k–νl n–νl m s × . n–s–νl–k x s= LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page10of16 (cid:8) (cid:9) Notingthat(inviewof n =whenk>nork<) k (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:7)∞ n n = , k k k= k= andcombiningthedefinitionoftheGaussianhypergeometricfunction (cid:7)∞ (a) (b) zn n n F (a,b;c;z):= ,   (c) n! n n= weobtain (cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) n (cid:7)n–νl l+k– n–νl F(l)(x;λ;μ;ν)=μl(νl)! n νl k k k= (cid:5) (cid:6) (–λ)kxn–k–νl (cid:7)k k × (–)m mk (λ+)l+k m m= (cid:5) (cid:6) m × F –n+νl+k,;k+;– . (.)   x ApplyingthePfaff-Kummerhypergeometrictransformation[],p.,Eq.(..), (cid:5) (cid:6) (cid:8) (cid:10) (cid:10) (cid:9) F (a,b;c;z)=(–z)–a F a,c–b;c; z c∈/ Z–:(cid:10)arg(–z)(cid:10)≤π–(cid:10)(<(cid:10)<π) ,     z–  to(.),wearriveatthedesiredequation,(.).Thiscompletesourproof. (cid:2) Belowweshowsomespecialcasesof (.). Lettingλ(cid:10)−→–λ,takingμ=andν=in(.)andnoting(.),weeasilyobtainthe followingexplicitformulafortheApostol-Bernoullipolynomials: (cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) n (cid:7)n–l l+k– n–l λk B(l)(x;λ)=l! n l k k (λ–)k k= (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)k k m × (–)m mk(x+m)n–l–k F –n+l+k,k;k+; , (.)   m m+x m= with n,l∈N , λ∈C\{}, which is just the main result of Luo and Srivastava (see [],  p.,Theorem). Takingμ=andν =in(.)andnoting(.),wecanobtainthefollowingexplicit formulafortheApostol-Eulerpolynomials: (cid:5) (cid:6)(cid:5) (cid:6) (cid:7)n l+k– n (–λ)k E(l)(x;λ)=l n k k (λ+)l+k k= (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)k k m × (–)m mk(x+m)n–k F –n+k,k;k+; , (.)   m m+x m= withn,l∈N ,λ∈C\{–},whichisjustthemainresultofLuo(see[],p.,Theorem). 

Description:
In this section we give a unified multiplication formula for the Apostol-type polynomials The above result is just one of the main results of Garg et al.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.