LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 DOI10.1186/s13662-015-0480-0 RESEARCH OpenAccess Some unified formulas and representations for the Apostol-type polynomials Da-QianLu1andQiu-MingLuo2* *Correspondence: [email protected] Abstract 2DepartmentofMathematics, Recently,afamilyoftheApostol-typepolynomialswasintroducedbyLuoand ChongqingNormalUniversity, ChongqingHigherEducationMega Srivastava(Appl.Math.Comput.217:5702-5728(2011)).Inthispaper,wefurther Center,HuxiCampus,Chongqing, investigatetheApostol-typepolynomialsandobtaintheirunifiedmultiplication 401331,People’sRepublicofChina formulaandexplicitrepresentationsintermsoftheGaussianhypergeometric Fulllistofauthorinformationis availableattheendofthearticle functionandthegeneralizedHurwitzzetafunction.Wealsoshowsomespecialcases, whichincludethecorrespondingresultsofLuo,Garg,Srivastava,Ozden,andÖzarslan etc. MSC: Primary11B68;secondary11M35;11B73;33C05 Keywords: (generalized)Apostol-typepolynomials;Apostol-Eulerpolynomials; Apostol-Bernoullipolynomials;Genocchipolynomialsofhighorder;multiplication formula;Gaussianhypergeometricfunction;(generalized)Hurwitzzetafunction 1 Introduction,definitions,andmotivation Throughout this paper, we always make use of the following notations: N={,,,...} denotesthesetofnaturalnumbers,N ={,,,,...}denotesthesetofnonnegativein- tegers,Z–={,–,–,–,...}denotesthesetofnonpositiveintegers,Zdenotesthesetof integers,Rdenotesthesetofrealnumbers,andCdenotesthesetofcomplexnumbers. The symbol (a) denotes the shifted factorial (or the Pochhammer symbol), defined, k a∈C,by ⎧ ⎨ (cid:2)(a+k) , k=, (a) = = (.) k (cid:2)(a) ⎩a(a+)···(a+k–), k∈N. Thesymbol{n} denotesthefallingfactorial,defined,a∈C,by k ⎧ ⎨ , k=, {a} = (.) k ⎩ a(a–)···(a–k+)= (cid:2)(a+) , k∈N, (cid:2)(a–k+) where(cid:2)(x)istheusualgammafunction. TheclassicalBernoullipolynomialsB (x),EulerpolynomialsE (x),andGenocchipoly- n n nomialsG (x),togetherwiththeirfamiliargeneralizationsB(α)(x),E(α)(x),andG(α)(x)of n n n n ©2015LuandLuo;licenseeSpringer.ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.0Inter- nationalLicense(http://creativecommons.org/licenses/by/4.0/),whichpermitsunrestricteduse,distribution,andreproductionin anymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommons license,andindicateifchangesweremade. LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page2of16 orderα,areusuallydefinedbymeansofthefollowinggeneratingfunctions(see,forde- tails,[],pp.-and[]): (cid:5) (cid:6) z α (cid:7)∞ zn (cid:8) (cid:9) exz= B(α)(x) |z|<π , (.) ez– n n! n= (cid:5) (cid:6) α (cid:7)∞ zn (cid:8) (cid:9) exz= E(α)(x) |z|<π (.) ez+ n n! n= and (cid:5) (cid:6) z α (cid:7)∞ zn (cid:8) (cid:9) exz= G(α)(x) |z|<π . (.) ez+ n n! n= Thus,theBernoullipolynomialsB (x),EulerpolynomialsE (x),andGenocchipolynomi- n n alsG (x)aregiven,respectively,by n B (x):=B()(x), E (x):=E()(x) and G (x):=G()(x) (n∈N ). (.) n n n n n n TheBernoullinumbersB ,EulernumbersE ,andGenocchinumbersG are,respectively, n n n B :=B ()=B()(), E :=E ()=E()() and G :=G ()=G()(). (.) n n n n n n n n n SomeinterestinganalogsoftheclassicalBernoullipolynomialsandnumberswerefirst investigatedbyApostol(see[],p.,Eq.(.))and(morerecently)bySrivastava(see[], pp.-).WebeginbyrecallinghereApostol’sdefinitionsasfollows. Definition.(Apostol[];seealsoSrivastava[]) TheApostol-Bernoullipolynomials B (x;λ)(λ∈C)aredefinedbymeansofthefollowinggeneratingfunction: n zexz (cid:7)∞ zn (cid:8) (cid:9) = B (x;λ) |z|<π whenλ=;|z|<|logλ|whenλ(cid:4)= (.) λez– n n! n= with,ofcourse, B (x)=B (x;) and B (λ):=B (;λ), (.) n n n n whereB (λ)denotestheso-calledApostol-Bernoullinumbers. n Recently,LuoandSrivastava[]furtherextendedtheApostol-Bernoullipolynomialsas theso-calledApostol-Bernoullipolynomialsoforderα. Definition.(LuoandSrivastava[]) TheApostol-BernoullipolynomialsB(α)(x;λ)(λ∈ n C)oforderα(α∈N)aredefinedbymeansofthefollowinggeneratingfunction: (cid:5) (cid:6) z α (cid:7)∞ zn ·exz= B(α)(x;λ) λez– n n! n= (cid:8) (cid:9) |z|<π whenλ=;|z|<|logλ|whenλ(cid:4)= (.) LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page3of16 with,ofcourse, B(α)(x)=B(α)(x;) and B(α)(λ):=B(α)(;λ), (.) n n n n whereB(α)(λ)denotestheso-calledApostol-Bernoullinumbersoforderα. n Ontheotherhand,Luo[]gaveananalogousextensionofthegeneralizedEulerpoly- nomialsastheso-calledApostol-Eulerpolynomialsoforderα. Definition.(Luo[]) TheApostol-Eulerpolynomials E(α)(x;λ) oforder α (α,λ∈C) n aredefinedbymeansofthefollowinggeneratingfunction: (cid:5) (cid:6) α·exz=(cid:7)∞ E(α)(x;λ)zn (cid:8)|z|<(cid:10)(cid:10)log(–λ)(cid:10)(cid:10)(cid:9) (.) λez+ n n! n= with,ofcourse, E(α)(x)=E(α)(x;) and E(α)(λ):=E(α)(;λ), (.) n n n n whereE(α)(λ)denotestheso-calledApostol-Eulernumbersoforderα. n OnthesubjectoftheGenocchipolynomialsG (x) andtheirvariousextensions,are- n markablylargenumberofinvestigationshaveappearedintheliterature(see,forexample, [–]).Moreover,Luo(see[])introducedandinvestigatedtheApostol-Genocchipoly- nomialsof(realorcomplex)orderα,whicharedefinedasfollows. Definition. TheApostol-GenocchipolynomialsG(α)(x;λ)(λ∈C)oforderα (α∈N) n aredefinedbymeansofthefollowinggeneratingfunction: (cid:5) (cid:6) z α·exz=(cid:7)∞ G(α)(x;λ)zn (cid:8)|z|<(cid:10)(cid:10)log(–λ)(cid:10)(cid:10)(cid:9) (.) λez+ n n! n= with,ofcourse, G(α)(x)=G(α)(x;), G(α)(λ):=G(α)(;λ), n n n n (.) G (x;λ):=G()(x;λ) and G (λ):=G()(λ), n n n n where G (λ), G(α)(λ), and G (x;λ) denote the so-called Apostol-Genocchi numbers, the n n n Apostol-Genocchinumbersoforderα,andtheApostol-Genocchipolynomials,respec- tively. Ozdenetal.[]investigatedthefollowingunification(andgeneralization)ofthegen- eratingfunctionsofthethreefamiliesofApostol-typepolynomials: (cid:7)∞ –κzκ zn exz= Y (x;κ,a,b) βbez–ab n,β n! n= (cid:8) (cid:10) (cid:10) (cid:9) |z|<π whenβ=a;|z|<(cid:10)blog(β/a)(cid:10)whenβ(cid:4)=a;κ,β∈C;a,b∈C\{} . (.) LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page4of16 In[]Özarslanfurthergaveanextensionoftheabovedefinition(.)asfollows: (cid:5) (cid:6) –κzκ α (cid:7)∞ zn exz= Y(α)(x;κ,a,b) βbez–ab n,β n! n= (cid:8) (cid:10) (cid:10) α∈N;|z|<π whenβ=a;|z|<(cid:10)blog(β/a)(cid:10) (cid:9) whenβ(cid:4)=a;κ,β∈C;a,b∈C\{} (.) andgavesomeidentitiesforY(α)(x;κ,a,b). n,β Recently,LuoandSrivastava[]furtherextendedtheApostol-typepolynomialsasfol- lows. Definition . (Luo and Srivastava []) The generalized Apostol-type polynomials F(α)(x;λ;μ;ν) of order α (α,λ,μ;ν ∈C) are defined by means of the following generat- n ingfunction: (cid:5) (cid:6) μzν αexz=(cid:7)∞ F(α)(x;λ;μ;ν)zn (cid:8)|z|<(cid:10)(cid:10)log(–λ)(cid:10)(cid:10)(cid:9). (.) λez+ n n! n= BycomparingDefinition.withDefinitions.,.and.,wereadilyfindthat B(α)(x;λ)=(–)αF(α)(x;–λ;;) (α∈N), (.) n n E(α)(x;λ)=F(α)(x;λ;;) (α∈C) (.) n n and G(α)(x;λ)=F(α)(x;λ;;) (α∈N). (.) n n Furthermore,ifwecomparethegeneratingfunctions(.),(.)and(.),wereadily seethat (cid:5) (cid:5) (cid:6) (cid:6) β b Y (x;κ,a,b)=– F() x;– ;–κ;κ , (.) n,β ab n a (cid:5) (cid:5) (cid:6) (cid:6) β b Y(α)(x;κ,a,b)=(–)α F(α) x;– ;–κ;κ . (.) n,β abα n a Moreinvestigationsofthissubjectcanbefoundin[,,–]. TheaimofthispaperistogivethemultiplicationformulafortheApostol-typepolyno- mialsF(α)(x;λ;μ;ν)andobtainanexplicitrepresentationofF(α)(x;λ;μ;ν)intermsofthe n n Gausshypergeometricfunction F (a,b;c;z).Westudysomerelationsbetweenthefam- ilyofApostol-typepolynomialsF(α)(x;λ;μ;ν)andthefamilyofHurwitzzetafunctions n (cid:9) (z,s,a).Somespecialcasesalsoareshown. μ 2 MultiplicationformulafortheApostol-typepolynomials InthissectionwegiveaunifiedmultiplicationformulafortheApostol-typepolynomials F(α)(x;λ;μ;ν). We will see that some well-known results are the corresponding special n casesofourresult. Firstweneedthefollowinglemmas. LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page5of16 Lemma.(Multinomialidentity[],p.,TheoremB) Ifx ,x ,...,x arecommuting m elementsofaring(⇐⇒ xx =xx,≤i<j≤m),thenwehaveforallintegersn≥: i j j i (cid:5) (cid:6) (cid:7) n (x +x +···+x )n= x ax a···x am, (.) m m a ,a ,...,a aa+,aa+,.·..·,·a+mam≥=n m thelastsummationtakesplaceoverallpositiveorzerointegersa ≥suchthata +a + i ···+a =n,where m (cid:5) (cid:6) n n! := , a ,a ,...,a a !a !···a ! m m arecalledmultinomialcoefficientsdefinedby[],p.,DefinitionB. Lemma.(Generalizedmultinomialidentity[],p.,Eq.(m)) If x ,x ,...,x are m commutingelementsofaring(⇐⇒ xx =xx,≤i<j≤m),thenwehaveforallrealor i j j i complexvariableα: (cid:5) (cid:6) (cid:7) α (+x +x +···+x )α= x vx v···x vm, (.) m m v ,v ,...,v v,v,...,vm≥ m thelastsummationtakesplaceoverallpositiveorzerointegersv ≥,where i (cid:5) (cid:6) α := {α}v+v+···+vm = α(α–)(α–)···(α–v–v–···–vm+) v ,v ,...,v v !v !···v ! v !v !···v ! m m m arecalledgeneralizedmultinomialcoefficientsdefinedby[],p.,Eq.(C(cid:9)(cid:9)). Theorem. (Multiplicationformula) For μ,ν,r∈N and ν ≤, n,l∈N , α,λ∈C,we have (cid:5) (cid:6) (cid:7) α F(α)(rx;λ;μ;ν)=rn–να n v ,v ,...,v v,v,...,vr–≥ r– (cid:5) (cid:6) m ×(–λ)mF(α) x+ ;λr;μ;ν , rodd, (.) n r (cid:5) (cid:6) (cid:7) (–)lμlrn–νl l F(l)(rx;λ;μ;ν)= n (n+) v ,v ,...,v (–ν)l ≤v,v,...,vr–≤l r– v+v+···+vr–=l (cid:5) (cid:6) m ×(–λ)mB(l) x+ ;λr , reven, (.) n+(–ν)l r wherem=v +v +···+(r–)v . r– Proof Itisnotdifficulttoshowthat –λez+λez+···+(–λ)r–e(r–)z =– . (.) λez+ (–λ)rerz– LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page6of16 Whenrisodd,by(.)and(.)weget (cid:7)∞ zn F(α)(rx;λ;μ;ν) n n! n= (cid:5) (cid:6) (cid:5) (cid:6) μ(rz)ν α λrerz+ α = erxz rνα λrerz+ λez+ (cid:5) (cid:6) (cid:11) (cid:12) μ(rz)ν α (cid:7)r–(cid:8) (cid:9) α = –λez k erxz rνα λrerz+ k= (cid:5) (cid:6) (cid:5) (cid:6) = (cid:7) α (–λ)m μ(rz)ν αe(x+mr)rz rνα v ,v ,...,v λrerz+ v,v,...,vr–≥ r– (cid:13) (cid:5) (cid:6) (cid:5) (cid:6)(cid:14) (cid:7)∞ (cid:7) α m zn = rn–να (–λ)mF(α) x+ ;λr;μ;ν . (.) v ,v ,...,v n r n! n= v,v,...,vr–≥ r– Comparingthecoefficientsof zn onbothsidesof (.),weobtaintheassertion(.)of n! Theorem.. Whenriseven,wecansimilarlyprovetheassertion(.)ofTheorem..Theproofis complete. (cid:2) Itfollowsthatwecandeducethewell-knownformulasfromTheorem.. Letting λ(cid:10)−→–λ, taking μ= and ν = in (.) and (.) and noting (.), we can obtainthefollowingmainresultofLuo(see[],p.,Theorem.). Corollary . For r,α ∈N, n∈N , λ∈C, the following multiplication formula for the Apostol-Bernoullipolynomialsofhigherorderholdstrue: (cid:5) (cid:6) (cid:5) (cid:6) (cid:7) α m B(α)(rx;λ)=rn–α λmB(α) x+ ;λr , (.) n v ,v ,...,v n r v,v,...,vr–≥ r– wherem=v +v +···+(r–)v . r– Takingμ=andν=in(.)and(.),andnoting(.),wecanobtainthefollowing mainresultofLuo(see[],p.,Theorem.). Corollary. Forr∈N,n,l∈N ,α,λ∈C,thefollowingmultiplicationformulaforthe Apostol-Eulerpolynomialsofhigherorderholdstrue: (cid:5) (cid:6) (cid:5) (cid:6) (cid:7) α m E(α)(rx;λ)=rn (–λ)mE(α) x+ ;λr , rodd, (.) n v ,v ,...,v n r v,v,...,vr–≥ r– (cid:5) (cid:6) (cid:7) (–)lrn l E(l)(rx;λ)= n (n+) v ,v ,...,v l ≤v,v,...,vr–≤l r– v+v+···+vr–=l (cid:5) (cid:6) m ×(–λ)mB(l) x+ ;λr , reven, (.) n+l r wherem=v +v +···+(r–)v . r– LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page7of16 Takingμ=ν=in(.)and(.),andnoting(.),wecanobtainthefollowingmain result(see[],p.,Corollary.). Corollary. Forα,r∈N,n,l∈N ,λ∈C,thefollowingmultiplicationformulaforthe Apostol-Genocchipolynomialsofhigherorderholdstrue: (cid:5) (cid:6) (cid:5) (cid:6) (cid:7) α m G(α)(rx;λ)=rn–α (–λ)mG(α) x+ ;λr , rodd, (.) n v ,v ,...,v n r v,v,...,vr–≥ r– (cid:5) (cid:6) (cid:7) l G(l)(rx;λ)=(–)lrn–l n v ,v ,...,v ≤v,v,...,vr–≤l r– v+v+···+vr–=l (cid:5) (cid:6) m ×(–λ)mB(l) x+ ;λr , reven, (.) n r wherem=v +v +···+(r–)v . r– Takingλ=–(β)b,μ=–κ,ν=κin(.),andnoting(.),wecanobtainthefollowing a multiplication formulasfor the polynomials Y(α)(x;κ,a,b) and Y (x;κ,a,b) defined by n,β n,β (.)and(.),respectively. Corollary. Forκ,μ,ν,m,n,l,r∈N ,α,λ∈C,wehave Y(α)(rx;κ,a,b) n,β (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6) (cid:7) α β bm m =rn–κα a(r–)bαY(α) x+ ;κ;a;br (.) v ,v ,...,v a n,β r v,v,...,vr–≥ r– (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6) (cid:7) α β bm m =rn–κα a(r–)bαY(α) x+ ;κ;ar;b , (.) v ,v ,...,v a n,βr r v,v,...,vr–≥ r– wherem=v +v +···+(r–)v . r– Settingα=l=in(.)and(.),respectively,wehave(see[],p.,Theorem) thefollowing. Corollary. Forκ,μ,ν,n,r∈N ,λ∈C,wehave (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)r– β bj j Y (rx;κ,a,b)=rn–κ a(r–)bY x+ ;κ;a;br (.) n,β n,β a r j= (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)r– β bj j =rn–κ a(r–)bYn,βr x+ ;κ;ar;b . (.) a r j= Remark. In[],p.,Theorem.,oneofthemainresultofÖzarslanisnotright, thecorrectformshouldbe(.)and(.)ofCorollary.. Remark . In fact, setting λ=–(β)b, μ=–κ, ν =κ in (.) and noting (.), we a deducethemultiplicationformulaswhicharerightonlywhenr isodd.Inthesameway LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page8of16 astheproofof[],p.,Theorem.,wecanobtainthemultiplicationformulas(.) and(.)ofCorollary.. 3 AunifiedrepresentationinconjunctionwiththeGausshypergeometric function In this section we obtain a unified representation of the Apostol-type polynomials F(l)(x;λ;μ;ν)withtheGaussianhypergeometricfunctions. n Theorem. Forμ,ν,n,l∈N ,λ∈C,wehave F(l)(x;λ;μ;ν) n (cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) n (cid:7)n–νl l+k– n–νl (–λ)k =μl(νl)! νl k k (λ+)l+k k= (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)k k m × (–)m mk(x+m)n–νl–k F –n+νl+k,k;k+; , (.) m m+x m= whereF(a,b;c;z)denotesGaussianhypergeometricfunctionsdefinedby(see[],p.,Eq. ()) (cid:7)∞ (a) (b) zn F(a,b;c;z):= n n , |z|<. (.) (c) n! n n= Proof Lettingα=l∈Nin(.),wehave (cid:5) (cid:6) (cid:7)∞ zn μzν l F(l)(x;λ;μ;ν) = exz. (.) n n! λez+ n= Differentiatingbothsidesof (.)withrespecttothevariablezyields (cid:13)(cid:5) (cid:6) (cid:14) μzν l F(l)(x;λ;μ;ν)=Dn exz n z λez+ z= (cid:5) (cid:6) (cid:7)n (cid:15) (cid:8) (cid:9) (cid:16) n =μl xn–sDs zνl λez+ –l s z z= s= (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:15)(cid:8) (cid:9) (cid:16) n s =μl xn–s(νl)! Ds–νl λez+ –l s νl z z= s=νl (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:15)(cid:8) (cid:8) (cid:9)(cid:9) (cid:16) n s =μl xn–s(νl)! Ds–νl λ++λ ez– –l , s νl z z= s=νl whereD = d isthedifferentialoperator. z dz Applyingthegeneralizedbinomialtheorem (cid:5) (cid:6) (cid:5) (cid:10) (cid:10) (cid:6) (cid:7)∞ (cid:10) (cid:10) (a+b)–α= α+l– a–α–l(–b)l α∈C,(cid:10)(cid:10)b(cid:10)(cid:10)< l a l= LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page9of16 and the generating function of the Stirling numbers of the second kind S(n,k) (see, for details,[],p.,TheoremA), (cid:7)∞ (ez–)k zn = S(n,k) , k! n! n= wefindthat F(l)(x;λ;μ;ν) n (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:7)∞ (cid:15)(cid:8) (cid:9) (cid:16) n s l+k– =μl xn–s(νl)! (λ+)–l–k(–λ)kDs–νl ez– k s νl k z z= s=νl k= (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:7)s–νl n s l+k– =μl xn–s(νl)! (–λ)k(λ+)–l–kk!S(s–νl,k). s νl k s=νl k= Noting(see[],p.,Eq.()) (cid:5) (cid:6) (cid:7)k k S(n,k)= (–)k–j jn k! j j= andthewell-knowncombinatorialidentity (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) n k n n–s = , k s s n–k wereadilyobtain F(l)(x;λ;μ;ν) n (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:7)s–νl n s l+k– =μl xn–s(νl)! s νl k s=νl k= (cid:5) (cid:6) (cid:7)k k ×(–λ)k(λ+)–l–k (–)k–m ms–νl m m= (cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6) n (cid:7)n–νl (cid:7)n n–νl l+k– (–λ)kxn–s (cid:7)k k =μl(νl)! (–)k–m ms–νl νl n–s k (λ+)l+k m k=s=k+νl m= (cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) n (cid:7)n–νln(cid:7)–k–νl n–νl l+k– =μl(νl)! νl n–s–νl–k k k= s= (cid:5) (cid:6) (–λ)kxn–s–k–νl (cid:7)k k × (–)k–m ms+k (λ+)l+k m m= (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) n (cid:7)n–νl l+k– (–λ)kxn–k–νl (cid:7)k k =μl(νl)! (–)k–m mk νl k (λ+)l+k m k= m= (cid:5) (cid:6)(cid:5) (cid:6) n(cid:7)–k–νl n–νl m s × . n–s–νl–k x s= LuandLuoAdvancesinDifferenceEquations (2015) 2015:137 Page10of16 (cid:8) (cid:9) Notingthat(inviewof n =whenk>nork<) k (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)n (cid:7)∞ n n = , k k k= k= andcombiningthedefinitionoftheGaussianhypergeometricfunction (cid:7)∞ (a) (b) zn n n F (a,b;c;z):= , (c) n! n n= weobtain (cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) n (cid:7)n–νl l+k– n–νl F(l)(x;λ;μ;ν)=μl(νl)! n νl k k k= (cid:5) (cid:6) (–λ)kxn–k–νl (cid:7)k k × (–)m mk (λ+)l+k m m= (cid:5) (cid:6) m × F –n+νl+k,;k+;– . (.) x ApplyingthePfaff-Kummerhypergeometrictransformation[],p.,Eq.(..), (cid:5) (cid:6) (cid:8) (cid:10) (cid:10) (cid:9) F (a,b;c;z)=(–z)–a F a,c–b;c; z c∈/ Z–:(cid:10)arg(–z)(cid:10)≤π–(cid:10)(<(cid:10)<π) , z– to(.),wearriveatthedesiredequation,(.).Thiscompletesourproof. (cid:2) Belowweshowsomespecialcasesof (.). Lettingλ(cid:10)−→–λ,takingμ=andν=in(.)andnoting(.),weeasilyobtainthe followingexplicitformulafortheApostol-Bernoullipolynomials: (cid:5) (cid:6) (cid:5) (cid:6)(cid:5) (cid:6) n (cid:7)n–l l+k– n–l λk B(l)(x;λ)=l! n l k k (λ–)k k= (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)k k m × (–)m mk(x+m)n–l–k F –n+l+k,k;k+; , (.) m m+x m= with n,l∈N , λ∈C\{}, which is just the main result of Luo and Srivastava (see [], p.,Theorem). Takingμ=andν =in(.)andnoting(.),wecanobtainthefollowingexplicit formulafortheApostol-Eulerpolynomials: (cid:5) (cid:6)(cid:5) (cid:6) (cid:7)n l+k– n (–λ)k E(l)(x;λ)=l n k k (λ+)l+k k= (cid:5) (cid:6) (cid:5) (cid:6) (cid:7)k k m × (–)m mk(x+m)n–k F –n+k,k;k+; , (.) m m+x m= withn,l∈N ,λ∈C\{–},whichisjustthemainresultofLuo(see[],p.,Theorem).
Description: